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We study the fundamental problem of one-sided matching where n agents have unrestricted cardinal val-
uations over n items and the goal is to maximize social welfare, i.e. the total utility of the agents in an
assignment. We measure the quality of a matching mechanism by its Price of Anarchy and prove lower
and upper bounds on the performance of mechanisms with respect to the two dominant representations of
valuation functions in the literature, unit-range and unit-sum.

First, we prove that the two most prominent one-sided matching mechanisms, Probabilistic Serial and
Random Priority achieve a Price of Anarchy ofO(

√
n), with respect to both representations and very general

equilibrium notions, as well as the case of incomplete information. We complement this result with a lower
bound of Ω(

√
n) on the Price of Anarchy of any mechanism for the unit-sum representation, which proves

that those two mechanisms are asymptotically optimal among all mechanisms for the problem, including
randomized and cardinal ones. For the unit-range representation, we prove a lower bound of Ω(

√
n) on the

performance of all truthful mechanisms, which implies that Random Priority is optimal among all mecha-
nisms in this class, as well as a lower bound of Ω(n−1/4) on the Price of Anarchy of any mechanism with
respect to its ε-equilibria.

Additionally, we prove that the Price of Stability of any proportional mechanism is bounded by Ω(
√
n);

most natural matching mechanisms including Random Priority and Probabilistic Serial are proportional.
For deterministic mechanisms, we show strong lower bounds for both representations, which imply that
randomization is needed for better welfare guarantees to be achievable.
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1. INTRODUCTION
One-sided matching (also called the house allocation problem) is the fundamental prob-
lem of assigning items to agents, such that each agent receives exactly one item. It
lies in the intersection of computer science, social choice and mechanism design. The
study of the problem has its roots in the seminal papers of Shapley and Scarf [1974]
and Hylland and Zeckhauser [1979] and has found numerous applications throughout
the years, such as task allocation, student or medical resident placement [Sönmez and
Ünver 2011], or more recently, nationwide organ exchange programs [UNOS 1984].

In this setting, agents are often asked to provide ordinal preferences, i.e. preference
lists, or rankings of the items. We assume that underlying these ordinal preferences,
agents have numerical values specifying how much they value each item [Hylland and
Zeckhauser 1979; Bogomolnaia and Moulin 2001]. In game-theoretic terms, these are
the agents’ von Neumann-Morgenstern utility functions [Von Neumann and Morgen-
stern 1944] and the associated preferences are often referred to as cardinal preferences.

A mechanism is a function that elicits the agents’ private valuations for the items
and maps them to matchings. However, agents are rational strategic entities that
might not always report their valuations truthfully; they may misreport their values
if that results in a better matching (from their own perspective). The assumption that
the agents report their valuations strategically to maximize their utilities is central to
the fields of game theory and mechanism design, which suggest tools for preventing
or managing such selfish behaviour. In particular, one approach is to try to eliminate
incentives for misreporting altogether, by constructing truthful mechanisms, i.e. mech-
anisms where regardless of the choices of the other agents, an agent is better off by
revealing his valuation truthfully. A more general approach would be to study the
Nash equilibria of the induced game of a mechanism, i.e. strategy profiles from which
no agent wishes to unilaterally deviate, and design mechanisms with good equilibria.

A natural objective for the designer is to choose the matching that maximizes the
social welfare, i.e. the sum of agents’ valuations for the items they are matched with,
which is the most prominent measure of aggregate utility in the literature. Given the
strategic nature of the agents, we are interested in mechanisms that maximize the
social welfare in the equilibrium. We use the standard measure of equilibrium ineffi-
ciency, the Price of Anarchy [Koutsoupias and Papadimitriou 1999], that compares the
maximum social welfare attainable in any matching with the worst-case social welfare
that can be achieved in an equilibrium.

We evaluate the efficiency of a mechanism with respect to the Price of Anarchy of
the induced game. We study both deterministic and randomized mechanisms: in the
latter case the output is a probability distribution over matchings, instead of a single
matching. We are interested in the class of cardinal mechanisms, which use the actual
numerical values of the preferences, and generalize the ordinal mechanisms, which
only make use of the orderings induced by the agents’ valuations.

Note that our setting involves no monetary transfers and generally falls under
the umbrella of approximate mechanism design without money [Procaccia and
Tennenholtz 2009]. In general settings without money, one has to fix a canonical
representation of the valuations. The two predominant assumptions in the literature
are the unit-sum representation, i.e. each agent has a total value of 1 for all the items
or the unit-range representation, i.e. each agent’s valuations lie in [0, 1] with the
maximum valuation being 1 and the minimum being 0.
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Table I. Table of results

Bounds/Mechanisms PS RP Any Truthful Proportional

Unit-Sum
Price of Anarchy Θ(

√
n) Θ(

√
n) Ω(

√
n) Ω(

√
n) Ω(

√
n)

Approximation Ratio × Θ(
√
n) × Ω(

√
n) ×

Price of Stability Θ(
√
n) Θ(

√
n) Θ(1) Θ(1) Ω(

√
n)

Unit-Range
Price of Anarchy Θ(

√
n) Θ(

√
n) Ω(n1/4)† Ω(

√
n) Ω(n1/4)†

Approximation Ratio × Θ(
√
n) × Ω(

√
n) ×

Price of Stability O(
√
n) O(

√
n) Θ(1) Θ(1) −

Table summarizing the main results. “O” bounds are approximation guarantees and
“Ω” bounds are inapproximability bounds. A Θ(d) bound for a class of mechanisms
means that no mechanism in the class can perform better than Ω(d) and there is a
mechanism in the class whose performance is O(d). “×” indicates that an approxi-
mation ratio result is only meaningful for truthful mechanisms, where truth-telling
is guaranteed to be an equilibrium. “†” indicates that the result is with respect to
ε-equilibria, for any ε > 0.

1.1. Our results
In Section 3 we bound the inefficiency of the two best-known mechanisms in the match-
ing literature, Probabilistic Serial [Bogomolnaia and Moulin 2001] and Random Pri-
ority [Abdulkadiroğlu and Sönmez 1998]. In particular, for n agents and n items, their
Price of Anarchy is O(

√
n) for both representations. The bounds hold for very general

solution concepts, such as coarse-correlated equilibria as well as Bayes-Nash equilib-
ria, when the valuations of the agents are drawn from some probability distribution. In
Section 4 we complement these with a matching lower bound (i.e. Ω(

√
n)) that applies

to all cardinal (randomized) mechanisms for the unit-sum representation. As a result,
we conclude that these two ordinal mechanisms are optimal. These results suggest
that in the presence of selfish behaviour, it does not help a welfare maximizer to ask
agents to report preferences more expressively than simply rankings over the items.

For unit-range, we prove a similar lower bound of Ω(
√
n) on the Price of Anarchy of

all truthful mechanisms, again establishing that Random Priority is the best mecha-
nism in this class. In fact, we prove a stronger statement, namely that the approxi-
mation ratio (i.e. a notion similar to the Price of Anarchy that is with respect to only
the truth-telling equilibria) of any truthful mechanism is bounded by Ω(

√
n). For all

mechanisms, under no restrictions, we prove a lower bound of Ω(n1/4) on the Price of
Anarchy, with respect to their ε-equilibria, for ε > 0.

We separately consider deterministic mechanisms and in Section 4 prove that their
Price of Anarchy is Ω(n2) for unit-sum and Ω(n) for unit-range, even for cardinal mech-
anisms. This shows that randomization is necessary for non-trivial worst-case effi-
ciency guarantees.

Finally, in Section 5, we extend our main lower bound to the Price of Stability, a
more optimistic measure of efficiency [Anshelevich et al. 2008], which strengthens the
negative results even further. Specifically, we prove that the performance of any pro-
portional mechanism is bounded by Ω(

√
n).

An overview of our main results can be found in Table I.

1.2. Discussion and related work
The one-sided matching problem has been a focus of attention of much related liter-
ature in economics, computer science and artificial intelligence for many years. Here,
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we will cover some ground on the major classical approaches in economics as well as
the more recent literature in computer science, focusing on aspects that are mostly rel-
evant to our goals. For a more comprehensive exposition of the plethora of results on
the topic, the interested reader is referred to the surveys of Sönmez and Ünver [2011]
and Abdulkadiroglu and Sönmez [2013] and the references therein.

As we mentioned earlier, the one-sided matching problem was first introduced by
Shapley and Scarf [1974] in the context of initial endowments and later on Hylland
and Zeckhauser [1979] formulated a version of the problem where items are not ini-
tially endowed by agents (and termed this “social endowment”). The matching problem
with preferences on both sides of the market was considered earlier in the very influ-
ential paper of Gale and Shapley [1962]. Over the years, several different one-sided
matching mechanisms have been proposed with various desirable properties related
to truthfulness, fairness and economic efficiency.

Perhaps the most intuitive solution would be to fix an ordering of agents and let them
pick their most-preferred items according to this ordering; the resulting class of mech-
anisms is known as serial dictatorships [Svensson 1999]. To avoid unfairness issues,
one could fix the ordering uniformly at random. The resulting mechanism, which pre-
sumably dates back to ancient times, is termed random serial dictatorship or random
priority. Random Priority has been extensively studied in the literature of one-sided
matching [Sönmez and Ünver 2005; Abdulkadiroğlu and Sönmez 1998; Krysta et al.
2014; Hosseini et al. 2015; Bhalgat et al. 2011], mainly due to its simplicity, alongside
its desirable properties; the mechanism is fair (in the sense of anonymity), truthful,
and for every fixed ordering, the resulting allocation is Pareto efficient, i.e. there is
no other allocation that could make some agent more satisfied without making some
agent less satisfied. On the other hand, it fails to achieve stronger fairness guarantees,
like envy-freeness [Foley 1967], a property in which no agent would rather swap her
randomized allocation with any other agent.

In an attempt to mend the fairness issues of Random Priority and achieve better ef-
ficiency guarantees, Crès and Moulin [2001] introduced the Probabilistic Serial mech-
anism, which was popularized by Bogomolnaia and Moulin [2001] in a paper very cen-
tral to the field. In Probabilistic Serial, agents consume items continuously with a fixed
speed according to their preferences, starting with their most-preferred item and mov-
ing on the the next non-depleted item on their preference list. The resulting fractional
allocation can be interpreted as a randomized allocation of indivisible items. The mer-
its of the mechanism are its ordinal efficiency, a version of efficiency stronger than
ex-post Pareto efficiency and the fact that it is envy-free. Note that the mechanism is
not truthful1 and therefore its performance is naturally best evaluated in equilibrium
[Ekici and Kesten 2010].

We note here that while given our general lower bound, proving a matching upper
bound for Random Priority is enough to establish tightness, it is still important to
know what the welfare guarantees of Probabilistic Serial due to its popularity and ex-
tended study within the literature, with related work on characterizations [Hashimoto
et al. 2014; Kesten 2006], extensions [Katta and Sethuraman 2006], strategic aspects
[Kojima and Manea 2010; Hosseini et al. 2016] and hardness of manipulation [Aziz
et al. 2015b]. Somewhat surprisingly, the Nash equilibria of the mechanism were only
recently studied. Aziz et al. [2015a] prove that the mechanism has pure Nash equilib-
ria while Ekici and Kesten [2010] study the ordinal equilibria of the mechanism and
prove that the desirable properties of the mechanism are not necessarily satisfied for
those profiles.

1Probabilistic Serial satisfies a much weaker condition that was coined weak truthfulness in [Bogomolnaia
and Moulin 2001].

ACM Transactions on Economics and Computation, Vol. 0, No. 0, Article 0, Publication date: 2016.



The Social Welfare of One-Sided Matching Mechanisms. 0:5

Notice that both Random Priority and Probabilistic Serial are ordinal; in fact, the
matching literature in economics has been dominated by ordinal mechanisms. Inter-
estingly enough though, Hylland and Zeckhauser in their 1979 paper propose a car-
dinal mechanism, the pseudo-market mechanism. The mechanism first endows agents
with artificial budgets of unit capacity and then produces a randomized matching in a
market-like fashion: items are treated as divisible commodities, prices are announced
and agents purchase their most preferred shares at those prices. The process is re-
peated until supply meets demand, i.e. all items are entirely allocated and all artificial
budgets are exhausted.2 The pseudo-market mechanism is strong in terms of economic
efficiency and fairness, but it is not truthful; truthfulness as a desirable property had
already been discussed in [Hylland and Zeckhauser 1979]. In this paper, we will be
interested in the performance of all mechanisms, including cardinal ones, which for
instance precludes the option of employing recent characterization results by Mennle
and Seuken [2014] for our lower bounds on truthful mechanisms, since they only apply
to ordinal mechanisms.

As one can see from the discussion above, the literature in classical economics has
been primarily interested in achieving tradeoffs between economic efficiency, truth-
fulness and fairness and the limitations of such attempts have been considered in
[Zhou 1990] and [Bogomolnaia and Moulin 2001] among others. In the computer sci-
ence literature, the research direction has shifted towards aggregate measures of social
efficiency, similarly to what we do in this paper. A recent branch of study considers or-
dinal measures of efficiency instead of social welfare maximization though, under the
assumption that agents’ preferences are only expressed through preference orderings
over items. Bhalgat et al. [2011] study the approximation ratio of matching mecha-
nisms, when the objective is the maximization of the ordinal social welfare, a notion
of efficiency that they define based solely on ordinal information. Other measures of
efficiency for one-sided matching were also studied in Krysta et al. [2014], where the
authors design truthful mechanisms to approximate the size of a maximum cardinally
(or maximum agent weight) Pareto-optimal matching and in Chakrabarty and Swamy
[2014] where the authors consider the rank approximation as the measure of efficiency.
While interesting, these measures of efficiency do not accurately encapsulate the so-
cially desired outcome the way that social welfare does, especially since an underlying
cardinal utility structure is part of the setting [Bogomolnaia and Moulin 2001; Hyl-
land and Zeckhauser 1979; Von Neumann and Morgenstern 1944; Zhou 1990]. Our
results actually suggest that (at least for the unit-sum representation), in order to
achieve the optimal welfare guarantees, one does not even need to elicit this utility
structure; agents can only be asked to report preference orderings, which is arguably
more appealing.

At the same time as the appearance of the first conference paper [Filos-Ratsikas
et al. 2014] that includes some of the results of the present paper, independently
Adamzyck et al. [2014] studied truthful mechanisms for social welfare maximization
in one-sided matchings when agents have von Neumann-Morgenstern utilities, nor-
malized in the unit interval, but not necessarily unit-sum or unit-range. Their main
result on the approximation ratio of random priority can be combined with some ad-
ditional arguments to obtain one of our intermediate lemmas but our upper bounds,
even those that only apply to truthful mechanisms, are more general and in particular
imply theirs.

2The pseudo-market mechanism is also sometimes referred to as the CEEI mechanism [Bogomolnaia and
Moulin 2001], where CEEI stands for “competitive equilibrium from equal incomes”, the supply-meets-
demand outcome of a market where buyers have equal budgets.
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Finally, we point out that our work is in a sense analogous to the literature that stud-
ies the Price of Anarchy in item-bidding auctions for settings without money, initiated
by [Christodoulou et al. 2008] and studied under a lot of different variants [Bhawalkar
and Roughgarden 2011; Christodoulou et al. 2016; Hassidim et al. 2011; Feldman et al.
2013; de Keijzer et al. 2013; Roughgarden 2014]. Furthermore, the extension of our
results to very general solution concepts (coarse correlated equilibria) and settings of
incomplete information (Bayes-Nash equilibria) is somehow reminiscent of the smooth-
ness framework [Roughgarden 2009] for games and [Syrgkanis and Tardos 2013] for
mechanisms. While our results are not proven using the smoothness condition, our
extension technique is similar in spirit.

1.3. Canonical Representation
In standard utility theory, von Neumann-Morgenstern utility functions are well-
defined up to positive affine transformations. The choice of transformation does not
make a difference when arguing about utilities on an individual basis but it is quite
important when considering interpersonal objectives, like social welfare maximization.
Applying different transformations to the utility functions would result in different
agents having inputs of varying “importance”. The standard approach in literature is
to fix some canonical representation, or normalization of utilities and there are two
popular approaches, unit-sum and unit-range.

In the unit-sum normalization, an agent has a total value of 1, which implies that
each agent would be equally happy when receiving all the items. Intuitively, this nor-
malization means that every agent has equal influence within the mechanism and her
values can be interpreted as “scrip money” that she uses to acquire items. The unit-
sum normalization has been applied for social welfare maximization in many settings
without money including fair division and cake-cutting [Brams et al. 2012; Caragian-
nis et al. 2012; Cohler et al. 2011; Bertsimas et al. 2011; Karp et al. 2014; Cole et al.
2013a], indivisible and divisible item allocation [Guo and Conitzer 2010; Brânzei et al.
2014; Feldman et al. 2009; Cole et al. 2013b; Han et al. 2011; Cheung 2016] and voting
[Boutilier et al. 2012; Caragiannis and Procaccia 2011; Caragiannis et al. 2016] among
others.

If we use the same affine transformation for all utility functions, agents” utilities are
fixed to lie in an interval with the least preferred and the most preferred candidates
mapped to the endpoints of the interval respectively. In the unit-range representation,
the chosen interval is [0, 1]; this is equivalent to the “zero-one rule” proposed by Haus-
man [Hausman 1995] for normalizing and comparing von Neumann-Morgenstern util-
ities. The unit-sum representation has been used often in the literature as well [Zhou
1990; Barbera 2010; Feige and Tennenholtz 2010; Filos-Ratsikas and Miltersen 2014].

For a more detailed discussion of the two representations, we refer the read to [Filos-
Ratsikas 2015]. Finally, let us remark that without any normalization, non-trivial so-
cial welfare guarantees are not possible by any mechanism (e.g. see [Anshelevich and
Das 2010] for bounds on truthful mechanisms among others).

2. PRELIMINARIES
Let N = {1, . . . , n} be a finite set of agents and A = {1, . . . , n} be a finite set of indi-
visible items. An allocation is a matching of agents to items, that is, an assignment of
items to agents where each agent gets assigned exactly one item. We can view an al-
location µ as a permutation vector (µ1, µ2 . . . , µn) where µi is the unique item matched
with agent i. Let O be the set of all allocations. Each agent i has a valuation function
ui : A → R mapping items to real numbers. Valuation functions are considered to be
well-defined modulo positive affine transformations, that is, for item j : j → αui(j) + β
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is considered to be an alternative representation of the same valuation function ui.
Given this, we fix the canonical representation of ui to be either

— unit-sum, that is
∑
j ui(j) = 1, with ui(j) ≥ 0 for all i, j or

— unit-range, i.e. maxj∈A ui(j) = 1 and minj∈A ui(j) = 0.3

Equivalently, we can consider valuation functions as valuation vectors ui =
(ui1, ui2, . . . , uin) and let V be the set of all valuation vectors of an agent. Let u =
(u1, u2, . . . , un) denote a typical valuation profile and let V n be the set of all valuation
profiles with n agents.

We consider strategic agents who might have incentives to misreport their valua-
tions. We define s = (s1, s2, . . . , sn) to be a pure strategy profile, where si is the re-
ported valuation vector of agent i. We will use s−i to denote the strategy profile with-
out the ith coordinate and hence s = (si, s−i) is an alternative way to denote a strat-
egy profile. A direct revelation mechanism without money is a function M : V n → O
mapping reported valuation profiles to matchings. For a randomized mechanism, we
define M to be a random map M : V n → O. Let Mi(s) denote the restriction of the
outcome of the mechanism to the i’th coordinate, which is the item assigned to agent
i by the mechanism. For randomized mechanisms, we let pM,s

ij = Pr[Mi(s) = j] and
pM,s
i = (pM,s

i1 , . . . , pM,s
in ). When it is clear from the context, we drop one or both of the

superscripts from the terms pM,s
ij . The utility of an agent from the outcome of a deter-

ministic mechanism M on input strategy profile s is simply ui(Mi(s)). For randomized
mechanisms, an agent’s utility is E[ui(Mi(s))] =

∑n
j=1 p

M,s
ij uij .

Note that agents can be or appear to be indifferent between items and hence both
the valuations and the strategies could exhibit ties, i.e. for two items j and j′, both
vi(j) = vi(j

′) and si(j) = si(j
′) are possible. For valuations and strategies without ties,

we will say that the agents have strict preferences.
A subclass of mechanisms that are of particular interest is that of ordinal mecha-

nisms. Informally, ordinal mechanisms operate solely based on the ordering of items
induced by the valuation functions and not the actual numerical values themselves,
while cardinal mechanisms take those numerical values into account. Formally,

Definition 2.1. A mechanism M is ordinal if for any strategy profiles s, s′ such that
for all agents i and for all items j, `, sij < si` ⇔ s′ij < s′i`, it holds that M(s) = M(s′). A
mechanism for which the above does not necessarily hold is cardinal.

Equivalently, the strategy space of ordinal mechanisms is the set of all permutations
of n items instead of the space of valuation functions V n. A strategy si of agent i is a
preference ordering of items (a1, a2, . . . , an) where a` � ak for ` < k. We will write j �i j′
to denote that agent i prefers item j to item j′ according to her true valuation function
and j �si j′ to denote that she prefers item j to item j′ according to her strategy si.
When it is clear from the context, we abuse the notation slightly and let ui denote the
truth-telling strategy of agent i, even when the mechanism is ordinal.

Two properties of interest are anonymity and neutrality. A mechanism is anonymous
if the output is invariant under renamings of the agents and neutral if the output is
invariant under relabeling of the objects. Formally,

Definition 2.2. A mechanism is anonymous if for any input strategy profile
(s1, s2, . . . , sn), every agent i and any permutation π : N → N it holds that
Ji(s1, s2, . . . , sn) = Jπ(i)(sπ(1), sπ(2), . . . , sπ(n)). Similarly, a mechanism is neutral if for

3We can actually show that the assumption minj∈A ui(j) = 0 is not necessary for our bounds to hold, as
long as maxj∈A ui(j) = 1 holds.
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any strategy profile (s1, s2, . . . , sn), every item j and any permutation σ : M → M it
holds that Ji(s1, s2, . . . , sn) = σ−1(Ji(s1 ◦ σ, s2 ◦ σ, . . . , sn ◦ σ)), i.e., the mechanism is
invariant to the indices of the items.

Note that by this definition, in an anonymous mechanism, agents with exactly the
same strategies must have the same probabilities of receiving each item.

Equilibria
An equilibrium is a strategy profile in which no agent has an incentive to deviate to a
different strategy. We consider five standard equilibrium concepts in this paper: pure
Nash, mixed Nash, correlated, coarse correlated and Bayes-Nash equilibria. For the
first four, the agents have full information about the valuations of the others. In the
Bayesian setting, the valuations are drawn from some distributions and agents know
their own valuation and the distributions from which the other valuations are drawn
from. We formally define the different equilibrium concepts.

Definition 2.3. Given a mechanism M , let q be a distribution over strategies. Also,
for any distribution ∆ let ∆−i denote the marginal distribution without the ith index.
Then a strategy profile q is called a

(1) pure Nash equilibrium if
q = s and ui(Mi(s)) ≥ ui(Mi(s

′
i, s−i)),

(2) mixed Nash equilibrium if
q = ×iqi,Es∼q[ui(Mi(s))] ≥ Es−i∼q−i [ui(Mi((s

′
i, s−i)))],

(3) correlated equilibrium if
Es∼q[ui(Mi(s))|si] ≥ Es∼q[ui(Mi((s

′
i, s−i)))|si],

(4) coarse correlated equilibrium if
Es∼q[ui(Mi(s))] ≥ Es∼q[ui(Mi((s

′
i, s−i)))],

(5) Bayes-Nash equilibrium for a distribution ∆u where each (∆u)i is independent, if
when u ∼ ∆u then q(u) = ×iqi(ui) and for all ui in the support of (∆u)i,

Eu−i,s∼q(u)[ui(Mi(s))] ≥ Eu−i,s−i∼q−i(u−i)[ui(Mi(s
′
i, s−i))]

where the given inequalities hold for all agents i, and (pure) deviating strategies s′i.
Also notice that for randomized mechanisms definitions are with respect to an expec-
tation over the random choices of the mechanism.

As a relaxation of pure Nash equilibria, we will also consider ε-aproximate pure
Nash equilibria. A strategy profile is an ε-approximate pure Nash equilibrium if no
agent can deviate to another strategy and improve her utility by more than ε. Fi-
nally, a pure strategy profile s is a dominant strategy equilibrium if for any agent
i, any strategy s′i and any tuple of strategies ŝ−i of the other agents, it holds that
ui(Mi(si, ŝ−i) ≥ ui(Mi(s

′
i, ŝ−i)), i.e. each agent i (weakly) maximizes her utility by us-

ing strategy si, regardless of what the other agents do. A mechanism for which the
truth-telling strategy profile u = (u1, . . . , un) is always a dominant strategy equilib-
rium is called truthful.

Efficiency
Let SMu denote the set of all pure Nash equilibria of mechanism M under true valua-
tion profile u. The measure of efficiency that we will use is the Price of Anarchy. The
following definition is for the pure Price of Anarchy; the definitions with respect to
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Social Welfare

OPT

.
u

Approximation Ratio

.
si

Price of Anarchy

.
sj

.
s`

.
sk

Price of Stability

Fig. 1. A pictorial representation of the three different notions of inefficiency. The grey ellipse is the set of
all strategy profiles for a valuation profile u and the profiles si, sj , sk and s` are the pure Nash equilibria.
Note that if the mechanism in question is truthful, then u is an equilibrium as well. OPT is the welfare
maximizing allocation, which for the purpose of this picture is assumed to be implementable by some (non-
equilibrium) strategy (this is true for all the well-known mechanisms). For the inefficiency notions of (a)
the Price of Anarchy, (b) the Price of Stability and (c) the Approximation Ratio, we consider (a) the worst
equilibrium, (b) the best equilibrium and (c) the truth-telling equilibrium respectively.

other equilibria are analogous.

PoA(M) = sup
u∈V n

SWOPT (u)

mins∈SMu SWM (u, s)
(1)

where SWM (u, s) =
∑n
i=1 E[ui(Mi(s))] is the expected4 social welfare of mecha-

nism M on strategy profile s under true valuation profile u, and SWOPT (u) =
maxµ∈O

∑n
i=1 ui(µi) is the social welfare of the optimal matching. Let OPT (u) be the

optimal matching on profile u and let OPTi(u) be the restriction to the ith coordinate.
Similarly, we can define a more optimistic measure of inefficiency, the pure Price of

Stability, which is based on the best equilibrium instead of the worst

PoS(M) = sup
u∈V n

SWOPT (u)

maxs∈SMu SWM (u, s)
(2)

The coarse correlated and the Bayesian Price of Anarchy (and Price of Stability) are
defined similarly to the pure Price of Anarchy. It is well known that for the first four
classes each is contained in the next class, i.e., pure ⊂mixed ⊂ correlated ⊂ coarse cor-
related. If we regard the full information setting as a special case of Bayesian setting,
we also have pure ⊂ mixed ⊂ Bayesian. The hierarchy above implies that for the com-
plete information setting, when proving efficiency guarantees, it suffices to consider
the coarse correlated equilibria of a mechanism and in the incomplete information
setting, we only need to consider Bayes-Nash equilibria.

If we restrict our attention to the subset of SMu that (possibly) contains only the
truthtelling equilibrium5, we obtain the following ratio:

ar(M) = sup
u∈V n

SWOPT (u)

SWM (u)
(3)

4We remark here that the expectation is with respect to the random choices of the mechanism.
5Note that given a valuation profile u, this subset will be either empty, if truthtelling is not an equilibrium,
or a singleton, containing u.
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where SWM (u) is a shorthand for SWM (u,u). Note that for truthful mechanisms, the
set of truth-telling equilibria is always non-empty and the quantity above is called the
approximation ratio [Procaccia and Tennenholtz 2009]. It should be clear from the def-
initions that a Price of Anarchy guarantee for a truthful mechanism is stronger than
an approximation ratio upper bound, since it bounds the inefficiency of all equilibria,
not just the truth-telling ones. On the other hand, a lower bound on the approximation
ratio stands “between” a Price of Anarchy and a Price of Stability inapproximability
result, in terms of increasing strength (see Figure 1 for a pictorial representation).

3. PRICE OF ANARCHY GUARANTEES
In this section, we will prove the Price of Anarchy guarantees of Probabilistic Serial
and Random Priority, for all equilibrium notions up to the coarse correlated equilibria,
as well as for the case of incomplete information and the Bayes-Nash equilibria. The
results of this section can be summarized as follows: both Probabilistic Serial and Ran-
dom Priority achieve a Price of Anarchy of O(

√
n) with respect to all the equilibrium

notions we consider.

3.1. Probabilistic Serial
First, we consider Probabilistic Serial, which we abbreviate to PS. Informally, the
mechanism is the following. Each item can be viewed as an infinitely divisible good
that all agents can consume at unit speed during the unit time interval [0, 1]. Initially
each agent consumes her most preferred item (or one of her most preferred items in
case of ties) until the item is entirely consumed. Then, the agent moves on to consume
the item on top of her preference list, among items that have not yet been entirely
consumed. The mechanism terminates when all items have been entirely consumed.
The fraction pij of item j consumed by agent i is then interpreted as the probability
that agent i will be matched with item j under the mechanism.

We prove that the Price of Anarchy of PS is O(
√
n) for both representations, unit-

range and unit-sum. Aziz et al. [2015a] proved that PS has pure Nash equilibria, and
so, for ease of exposition, we will first prove the bound for the pure Price of Anarchy and
then afterwards, we will explain how to extend the result to more general equilibrium
concepts.

We start with the following two lemmas (which hold independently of the choice
of representation), which prove that in a pure Nash equilibrium of the mechanism
an agent’s utility cannot be much smaller than what her utility would be if she were
consuming the item she is matched with in the optimal allocation from the beginning
of the mechanism until the item is entirely consumed. Let tj(s) be the time when item
j is entirely consumed on profile s under PS(s).

LEMMA 3.1. Let s be any strategy profile and let s∗i be any strategy such that j �s∗i `
for all items ` 6= j, i.e. agent i places item j on top of her preference list. Then it holds
that tj(s∗i , s−i) ≥ 1

4 · tj(s).

PROOF. For ease of notation, let s∗ = (s∗i , s−i). Obviously, if j �si ` for all ` 6= j and
since all other agents’ reports are fixed, tj(s∗) = tj(s) and the statement of the lemma
holds. Hence, we will assume that there exists some item j′ 6= j such that j′ �si j.

First, note that if agent i is the only one consuming item j for the duration of the
mechanism, then tj(s

∗) = 1 and we are done. Hence, assume that at least one other
agent consumes item j at some point, and let τ be the time when the first agent besides
agent i starts consuming item j in s∗. Obviously, tj(s∗) > τ , therefore if τ ≥ 1

4 · tj(s)
then tj(s

∗) ≥ 1
4 · tj(s) and we are done. So assume that τ < 1

4 · tj(s). Next observe
that in the interval [τ, tj(s

∗)], agent i can consume at most half of what remains of
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item i because there exists at least one other agent consuming the item for the same
duration. Overall, agent i’s consumption is at most 1

2 + 1
4 tj(s) so at least 1

2 −
1
4 tj(s) of

the item will be consumed by the rest of the agents.
Now consider all agents other than i in profile s and let α be the the amount of item

j that they have consumed by time tj(s). Notice that the total consumption speed of
an item is non-decreasing in time which means in particular that for any 0 ≤ β ≤ 1,
agents other than i need at least βtj(s) time to consume α · β in profile s. Next, notice
that since agent i starts consuming item j at time 0 in s∗ and all other agents use the
same strategies in s and s∗, it holds that every agent k 6= i starts consuming item j in
s∗ no sooner than she does in s. This means that in profile s∗, agents other than i will
need more time to consume β · α; in particular they will need at least βtj(s) time, so
tj(s

∗) ≥ βtj(s). However, from the previous paragraph we know that they will consume
at least 1

2 −
1
4 tj(s), so letting β = 1

α

(
1
2 −

1
4 tj(s)

)
we get

tj(s
∗) ≥ βtj(s) ≥ tj(s)

(
1

2
− 1

4
· tj(s)

)
1

α
≥ tj(s)

(
1

2
− 1

4
· tj(s)

)
≥ 1

4
· tj(s)

Now we can lower bound the utility of an agent at any pure Nash equilibrium.

LEMMA 3.2. Let u be the profile of true agent valuations and let s be a pure Nash
equilibrium. For any agent i and any item j it holds that the utility of agent i at s is at
least 1

4 · tj(s) · uij .

PROOF. Let s′ = (s′i, s−i) be the strategy profile obtained from s when agent i devi-
ates to the strategy s′i where s′i is some strategy such that j �s′i ` for all items ` 6= j.
Since s is a pure Nash equilibrium, it holds that ui(PSi(s)) ≥ ui(PSi(s

′)) ≥ tj(s
′) · uij ,

where the last inequality holds since the utility of agent i is at least as much as
the utility she obtains from the consumption of item j. By Lemma 3.1, it holds that
tj(s

′) ≥ 1
4 · tj(s) and hence ui(PSi(s)) ≥ 1

4 · tj(s) · uij .

We can now prove the pure Price of Anarchy guarantee of the mechanism.

THEOREM 3.3. The pure Price of Anarchy of Probabilistic Serial is O(
√
n).

PROOF. Let u be any profile of true agents’ valuations and let s be any pure Nash
equilibrium. First, note that by reporting truthfully, every agent i can get an allocation
that is at least as good as (1/n, . . . , 1/n), regardless of other agents’ strategies. To see
this, first consider time t = 1/n and observe that during the interval [0, 1/n], agent i is
consuming her favorite item (say a1) and hence pia1 ≥ 1/n. Next, consider time τ = 2/n
and observe that during the interval [0, 2/n], agent i is consuming one or both of her
two favorite items (a1 and a2) and hence pia1 + pia2 ≥ 2/n. By a similar argument,
for any k, it holds that

∑n
j=1 piaj ≥ k/n. This implies that regardless of other agents’

strategies, agent i can achieve a utility of at least (1/n)
∑n
j=1 uij . Since s is a pure

Nash equilibrium, it holds that ui(PSi(s)) ≥ (1/n)
∑n
j=1 uij as well. Summing over

all agents, we get that SWPS(u, s) ≥ (1/n)
∑n
i=1

∑n
j=1 uij ≥ 1, which holds for both

representations (for unit-sum it holds as an equality). If SWOPT (u) ≤
√
n then we are

done, so assume SWOPT (u) >
√
n.

Because PS is neutral we can assume tj(s) ≤ tj′(s) for j < j′ without loss of gener-
ality. Observe that for all j = 1, . . . , n, it holds that tj(s) ≥ j/n. This is true because
for any t ∈ [0, 1], by time t, exactly tn mass of items must have been consumed by the
agents. Since j is the jth item that is entirely consumed, by time tj(s), the mass of
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items that must have been consumed is at least j. By this, we get that tj(s) · n ≥ j,
which implies tj(s) ≥ j/n.

For each j let ij be the agent that gets item j in the optimal allocation and for ease
of notation, let wij be her valuation for the item. Now by Lemma 3.2, it holds that

uij (PS(s)) ≥ 1

4

j

n
wij and SWPS(u, s) ≥ 1

4

n∑
j=1

j

n
wij .

The Price of Anarchy is then at most

4
∑n
j=1 wij∑n

j=1 j · wij/n
.

Consider the case when the above ratio is maximized and let k be an integer such that
k ≤

∑n
j=1 wij ≤ k+1. Then it must be that wij = 1 for j = 1, . . . , k and wij = 0, for k+2 ≤

ij ≤ n. Hence the maximum ratio is (k+wik+1
)/(awik+1

+ b), for some a, b > 0, which is
monotone for wik+1

in [0, 1]. Therefore, the maximum value of (k + wik+1
)/(awik+1

+ b)
is achieved when either wik+1

= 0 or wik+1
= 1. As a result, the maximum value of the

ratio is obtained when
∑
i=1n wik+1

= k for some k. By simple calculations, the Price of
Anarchy should be at most:

4k∑k
j=1

j
n

≤ 4k
k(k−1)

2n

=
8n

k − 1
,

so the Price of Anarchy is maximized when k is minimized. By the argument earlier,
k >
√
n and hence the ratio is O(

√
n).

Theorem 3.3 establishes the pure Price of Anarchy of Probabilistic Serial. We will
next describe how to obtain the same guarantee for all the solution concepts that we
consider. Recall that by the equilibrium concept hierarchy mentioned in Section 2, it
suffices to extend the theorem to coarse correlated equilibria and Bayes-Nash equilib-
ria.

First, we extend Theorem 3.3 to the case where the solution concept is the coarse
correlated equilibrium.

THEOREM 3.4. The coarse correlated Price of Anarchy of Probabilistic Serial is
O(
√
n).

PROOF. Let u be any valuation profile and let i be any agent. Furthermore, let j =
OPTi(u) and let s′i be the pure strategy that places item j on top of agent i’s preference
list. By Lemma 3.1, the inequality tj(s′i, s−i) ≥ 1

4 tj(s) holds for every strategy profile s.
In particular, it holds for any pure strategy profile s where si is in the support of the
distribution of the mixed strategy qi of agent i, for any coarse correlated equilibrium
q. This implies that

Es∼q[ui(PSi(s))] ≥ Es∼q[ui(PSi(s
′
i, s−i))] ≥ Es∼q[uijtj(s

′
i, s−i))] ≥

1

4
uijtj(s).

where the last inequality holds by Lemma 3.1. Using this, we can use very similar
arguments to the arguments of the proof of Theorem 3.3 and obtain the bound.

For the incomplete information setting, when valuations are drawn from some publi-
cally known distributions, we can prove the same upper bound on the Bayesian Price
of Anarchy of the mechanism.

THEOREM 3.5. The Bayesian Price of Anarchy of Probabilistic Serial is O(
√
n).
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PROOF. The proof is again similar to the proof of Theorem 3.3. Let u be a valua-
tion profile drawn from some distribution. Let i be any agent and let ju = OPTi(u),
i ∈ [n]. Note that by a similar argument as the one used in the proof of Theorem
3.3, the expected social welfare of PS is at least 1 and hence we can assume that
Eu[SWOPT (u)] ≥ 2

√
2n+ 1. Observe that in any Bayes-Nash equilibrium q(u) it holds

that

Eu,s∼q(u) [ui(s)] = Eui
[
E u−i

s∼q(u)
[ui(s)]

]
≥ Eui

[
E u−i

s−i∼q−i(u−i)
[ui(s

′
i, s−i)]

]
≥ Eui

[
E u−i

s−i∼q−i(u−i)
[uijutju(s′i, s−i)]

]
≥ Eui

[
E u−i

s∼q(u)

[
1

4
uijutju(s)

]]
=

1

4
Eu,s∼q(u) [uijutju(s)]

where the last inequality holds by Lemma 3.1 since s′i denotes the strategy that puts
item ju on top of agent i’s preference list. Note that this can be a different strategy
for every different u that we sample. For notational convenience, we use s′i to denote
every such strategy. The expected social welfare at the Bayes-Nash equilibrium is then
at least

n∑
i=1

Eu,s∼q(u) [ui(s)] ≥
1

4

∑
i∈[n]

Eu,s∼q(u) [uijutju(s)]

≥ Eu,s∼q(u)

∑
i∈[n]

i

4n
uiju


≥ Eu,s∼q(u)

[
SWOPT (u)(SWOPT (u)− 1)

8n

]
= Eu

[
SWOPT (u)(SWOPT (u)− 1)

8n

]

≥
Eu

[
(SWOPT (u))

2
]
− Eu [SWOPT (u)]

8n

≥ Eu[SWOPT (u)]

2
√

2n
,

and the bound follows.

3.1.1. Connection to smoothness. Before we conclude the section, we briefly discuss the
connection of those extensions with the smoothness framework of Roughgarden [2009]
(see also [Syrgkanis and Tardos 2013]). According to the definition in [Roughgarden
2009], a game is (λ, µ)-smooth if it satisfies the following condition

n∑
i=1

ui(s
∗
i , s−i) ≥ λSW (s∗)− µSW (s), (4)
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where s∗ is a pure strategy profile that corresponds to the optimal allocation and s is
any pure strategy profile. It is not hard to see that a (λ, µ)-smooth game has a Price of
Anarchy bounded by (µ+ 1)/λ.

Since establishing that a game is smooth also implies a pure Price of Anarchy bound,
an alternative way of attempting to prove Theorem 3.3 would be to try to show smooth-
ness of the game induced by PS, for µ/λ =

√
n. However, this seems to be a harder task

than what we actually do, since in such a proof, one would have to argue about the util-
ities of agents and possibly reason about the relative preferences for different items,
other than the item they are matched with in the optimal allocation. Our approach
only needs to consider those items, and hence it seems to be simpler.

An added benefit to the smoothness framework is the existence of the extension the-
orem in [Roughgarden 2009], which states that for a (λ, µ)-smooth game, the Price of
Anarchy guarantee extends to broader solution concepts verbatim, without any extra
work. At first glance, one might think that proving smoothness for the game induced
by PS might be worth the extra effort, since we would get the extensions “for free”. A
closer look at our proofs however shows that our approach is very similar to the proof
of the extension theorem but using an alternative, simpler condition.

Specifically, the analysis in [Roughgarden 2009] uses Inequality 4 as a building block
and substitutes the inequality into the expectations that naturally appear when con-
sidering randomized strategies. This can be done because the condition applies to all
strategy profiles s, when s∗ is an optimal strategy profile. This is exactly what we do
as well, but we use the inequality tj(s∗i , s−i) ≥ 1

4 · tj(s) instead, which is simpler but
sufficient since it only applies to the game at hand. If OPTi(u) = j, which is what we
use in the proof of Theorem 3.3, then (s∗i , s−i) can be thought of as a profile where an
agent deviates to her strategy in the optimal profile and hence the left-hand side of the
inequality is analogous to the left-hand side of Inequality 4. In a sense, the inequality
tj(s

∗
i , s−i) ≥ 1

4 · tj(s), can be viewed as a “smoothness equivalent” for the game induced
by PS, which then allows us to extend the results to broader solution concepts.

3.2. Random Priority
Next, we consider the other very well-known mechanism, Random Priority, often re-
ferred to as Random Serial Dictatorship, which we will refer to as RP for short. The
mechanism first fixes an ordering of the agents uniformly at random and then accord-
ing to that ordering, it sequentially matches them with their most preferred item that
is still available.

Before we proceed, we would like to point out that while RP is truthful, it might
have other equilibria as well. For example, consider a valuation profile with three
agents 1, 2, 3 and three items a, b, c such that a �1 b �1 c, b �2 c �2 a and b �3

c �3 a. Clearly, if agents 2 and 3 are being truthful, agent 1 will receive her most-
preferred item with certainty a, regardless if she reports a �1 b �1 c truthfully or if
she misreports a �1 c �1 b instead and both profiles are pure Nash equilibria. The fact
that agent 1 receives item a with certainty is not critical for the example, but in fact, in
all the different equilibria, the allocation of the agent will not change (assuming strict
preferences) or will change in a way that does not affect the social welfare (assuming
weak preferences).

We will prove that the Price of Anarchy of RP is O(
√
n) for both representations and

for all the equilibrium concepts we consider. The proof will proceed as follows. First,
we will state a general lemma (Lemma 3.7) regarding the approximation ratio of ordi-
nal mechanisms for the unit-range representation and using this lemma, we will then
prove that the approximation ratio of RP for unit-range is bounded by O(

√
n) (Lemma

3.8). Next, we will establish a construction that transforms any unit-sum valuation
profile to a unit-range valuation profile, maintaining the same asymptotic approxi-
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mation ratio guarantee, thus bounding the approximation ratio of RP by O(
√
n) for

the unit-sum representation as well (Lemma 3.9), which establishes the approxima-
tion ratio bound for both representations (Lemma 3.10). Finally, using the observation
of the previous paragraph, we will extend the result from the truth-telling equilib-
ria to the set of all equilibria of the mechanism, thus proving the Price of Anarchy
guarantee, starting from mixed Nash equilibria (Theorem 3.11) and then extending to
coarse-correlated equilibria and Bayes-Nash equilibria (Theorem 3.12).

Remark 3.6. In the following, when referring to the approximation ratio and since
we will consider the truth-telling equilibrium, we will denote the input to the mecha-
nism by u instead of s. Furthermore, for technical reasons, we will consider only valu-
ation vectors when agents have strict preferences. To extend the approximation ratio
result of RP to all valuations, the mechanism clearly must be equipped with some tie-
breaking rule to settle cases where indifferences appear. For all natural (fixed before
the execution of the mechanism) tie-breaking rules the lower bounds still hold. To see
this, consider any valuation profile with ties and a tie-breaking rule for random prior-
ity. We can add sufficiently small quantities εij to the valuation profile according to the
tie-breaking rule and create a new profile without ties. The assignment probabilities
of random priority will be exactly the same as for the version with ties, and random
priority achieves the guaranteed approximation ratio on the new profile. Then since
εij were sufficiently small, the same bound holds for the original valuation profile.

3.2.1. Quasi-combinatorial valuation profiles. It will be useful to consider a special class
of the unit-range canonically represented valuation functions Cε that we will refer to
as quasi-combinatorial valuation functions, a straightforward adaptation of a simi-
lar notion in [Filos-Ratsikas and Miltersen 2014]. Informally, a valuation function is
quasi-combinatorial if the valuations of each agent for every item are close to 1 or close
to 0 (the proximity depends on ε). Formally,

Cε = {u ∈ V |u(A) ⊂ [0, ε) ∪ (1− ε, 1]} ,
where u(A) is the image of the valuation function u. Let Cnε ⊆ V n be the set of all valu-
ation profiles with n agents whose valuation functions are in Cε. The following lemma
implies that when we are trying to prove a lower bound on the approximation ratio of
random priority, it suffices to restrict our attention to quasi-combinatorial valuation
profiles Cnε ⊆ V n for any value of ε.

LEMMA 3.7. Let M be a truthful, ordinal, anonymous and neutral randomized
mechanism for the unit-range representation, and let ε > 0. Then

ar(M) = sup
u∈Cnε

SWOPT (u)

SWM (u)
.

PROOF. Recall that SWM (u) = E[
∑n
i=1 ui(Mi(u))]. Since J is anonymous and neu-

tral, we can assume that the optimal matching is µ∗, where µ∗ is the matching with
µ∗i = i for every agent i ∈ N . Given this, then for any valuation profile u, define

g(u) =
E[
∑n
i=1 ui(Mi(u))]∑n
i=1 ui(µ

∗
i )

.

Because of this, the approximation ratio can be written as ar(J) = supu∈V n
1

g(u) . Now
since Cnε ⊆ V n, the lemma follows from the following claim:

For all u ∈ V n there exists u′ ∈ Cnε such that g(u′) ≤ g(u)

We will prove the claim by induction on
∑n
i=1 #{ui(A) ∩ [ε, 1− ε]}.
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Induction basis: Since
∑n
i=1 #{ui(A) ∩ [ε, 1 − ε]} = 0, one can clearly see that ui ∈ Cε

for all i ∈ N . So, for this case, let u′ = u.

Induction step: Consider a profile u ∈ V n with
∑n
i=1 #{ui(A) ∩ [ε, 1 − ε]} > 0. Clearly,

there exists an i such that #{ui(A)∩[ε, 1−ε]} > 0. By this fact, there exist l, r ∈ [ε, 1−ε],
such that l ≤ r, ui(A) ⊂ [0, ε) ∪ [l, r] ∪ (1− ε, 1] and {l, r} ⊆ ui(A).

Let l̄ be the largest number such that l̄ ∈ [0, ε) and l̄ ∈ ui(A). Similarly, let r̄ be the
smallest number such that r̄ ∈ (1 − ε, 1] and r̄ ∈ ui(A). Note that both those numbers
exist, since {0, 1} ⊆ ui(M). Now let l̃ = l̄+ε

2 , and r̃ = r̄+1−ε
2

Now, for any x ∈ [l̃ − l, r̃ − r], define a valuation function uxi ∈ V as follows:

uxi (j) =

{
ui(j), for j /∈ u−1

i ([ε, 1− ε]})
ui(j) + x, for j ∈ u−1

i ([ε, 1− ε]}) .

This is still a valid valuation function, since by the choice of the interval [l̃ − l, r̃ − r],
there are no ties in the image of the function. Let (uxi ,u−i) be the valuation profile
where all agents have the same valuation functions as in u except for agent i, who
has valuation function uxi . Define the following function f : x → g ((uxi ,u−i)). Since J
is ordinal, by the definition of function g, we can see that f on the domain [l̃ − l, r̃ −
r] is a fractional linear function x → (ax + b)/(cx + d) for some a, b, c, d,∈ R. Since
f is defined on the whole interval [l̃ − l, r̃ − r], it is either monotonically increasing,
monotonically decreasing or constant in the interval. If f is monotonically increasing,
let ũ = (ul̃−l,u−i), otherwise let ũ = (ur̃−r,u−i). Clearly, g(ũ) ≤ g(u) and

n∑
i=1

#{ũi(A) ∩ [ε, 1− ε]} <
n∑
i=1

#{ui(A) ∩ [ε, 1− ε]}.

Then, apply the induction hypothesis on ũ. This completes the proof.

The lemma formalizes the intuition that because the mechanism is ordinal, the worst-
case approximation ratio is encountered on extreme valuation profiles. Note that truth-
fulness is only implicitly used in the fact that the truth-telling profile is assumed to be
a stable outcome. The lemma also applies to settings where strategic behaviour is not
an issue and the loss in welfare is due to other reasons like ordinality or fairness (e.g.
see [Aziz et al. 2016; Anshelevich and Sekar 2015; Boutilier et al. 2012]).

The approximation ratio guarantee of RP for the unit-range representation is given
by the following lemma.

LEMMA 3.8. For the unit-range representation, the approximation ratio of RP is
O (
√
n).

PROOF. Because of Lemma 3.7, for the purpose of computing a lower bound on
the approximation ratio of random priority, it is sufficient to only consider quasi-
combinatorial valuation profiles. Let ε ≤ 1/n3. Then, there exists k ∈ N such that
|k − w∗(u)| ≤ 1/n2, where w∗(u) = SWOPT (u) is the social welfare of the maximum
weight matching on valuation profile u. Since random priority can trivially achieve an
expected welfare of 1 (for any permutation the first agent will be matched to her most
preferred item), we can assume that k ≥

√
n, otherwise we are done. Note that the

maximum weight matching µ∗ ∈ O assigns k items to agents with ui(µi) ∈ (1 − ε, 1].
Since random priority is anonymous and neutral, without loss of generality we can
assume that these agents are {1, . . . , k} and for every agent j ∈ N , it holds that µ∗j = j.
Thus uj(j) ∈ (1− ε, 1] for j = 1, . . . , k and uj(j) ∈ [0, ε) for j = k + 1, . . . , n.
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Consider any run of random priority; one agent is selected in each round. Let l ∈
{0, . . . , n− 1} be any of the n rounds. We will now define the following sets:

Ul = {j ∈ {1, . . . , n}| agent j has not been selected prior to round l}
Gl = {j ∈ Ul|uj(j) ∈ (1− ε, 1] and item j is still unmatched}
Bl = {j ∈ Ul|uj(j) ∈ [0, ε) or item j has already been matched to some agent}

These three families of sets should be interpreted as three sets that change over the
course of the execution of RP . Ul is the set of agents yet to be matched, which is par-
titioned into Gl, the set of “good” agents, that guarantee a welfare of almost 1 when
picked, and Bl, the set of “bad” agents, that do not guarantee any contribution to the
social welfare. For the purpose of calculating a lower bound, we will simply bound the
sizes of the sets in these families. Obviously, G0 = {1, . . . , k} and B0 = {k + 1, . . . , n}.

The probability that an agent i ∈ Gl is picked in round l of random prior-
ity is |Gl|/(|Gl| + |Bl|), whereas the probability that an agent i ∈ Bl is picked is
|Bl|/(|Gl| + |Bl|). By the discussion above, we can assume that whenever an agent
from Gl is picked, her contribution to the social welfare is at least 1 − ε whereas the
contribution from an agent picked from Bl is less than ε. In other words, the expected
contribution to the social welfare from round l is at least |Gl|/(|Gl|+ |Bl|)− ε.

We will now upper bound |Gl| and lower bound |Bl| for each l. Consider round l
and sizes |Gl| and |Bl|. First suppose that some agent i from Gl is picked and the
agent is matched with item j. If j 6= i and agent j is in Gl, then |Gl+1| = |Gl| − 2
and |Bl+1| = |Bl| + 1, since agent j no longer has its item from the optimal allocation
available and so agent j is in Bl+1. On the other hand, if j = i or agent j is in Bl then
|Gl+1| = |Gl| − 1 and |Bl+1| = |Bl|. In either case, |Gl+1| ≥ |Gl| − 2 and |Bl+1| ≤ |Bl|+ 1.
Intuitively, the picked agent might take an item from a good agent and turn her into a
bad agent.

Now suppose that agent i from Bl is picked and the agent is matched with item j. If
agent j is in Gl then |Gl+1| = |Gl| − 1 and |Bl+1| = |Bl|, since agent j no longer has her
item from the optimal allocation available and so agent j is in Bl+1. On the other hand,
if agent j is in Bl then |Gl+1| = |Gl| and |Bl+1| = |Bl|−1. In either case, |Gl+1| ≥ |Gl|−2
and |Bl+1| ≤ |Bl|+ 1.

To sum up, in each round l of random priority, we can assume the size of Bl increases
by at most 1 and the size of Gl decreases by at most 2. Given this and that |G0| = k and
|B0| = n− k and that |Gl| > 0 for l ≤ bk/2c, we get

E

[
n∑
i=1

ui(RPi(u))

]
≥

n∑
l=0

(
|Gl|

|Gl|+ |Bl|
− ε
)
≥
b k2 c∑
l=0

k − 2l

n− l
− nε

and the ratio is

w∗(u)

E [
∑n
i=1 ui(RPi(u))]

≤
k + 1

n2∑b k2 c
l=0

k−2l
n−l − nε

≤ 2k∑b k2 c
l=0

k−2l
n−l − nε

=

b k2 c∑
l=0

1− 2l
k

2(n− l)
− nε

2k


−1

≤

b k2 c∑
l=0

1− 2l
k

2n
− nε

2k


−1

≤
(
k − 11

8n
− nε

2k

)−1

.
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The bound is clearly maximized when k is minimized, that is, k =
√
n. Since this bound

holds for any u ∈ Cnε , we get

ar(RP ) = sup
u∈Cnε

w∗(u)

E[
∑n
i=1 ui(Mi(u))]

≤
(√

n− 11

8n
− nε

2
√
n

)−1

=
8n√

n− 11− 4n
√
nε
.

We can choose ε so that the approximation ratio is at most 20
√
n for n ≥ 400 and for

n ≤ 400, the bound holds trivially since random priority matches at least one agent
with its most preferred item. Overall, the approximation ratio of RP is bounded by
O(
√
n).

Next, we will describe a construction that transforms any unit-sum valuation profile
into a unit-range valuation profile, while preserving the O(

√
n) approximation guar-

antee for RP . This allows us to prove the following lemma.

LEMMA 3.9. For the unit-sum representation, the approximation ratio of Random
Priority is O(

√
n).

PROOF. Let u be any unit-sum valuation profile and let C be the constant in the
bound from Lemma 3.8. Suppose first that SWOPT (u) < 4

√
n/C. We will show that

random priority guarantees an expected social welfare of 1, which proves the upper
bound for this case. Consider any agent i and notice that in random priority, the prob-
ability that the agent is picked by the l’th round is l/n, for any 1 ≤ l ≤ n and hence the
probability of the agent getting one of its l most preferred items is at least l/n. Let uli
be agent i’s valuation for its l’th most preferred item; agent i’s expected utility for the
first round is then at least u1

i /n. For the second round, in the worst case, agent i’s most
preferred item has already been matched to a different agent and so the expected util-
ity of the agent for the first two rounds is at least u1

i /n+ u2
i /n. By the same argument,

agent i’s expected utility after n rounds is at least
∑n
i=1 u

l
i/n = 1/n. Since this holds

for each of the n agents, the expected social welfare is at least 1.
Suppose now that SWOPT (u) ≥ 4

√
n/C. We will transform u to a unit-range val-

uation profile u′′. First, we will argue that for any valuation profile u, the optimal
allocation on u is a possible outcome of random priority. To see this, first suppose that
no agent is matched with her most preferred item in the optimal allocation. Then
there must exist agents i1, ..., ik such that for each l, agent il+1 is matched with agent
il’s most preferred item and agent i1 is matched with agent ik ’s most preferred item.
By swapping items along this cycle, all agents are better off and the allocation is not
optimal. Now consider any valuation profile u. Since by the previous argument, there
exists an agent j that is matched with her most preferred item j in the optimal alloca-
tion for u, random priority could pick this agent first. If we reduce u by removing the
agent i and item j, we obtain a smaller valuation profile u′ where the optimal alloca-
tion is the same as in u but without agent i and item j. Then by inductively applying
the same argument, we can verify the claim.6

By the argument above, the optimal allocation can be achieved by a run of random
priority, so we know that in the optimal allocation at most 1 agent will be matched
with her least preferred item. Now consider the valuation profile u′ where each agent
i’s valuation for her least preferred item is set to 0 (unless it already is 0) and the rest
of the valuations are as in u. Since the ordinal preferences of agents are unchanged,
random priority performs worse on this valuation profile, and because of the argument
of the previous paragraph, it holds that SWOPT (u′) ≥ w∗(u) − 1/n. Next consider the

6A very similar argument was used in [Bogomolnaia and Moulin 2001] to prove that any Pareto optimal
matching is the outcome of a serial allocation.
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valuation profile

u′′ =

(
u′ 1

oT 1

)
where o ∈ Rn and oj = (j−1)/n5. That is, u′′ has n+ 1 agents and items, where agents
1, ..., n have the same valuations for items 1, ..., n as in u′, every agent has a valuation
of 1 for item n + 1, and agent n + 1 only has a significant valuation for item n + 1.
Notice that u′′ is a unit-range valuation profile, and w∗(u′′) ≥ w∗(u′)+1. Furthermore,
E [
∑n
i=1 ui(RPi(u

′))] ≥ E [
∑n
i=1 ui(RPi(u

′′))]− 2 and hence

SWOPT (u)

E [
∑n
i=1 ui(RPi(u))]

≤ SWOPT (u′) + 1/n

E [
∑n
i=1 ui(RPi(u

′))]
≤ SWOPT (u′′) + 1/n− 1

E [
∑n
i=1 ui(RPi(u

′′))]− 2

≤
(
E [
∑n
i=1 ui(RPi(u

′′))]

w∗(u′′)
− 2

w∗(u′′)

)−1

≤
(
C√
n
− 2

w∗(u)

)−1

≥
(
C√
n
− 2

4
√
n/C

)−1

=
2
√
n

C
.

This completes the proof.

From Lemma 3.8 and Lemma 3.9, together with the discussion in Remark 3.6, we
obtain the following bound on the approximation ratio of RP , which holds regardless
of the choice of representation.

LEMMA 3.10. The approximation ratio of Random Priority is O(
√
n).

Lemma 3.10 bounds the inefficiency of Random Priority with respect to the truth-
telling equilibria. In the following, we will extend the result to the set of all mixed
Nash equilibria of the mechanism. Note that the following Theorems are independent
of the choice of representation.

THEOREM 3.11. The mixed Price of Anarchy of Random Priority is O(
√
n).

PROOF. First, we will prove that if the valuations are distinct, i.e. the preferences
are strict, the social welfare is the same in all mixed Nash equilibria of Random Pri-
ority. Let i be an agent, and let B be a subset of the items. Let q be a mixed Nash
equilibrium with the property that with positive probability, i will be chosen to select
an item at a point when B is the set of remaining items. In that case (by distinctness
of i’s values), i’s strategy should place agent i’s favourite item in B on the top of the
preference list among items in B. Suppose that for items j and j′, there is no set of
items B that may be offered to i with positive probability, in which either j or j′ is op-
timal. Then i may rank them either way, i.e. can announce j �i j′ or j′ �i j. However,
that choice has no effect on the other agents, in particular it cannot affect their social
welfare.

Now, to prove the theorem for the set of all (not necessarily distinct) valuation vec-
tors we proceed as follows. We know from Lemma 3.10 that the social welfare of RP
given truthful reports, is within O(

√
n) of the social optimum. The social welfare of a

(mixed) Nash equilibrium q cannot be worse than the worst pure profile from q that
occurs with positive probability, so let s be such a pure profile. We will say that agent i
misranks items j and j′ if j �i j′, but j′ �si j.

If an agent misranks two items for which she has distinct values, it is because she
has 0 probability in s to receive either item. So we can change s so that no items are
misranked, without affecting the social welfare or the allocation. For items that the
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agent values equally (which are then not misranked) we can apply arbitrarily small
perturbations to make them distinct. Profile s is thus consistent with rankings of items
according to perturbed values and is truthful with respect to these values, which, being
arbitrarily close to the true ones, have optimum social welfare arbitrarily close to the
true optimal social welfare. This completes the proof.

Finally, we extend Theorem 3.11 to the coarse-correlated Price of Anarchy and the
Bayesian Price of Anarchy.

THEOREM 3.12. The coarse correlated Price of Anarchy of Random Priority is
O(
√
n). The Bayesian Price of Anarchy of Random Priority is O(

√
n).

PROOF. For the correlated Price of Anarchy, the argument is very similar to the one
used in the proof of Theorem 3.11. Again, if any strategy in the support of a correlated
equilibrium q misranks two items j and j′ for any agent i, it can only be because
agent i has 0 probability of receiving those items, otherwise agent i would deviate to
truthtelling, violating the equilibrium condition. The remaining steps are exactly the
same as in the proof of Theorem 3.11.

For the incomplete information case, consider any Bayes-Nash equilibrium q(u) and
let u be a any sampled valuation profile. The expected social welfare of the Random Pri-
ority can be written as Eu

[
Es∼q(u) [ui(s)]

]
. Using the same argument as the one in the

proof of Theorem 3.11, we can lower bound the quantity Es∼q(u) [ui(s)] by Ω
(
SWOPT (u)√

n

)
and the bound follows.

4. LOWER BOUNDS
In the previous section, we established the performance guarantees of Probabilistic
Serial and Random Priority. In the current section, we will prove lower bounds on the
Price of Anarchy of any mechanism, which will allow us to evaluate the quality of
those very well-known mechanisms. Since we are interested in mechanisms with good
properties, it is natural to consider those mechanisms that have pure Nash equilibria.
Unlike the previous section however, the nature of our bounds will depend on the
representation.

Interestingly, for the unit-sum representation, we will prove a general lower bound of
Ω(
√
n) on the Price of Anarchy of any mechanism, including randomized and cardinal

mechanisms. As a corollary, we obtain that both RP and PS are optimal among all
mechanisms for the problem. For truthful mechanisms, we establish a stronger result,
a similar lower bound with respect to their approximation ratio.

For the unit-range representation, we will obtain two different bounds. First, we will
prove a lower bound of Ω(

√
n) on the approximation ratio (and therefore on the Price

of Anarchy) of all truthful mechanisms; the bound shows that RP is optimal among
all truthful mechanisms for the problem, including cardinal ones. Secondly, we will
prove a lower bound of Ω(n3/4) on the Price of Anarchy of all mechanisms (under no
restrictions), when the solution concept is the ε-equilibrium, for any ε > 0.

At the end of the section, we will bound the performance of deterministic mecha-
nisms for both representations, showing that randomization is need for non-trivial
approximation guarantees to be achievable.

We start with our general lower bound for unit-sum.

THEOREM 4.1. For the unit-sum representation, the pure Price of Anarchy of any
mechanism is Ω(

√
n).
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PROOF. Let n = k2 for some k ∈ N. Let M be a mechanism and consider the follow-
ing valuation profile u. There are

√
n sets of agents and let Gj denote the j-th set. For

every j ∈ {1, . . . ,
√
n} and every agent i ∈ Gj , let uij = 1/n+α and uik = 1/n−α/(n−1),

for k 6= j, where α is sufficiently small. Let s be a pure Nash equilibrium and for
every set Gj , let ij = arg mini∈Gj p

M,s
ij (break ties arbitrarily). Observe that for all

j = 1, . . . ,
√
n, it holds that pM,s

ijj
≤ 1/

√
n and let I = {i1, i2, . . . , i√n}. Now consider the

valuation profile u′ where:

— For every agent i /∈ I, u′i = ui.
— For every agent ij ∈ I, let u′ijj = 1 and u′ijk = 0 for all k 6= j.

We claim that s is a pure Nash equilibrium under u′ as well. For agents not in I, the
valuations have not changed and hence they have no incentive to deviate. Assume
now for contradiction that some agent i ∈ I whose most preferred item is item j could
deviate to some beneficial strategy s′i. Since agent i only values item j, this would
imply that pM,(s′i,s−i)

ij > pM,s
ij . However, since agent i values all items other than j

equally under ui and her most preferred item is item j, such a deviation would also be
beneficial under profile u, contradicting the fact that s is a pure Nash equilibrium.

Now consider the expected social welfare of M under valuation profile u′ at the
pure Nash equilibrium s. For agents not in I and taking α to be less than 1/n3, the
contribution to the social welfare is at most 1. For agents in I, the contribution to the
welfare is then at most (1/

√
n)
√
n+ 1 and hence the expected social welfare of M is at

most 3. As the optimal social welfare is at least
√
n, the bound follows.

We now move on to unit-range and we focus on truthful mechanisms. First we will
state a lemma that will be useful for the proof (which holds independently of the rep-
resentation). These kinds of lemmas are standard in literature (e.g. see [Guo and
Conitzer 2010; Filos-Ratsikas and Miltersen 2014]). The lemma implies that when
trying to prove lower bounds on the approximation ratio of mechanisms, it suffices to
consider mechanisms that are anonymous.

LEMMA 4.2. For any truthful mechanism M , there exists a truthful, anonymous
mechanism M ′ such that ar(M ′) ≤ ar(M).

PROOF. Let M ′ be the mechanism that given any strategy profile u applies a uni-
formly random permutation to the set of agents and then applies M on u. The mech-
anism is clearly anonymous. Furthermore, since u is a valid input to M , the approxi-
mation ratio of M ′ can not be worse than that of M , since the approximation ratio is
calculated over all possible valuation profiles. Since M is truthful and since the per-
mutation is independent of the reports, M ′ is truthful as well.

Our bound on the approximation ratio of any truthful mechanism is given by the
following lemma.

LEMMA 4.3. Let M be any truthful mechanism for the unit-range representation.
Then, the approximation ratio of M is Ω(

√
n).

PROOF. By Lemma 4.2, we can assume that Mechanism M is anonymous. Let k ≥ 2
be a parameter to be chosen later and let u = (u1, u2, . . . , un) be the unit-range valua-
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tion profile where

ui(j) =


1, for j = i
2
k −

j
n , for 1 ≤ j ≤ k + 1, j 6= i

n−j
n2 , otherwise

∀i ∈ {1, . . . , k + 1}

ui(j) =


1, for j = 1
2
k −

j
n , for 2 ≤ j ≤ k + 1

n−j
n2 , otherwise

∀i ∈ {k + 2, . . . , n}

For i = 2, . . . , k+1, let ui = (u′i,u−i) be the valuation profile where all agents besides
agent i have the same valuations as in u and u′i = uk+2. Note that when agent i on
valuation profile ui, reports ui instead of u′i, the resulting valuation profile is u. Since
J is anonymous and u′i = u1 = uk+2 = . . . = un, then agent i receives at most a uniform
lottery among these agents on valuation profile ui and so it holds that

E[u′i(Mi(u
i))] ≤ 1

n− k + 1
+

k+1∑
j=2

1

n− k + 1

(
2

k
− j

n

)
+

n∑
j=k+2

1

n− k + 1
· n− j
n2

≤ 4

n− k + 1

Next observe that since M is truthful-in-expectation, agent i should not increase her
expected utility by misreporting ui instead of u′i on valuation profile ui, that is,

E[u′i(Mi(u
i))] ≥ E[u′i(Mi(u))] (5)

For all i = 2, . . . , k + 1, let pi be the probability that Mi(u) = i. Then, it holds that

E[u′i(Mi(u))] ≥ pi
(

2

k
− i

n

)
≥ pi

(
2

k
− k + 1

n

)
and by Inequality (5) we get

pi

(
2

k
− k + 1

n

)
≤ 4

n− k + 1

=> pi ≤
4

n− k + 1
· kn

2n− k(k + 1)
≤ 4

n− k
· kn

2n− (k + 1)2

Let p = 4
n−k ·

kn
2n−(k+1)2 , i.e. for all i, pi ≤ p. We will next calculate an upper bound on

the expected social welfare achieved by M on valuation profile u.
For item j = 1, the contribution to the social welfare is upper bounded by 1. Similarly,

for each item j = k + 2, . . . , n, its contribution to the social welfare is upper bounded
by 1/n. Overall, the total contribution by item 1 and items k + 2, . . . , n will be upper
bounded by 2.

We next consider the contribution to the social welfare from items j = 2, . . . , k + 1.
Define the random variables

Xj =

{
1, if Mj(u) = j
2
k −

j
n , otherwise

The contribution from items j = 2, . . . , k + 1 is then
∑k+1
j=2 Xj and so we get

E

k+1∑
j=2

Xj

 =

k+1∑
j=2

E [Xj ] ≤
k+1∑
j=2

(
p+

2

k
− j

n

)
≤ kp+ 2
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Overall, the expected social welfare of mechanism M is at most 4 + pk while the
social welfare of the optimal matching is k + 1 +

∑n
i=k+2

n−i
n2 which is at least k. Since

p = 4
n−k ·

kn
2n−(k+1)2 , the approximation ratio of J then is

ar(M) ≥
(

4 + pk

k

)−1

=

(
4

k
+

4

n− k
· kn

2n− (k + 1)2

)−1

Let k = b
√
nc − 1 and note that

√
n− 2 ≤ k ≤

√
n− 1. Then,

ar(M) ≥
(

4

k
+

4

n− k
· kn

2n− (k + 1)2

)−1

≥
(

4√
n− 2

+
4

n−
√
n+ 1

· (
√
n− 1)n

2n− (
√
n)2

)−1

≥
(

4√
n− 2

+
4√
n

)−1

≤
(

12√
n

+
4√
n

)−1

=

√
n

16
,

The last inequality holds for n ≥ 9 and for n < 9 the bound holds trivially. This com-
pletes the proof.

Note that Lemma 4.3 has the following immediate corollary.

THEOREM 4.4. For the unit-range representation, the pure Price of Anarchy of any
truthful mechanism is Ω(

√
n).

Although Theorem 4.1 bounds the Price of Anarchy of all mechanisms, including
truthful mechanisms, as we mention in Section 2 and in Figure 1, approximation ratio
lower bounds are stronger than Price of Anarchy lower bounds. For that reason, and for
the sake of completeness, the next lemma shows how to obtain a similar approximation
ratio lower bound as the one of Lemma 4.3 for the unit-sum representation as well.

LEMMA 4.5. Let M be a truthful-in-expectation mechanism for the unit-sum repre-
sentation. The approximation ratio of M is Ω(

√
n).

PROOF. Intuitively, the lemma is true because the valuation profile used in the proof
of Lemma 4.3 can be easily modified in a way such that all rows of the matrices of
valuations sum up to one. Specifically, consider the following valuation profile:

ui(j) =


1−

∑
j 6=i ui(j), for j = i

2
10k −

j
10n , for 1 ≤ j ≤ k + 1, j 6= i

n−j
10n2 , otherwise

∀i ∈ {1, . . . , k + 1}

ui(j) =


1−

∑
j 6=1 ui(j), for j = 1

2
10k −

j
10n , for 1 < j ≤ k + 1

n−j
10n2 , otherwise

∀i ∈ {k + 2, . . . , n}

Note that this is exactly the same valuation profile used in the proof of Lemma
4.3 where all entries are divided by ten, except those where the valuation is 1, which
are now equal to 1 minus the sum of the valuations for the rest of the items. This
modification will only carry a factor of 1/10 through the calculations and hence the
proven bound will be the same asymptotically.

While the Price of Anarchy of truthful mechanisms for unit-range is settled by The-
orem 4.4, quite importantly, it is not clear whether the general lower bound on the
Price of Anarchy of all mechanisms that we proved in Theorem 4.1 extends to the unit-
range representation as well. In fact, we do not know of any bound for the unit-range
case that applies to all mechanisms, and proving one seems to be a quite complicated
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task. As a first step in that direction, the following theorem obtains a lower bound for
ε-approximate (pure) Nash equilibria. While the result applies for any positive ε, it is
weaker than a corresponding result for exact equilibria.

THEOREM 4.6. Let M be a mechanism and let ε ∈ (0, 1). The ε-approximate Price of
Anarchy of M is Ω(n1/4) for the unit-range representation.

PROOF. Assume n = k2, where k ∈ N will be the size of a subset I of “important”
agents. We consider valuation profiles where, for some parameter δ ∈ (0, 1),

— all agents have value 1 for item 1,
— there is a subset I of agents with |I| = k for which any agent i ∈ I has value δ2 for

any item j ∈ {2, . . . , k + 1} and 0 for all other items,
— for agent i 6∈ I, i has value δ3 for items j ∈ {2, . . . , k + 1} and 0 for all other items.

Let u be such a valuation profile and let s be a Nash equilibrium. In the optimal alloca-
tion members of I receive items {2, . . . , k+ 1} and such an allocation has social welfare
kδ2 + 1.

First, we claim that there are k(1− 2δ) members of I whose payoffs in s are at most
δ; call this set X. If that were false, then there would be more than 2kδ members of
I whose payoffs in s were more than δ. That would imply that the social welfare of s
was more than 2kδ2, which would contradict the optimal social welfare attainable, for
large enough n (specifically, n > 1/δ4).

Next, we claim that there are at least k(1− 2δ) non-members of I whose probability
(in s) to receive any item in {1, . . . , k + 1} is at most 4(k + 1)/n; call this set Y . To see
this, observe that there are at least 3

4n agents who all have probability ≤ 4/n to receive
item 1. Furthermore, there are at least 3n/4 agents who all have probability ≤ 4k/n
to receive an item from the set 2, . . . , k + 1. Hence there are at least n/2 agents whose
probabilities to obtain these items satisfy both properties.

We now consider the operation of swapping the valuations of the agents in setsX and
Y so that the members of I from X become non-members, and vice versa. We will ar-
gue that given that they were best-responding beforehand, they are δ-best-responding
afterwards. Consequently s is an δ-NE of the modified set of agents. The optimum so-
cial welfare is unchanged by this operation since it only involves exchanging the payoff
functions of pairs of agents. We show that the social welfare of s is some fraction of the
optimal social welfare, that goes to 0 as n increases and δ decreases.

Let I ′ be the set of agents who, after the swap, have the higher utility of δ2 for getting
items from {2, . . . , k+ 1}. That is, I ′ is the set of agents in Y , together with I minus the
agents in X.

Following the above valuation swap, the agents in X are δ-best responding. To see
this, note that these agents have had a reduction to their utilities for the outcome of re-
ceiving items from {2, . . . , k+1}. This means that a profitable deviation for such agents
should result in them being more likely to obtain item 1, in return for them being less
likely to obtain an item from {2, . . . , k+1}. However they cannot have probability more
than δ to receive item 1, since that would contradict the property that their expected
payoff was at most δ.

After the swap, the agents in Y are also δ-best responding. Again, these agents have
had their utilities increased from δ3 to δ2 for the outcome of receiving an item from
{2, . . . , k + 1}. Hence any profitable deviation for such an agent would involve a reduc-
tion in the probability to get item 1 in return for an increased probability to get an
item from {2, . . . , k + 1}. However, since the payoff for any item from {2, . . . , k + 1} is
only δ2, such a deviation pays less than δ.
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Finally, observe that the social welfare of s under the new profile (after the swap) is
at most 1 + 3kδ3. To see this, note that (by an earlier argument and the definition of I ′)
k(1 − 2δ) members of I ′ have probability at most 4(k + 1)/n to receive any item from
{1, . . . , k+ 1}. To upper bound the expected social welfare, note that item 1 contributes
1 to the social welfare. Items in {2, . . . , k+ 1} contribute in total, δ2 times the expected
number of members of I ′ who get them, plus δ3 times the expected number of non-
members of I ′ who get them, which is at most δ2k2δ + δ3k(1 − 2δ) which is less than
3kδ3.

Overall, the price of anarchy is at least (kδ2 + 1)/3kδ3, which is more than 1/δ. The
statement of the theorem is obtained by choosing δ to be less than ε, n large enough for
the arguments to hold for the chosen δ, i.e. n > 1/δ4.

4.1. Deterministic Mechanisms
Interestingly, if we restrict our attention to deterministic mechanisms, then we can
prove that only trivial pure Price of Anarchy guarantees are achievable. First, we prove
the following lemma about the structure of equilibria of deterministic mechanisms.
Note that the lemma holds independently of the choice of representation.

LEMMA 4.7. The set of pure Nash equilibria of any deterministic mechanism is the
same for all valuation profiles that induce the same preference orderings of valuations.

PROOF. Let u and u′ be two different valuation profiles that induce the same pref-
erence ordering. Let s be a pure Nash equilibrium under true valuation profile u and
assume for contradiction that it is not a pure Nash equilibrium under u′. Then, there
exists an agent i who by deviating from s is matched to a more preferred item accord-
ing to u′i. But that item would also be more preferred according to ui and hence she
would have an incentive to deviate from s under true valuation profile u, contradicting
the fact that s is a pure Nash equilibrium.

First, we prove the lower bound for unit-sum.

THEOREM 4.8. For the unit-sum representation, the pure Price of Anarchy of any
deterministic mechanism is Ω(n2).

PROOF. Let M be a deterministic mechanism that always has a pure Nash equi-
librium. Let u be a valuation profile such that for for all agents i and i′, it holds that
ui = ui′ , ui1 = 1/n+ 1/n3 and uij > uik for j < k. Let s be a pure Nash equilibrium for
this profile and assume without loss of generality that Mi(s) = i.

Now fix another true valuation profile u′ such that u′1 = u1 and for agents i = 2, . . . , n,
u′i,i−1 = 1−ε′i,i−1 and uij = ε′ij for j 6= i−1, where 0 ≤ ε′ij ≤ 1/n3,

∑
j 6=i−1 ε

′
ij = ε′i,i−1 and

ε′ij > ε′ik if j < k when j, k 6= i− 1. Intuitively, in profile u′, each agent i ∈ {2, . . . , n} has
valuation close to 1 for item i− 1 and small valuations for all other items. Futhermore,
she prefers items with smaller indices, except for item i− 1.

We claim that s is a pure Nash equilibrium under true valuation profile u as well.
Assume for contradiction that some agent i has a benefiting deviation, which matches
her with an item that she prefers more than i. But then, since the set of items that
she prefers more than i in both u and u′ is {1, . . . , i}, the same deviation would match
her with a more preferred item under u as well, contradicting the fact that s is a pure
Nash equilibrium. It holds that SWOPT (u′) ≥ n− 2 whereas the social welfare of M is
at most 2/n and the theorem follows.

The mechanism that naively maximizes the sum of the reported valuations with no
regard to incentives, when equipped with a lexicographic tie-breaking rule has pure
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Nash equilibria and also achieves the above ratio in the worst-case, which means that
the bound is tight.

Now, using Lemma 4.7, we can then prove the following theorem for unit-range.

THEOREM 4.9. The Price of Anarchy of any deterministic mechanism that always
has pure Nash equilibria is Ω(n) for the unit-range representation.

PROOF. Let M be a deterministic mechanism that always has a pure Nash equil-
brium and let u be a valuation profile such that for all agents i and i′, it holds that
ui = ui′ and uij > uik, for all items i < k. Let s be a pure Nash equilibrium for this
profile and assume without loss of generality that Mi(s) = i. By Lemma 4.7, s is a pure
Nash equilibrium for any profile u that induces the above ordering of valuations. In
particular, it is a pure Nash equilibrium for a valuation profile satisfying

— For agents i = 1, . . . , n2 , ui1 = 1 and uij < 1
n3 , for j > 1.

— For agents i = n
2 + 1, . . . , n, uij > 1 − 1

n3 for j = 1, . . . , n/2 and uij <
1
n3 for j =

n
2 + 1, . . . , n.

It holds thatOPT (u) ≥ n
2 , whereas the social welfare ofM is at most 2 and the theorem

follows.

Again, it is not hard to see that the mechanism that naively maximizes the sum of
the reported valuations has pure Nash equilibria and achieves the above bound. Inter-
estingly, these lower bounds are the first examples of tight bounds where a different
choice of representation results in a different Price of Anarchy bound.

5. PRICE OF STABILITY
In this section, we will consider a more optimistic measure of efficiency, the Price of
Stability, which, given a valuation profile, bounds the inefficiency of the best equilib-
rium instead of the worst. The main result of this section will be with respect to the
unit-sum representation; we leave the question of whether similar results hold for
unit-range as an open problem. The main result is the following: We extend Theorem
4.1 to the Price of Stability of all mechanisms that are proportional, which we will
define shortly.

Let a1 �i a2 �i · · · �i an be the (possibly weak) preference ordering of agent i.
A random assignment vector pi for agent i stochastically dominates another random
assignment vector qi if

∑k
j=1 piaj ≥

∑k
j=1 qiaj , for all k = 1, 2, · · · , n. The notation that

we will use for this relation is pi �sdi qi.

Definition 5.1 (Safe strategy). Let M be a mechanism. A strategy si is a safe strat-
egy if for any strategy profile s−i of the other players, it holds that Mi(si, s−i) �sdi(

1
n ,

1
n , . . . ,

1
n

)
.

We will say that a mechanism M has a safe strategy if every agent i has a safe strategy
si in M . A mechanism M is proportional if it has truth-telling as a safe strategy.

We now state our lower bound.

THEOREM 5.2. For the unit-sum representation, the pure Price of Stability of any
proportional mechanism is Ω(

√
n).

PROOF. We will actually prove a stronger statement, namely that the Price of Sta-
bility of any mechanism with a safe strategy (which might be a different strategy than
truth-telling) is bounded by Ω(

√
n). Let M be a mechanism and let I = {k + 1, . . . , n}

be a subset of agents. Let u be the following valuation profile.
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— For all agents i ∈ I, let uij = 1
k for j = 1, · · · , k and uij = 0 otherwise.

— For all agents i /∈ I, let uii = 1 and uij = 0, j 6= i.

Now let s be a pure Nash equilibrium on profile u and let s′i be a safe strategy of
agent i. The expected utility of each agent i ∈ I in the pure Nash equilibrium s is

E[ui(s)] =
∑
j∈[n]

psijvij ≥
∑
j∈[n]

p
(s′i,s−i)
ij vij ≥

1

n

∑
j∈[n]

vij =
1

n
,

due to the fact that s is pure Nash equilibrium and s′i is a safe strategy of agent i. On
the other hand, the utility of agent i ∈ I can be calculated by E[ui(s)] =

∑
j∈[n] p

s
ijvij =

(
∑k
j=1 p

s
ij)/k. Because s is a pure Nash equilibrium, it holds that E[ui(s)] ≥ 1/n, so we

get that
∑k
j=1 p

s
ij ≥ k/n for all i ∈ I. As for the rest of the agents,

∑
i∈N\I

k∑
j=1

psij = k −
∑
i∈I

k∑
j=1

psij ≤ k − (n− k)
k

n
=
k2

n
.

This implies that the contribution to the social welfare from agents not in I is at most
k2/n and the expected social welfare of M will be at most 1 + (k2/n). It holds that
SWOPT (u) ≥ k and the bound follows by letting k =

√
n.

Due to Theorem 5.2, in order to obtain an Ω(
√
n) bound for a mechanism M , it suf-

fices to prove that M has is proportional. In fact, most reasonable mechanisms, includ-
ing Random Priority and Probabilistic Serial, as well as all ordinal envy-free mecha-
nisms are proportional. We start with a definition.

Definition 5.3 (Envy-freeness). A mechanism M is (ex-ante) envy-free if for all
agents i and r and all profiles s, it holds that

∑n
j=1 p

s
ijsij ≥

∑n
j=1 p

s
rjsrj . Furthermore,

if M is ordinal, then this implies pM,s
i �sdsi p

M,s
r .

Given the interpretation of a truth-telling safe strategy as a proportionality property,
the next lemma is not surprising.

LEMMA 5.4. Let M be an ordinal, envy-free mechanism. Then M is proportional.

PROOF. Let s = (ui, s−i) be the strategy profile in which agent i is truth-telling and
the rest of the agents are playing some strategies s−i. SinceM is envy-free and ordinal,
it holds that

∑`
j=1 p

s
ij ≥

∑`
j=1 p

s
rj for all agents r ∈ {1, . . . , n} and all ` ∈ {1, . . . , n}.

Summing up these inequalities for agents r = 1, 2, . . . , n we obtain

n
∑̀
j=1

psij ≥
∑̀
j=1

n∑
r=1

psrj = `,

which implies that
∑`
j=1 p

s
ij ≥ `

n , for all i ∈ {1, . . . , n}, and for all ` ∈ {1, . . . , n}.

Note that since Probabilistic Serial is ordinal and envy-free [Bogomolnaia and Moulin
2001], by Lemma 5.4, it is proportional and hence Theorem 5.2 applies. It is not hard
to see that Random Priority is proportional too.

LEMMA 5.5. Random Priority is proportional.

PROOF. Since Random Priority first fixes an ordering of agents uniformly at ran-
dom, every agent i has a probability of 1/n to be selected first to choose an item, a
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probability of 2/n to be selected first or second and so on. If the agent ranks her items
truthfully, then for every ` = 1, . . . , n, it holds that

∑`
i=1 pij ≥ `/n.

Note that the safe strategy condition is in a sense a minimal condition required for
Theorem 5.2, because we can not hope to prove a strong upper bound on the price of
stability of all mechanisms. From the discussion below, it should also be clear that the
safe strategy property does not imply truthfulness.

To see why the statement above is true, consider the following deterministic, Ran-
domly Dictatorial mechanism RD [Svensson 1999]: Select an agent i∗ uniformly at
random and match her with her most preferred item j∗. Then, fix an ordering of the
rest of the agents and match them sequentially according to this ordering to items

j1 ∈ arg max
j∈A\{j∗}

ui∗j , j2 ∈ arg max
j∈A\{j∗,j1}

ui∗j

and so on, breaking ties arbitrarily. Note that this mechanism is truthful; once agent
i∗ is selected, she is matched with her most preferred item and the rest of the agents
can not influence the outcome. However, it is easy to see that the mechanism has other
equilibria as well; any report such that j∗ is on top of agent i∗’s preference ranking
grants the agent maximum utility. In particular, there is some strategy si∗ of agent i∗
that results in an welfare-optimal assignment for the rest of the agents. We can prove
the following theorem.7

THEOREM 5.6. For the unit-sum representation, the Price of Stability of the Ran-
domly Dictatorial mechanism RD is at most 2.

PROOF. Consider any valuation profile u and assume first that SWOPT (u) ≥ 2.
Given the choice of some agent i and her most preferred item j, in the best Nash
equilibrium, the mechanism outputs a social welfare optimal matching OPT−i(u−i)
for agents in N\{i} and items in A\{j}. Since OPT−i(u−i) is optimal, it is at least as
good as the matching that matches every agent l ∈ N\{i, i′} with item OPTl(u), except
agent i′, the agent for which OPTi′(u) = j, who is matched with item OPTi(u). In other
words, for every realization of randomness, the mechanism produces a matching that is
at least as good as OPT (u), except for the allocation of two agents that is swapped: the
agent i chosen by the mechanism and the agent that receives agent i’s most preferred
item in the optimal matching.

Let vi be the valuation of agent i for her most preferred item and let wi be her
valuation for item OPTi(u). Then, from the discussion above, it holds that for ev-
ery choice of agent i (with most preferred item j), the welfare achieved is at least
SWOPT (u) + vi − wi − wj , which is at least SWOPT (u) − 1, since vi ≥ wi and wj ≤ 1.
The Price of Stability is then at most SWOPT (u)/(SWOPT (u) + 1) which is at most 2,
since SWOPT (u) ≥ 2.

Assume from now on that SWOPT (u) ≤ 2. Observe that, in the best Nash equilibrium
of the Randomly Dictatorial mechanism RD on input u, the outcome is at least as good
as the outcome of Random Priority; in particular, there exists some Nash equilibrium
such that RD(u) = RP (u). By the proof of Lemma 3.9, we know that, for the unit-sum
representation, SWRP (u) ≥ 1 and hence SWRD(u) ≥ 1 as well. Since SWOPT (u) ≤ 2,
this proves the theorem.

It is not hard to see that the Price of Anarchy of the Randomly Dictatorial mechanism
is Θ(n). Given that bestowing the rights to the allocation to a single agent is intuitively
not a good choice, the above result indicates that one should perhaps be careful when

7It is not hard to see that a simple deterministic dictatorial mechanism achieves the same Price of Stability
guarantee for unit-range as well.
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adopting the Price of Stability as the measure of performance. The same idea applies
in general to other problems, where “satisfying” a single agent can not hurt the social
objective very much; the Price of Stability was suggested as a measure of inefficiency
in the absence of a central planner but the existence of such equilibria like the one
above essentially delegate the central planning task to a single agent.

6. CONCLUSION AND FUTURE WORK
In this paper, we studied the problem of social welfare maximization in the fundamen-
tal setting of one-sided matching and explored the capabilities and limitations of all
mechanisms for the problem.

Our results are rather negative: we identify non-constant lower bounds on the Price
of Anarchy for one-sided matching, and find a matching upper bound achieved by well-
known ordinal mechanisms. However, such negative results are important to under-
stand the challenge faced by a social-welfare maximizer: for example, we establish that
it is not enough to elicit cardinal valuations, in order to obtain good social welfare.

It may be that better welfare guarantees should use some assumption of truth-bias,
or some assumption of additional structure in agents’ preferences. For example, one
could attempt to identify conditions on the valuation space that allow for constant val-
ues of the Price of Anarchy or impose some distributional assumption on the inputs
and quantify the average loss in welfare due to selfish behavior. Recent experimental
studies [Hosseini et al. 2016] attempt to quantify the performance of one-sided match-
ing mechanisms on typical valuation profiles but do not consider the equilibrium be-
haviour of mechanisms like Probabilistic Serial; this is something worth investigating.

Caragiannis et al. [2016] have recently proposed a resource augmentation frame-
work, introduced on a problem which they refer to as facility assignment, which is
essentially an one-sided matching setting on a metric space with costs instead of util-
ities. The idea is to compare the optimal mechanism with the mechanism in question,
when the two mechanism operate under a different set of resources; in our context that
would mean that mechanisms like Probabilistic Serial or Random Priority would have
access to multiple copies of the items. The framework was proposed for truthful mech-
anisms, but it can easily be applied to all mechanisms in terms of their equilibrium
behaviour. Conversely, our lemmas for bounding the Price of Anarchy of Probabilistic
Serial could possibly be applied to bound the inefficiency of the mechanism for the
version of problem they consider as well.

In a recent paper, Aziz et al. [2016] study the inefficiency of one-sided matching
mechanisms for the objective of egalitarian social welfare maximization, i.e. maximiz-
ing the utility of the least satisfied agent. They prove bounds on the approximation
ratio of matching mechanisms when the constraint is truthfulness, ordinality or envy-
freeness, but in the latter two cases, the bounds are proven under the assumption
that strategic considerations are not present. There is a clear open question there,
analogous to what we do here: “What is the best mechanism in terms of the Price
of Anarchy, for egalitarian welfare maximization?”. The same question can be posed
for any sensible aggregate objective for one-sided matching, including the ordinal
measures of efficiency that we mentioned in the introduction, which are typically
studied with respect to the approximation ratio of truthful mechanisms only.

In general, one could adopt the following agenda in mechanism design without money:

— Choose a problem, e.g. indivisible item allocation, divisible item allocation, cake cut-
ting, machine scheduling, etc.
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— Choose an objective, like cardinal objectives, e.g. (utilitarian) social welfare, egali-
tarian social welfare or makespan, or ordinal objectives, e.g. Borda scores, matching
cardinality or rank-approximation.

— Try to find the best mechanisms for each problem in terms of the Price of Anar-
chy, the Price of Stability or in the case of truthful mechanisms, the Approximation
Ratio.

It seems natural to study the efficiency of mechanisms for a problem in a unified frame-
work. For example, in divisible item allocation and utilitarian welfare maximization,
there is work bounding the approximation ratio of truthful mechanisms [Han et al.
2011] and the Price of Anarchy of non-truthful mechanisms [Feldman et al. 2009;
Brânzei et al. 2014] but the connection between the results is not clearly established.
Furthermore, the question whether non-truthful mechanisms for divisible item allo-
cation can outperform truthful ones in equilibrium is yet not answered; a unified ap-
proach would first state those questions explicitly and then try to answer them.

Interestingly, contrary to our setting here for which the answer to the correspond-
ing question is “no”, recently Giannakopoulos et al. [2016], proved that in machine
scheduling and the makespan objective, there exist non-truthful mechanisms which
significantly outperform the best truthful ones, whose limitations were established in
[Koutsoupias 2014].

Our investigations in this paper shed much light on the question of the efficiency
of one-sided matching mechanisms, but there are still some interesting open prob-
lems. The main question raised is whether one can obtain Price of Anarchy or Price
of Stability bounds that match our upper bounds for the unit-range representation as
well. An almost identical question is the following: “Is there a cardinal mechanism
that achieves a Price of Anarchy guarantee better than O(

√
n) for unit-range?” From

our results, we know that the answer to the corresponding question is “no” for unit-
sum, as well as for any truthful mechanism for both representations. If the answer for
unit-range turns out to be “yes” that would show that unlike the case of truthful mech-
anisms, the choice of representation actually matters for the Price of Anarchy bounds.
A candidate mechanism for attempting to answer the question above in the positive
could be the pseudo-market mechanism of Hylland and Zeckhauser [1979].
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