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Abstract. We study fairness and efficiency properties of randomized
algorithms for barter exchanges with direct applications to kidney ex-
change problems. It is well documented that randomization can serve as
a tool to ensure fairness among participants. However, in many appli-
cations, practical constraints often restrict the maximum allowed cycle-
length of the exchange and for randomized algorithms, this imposes con-
straints of the cycle-length of every realized exchange in their decompo-
sition. We prove that standard fairness properties such as envy-freeness
or symmetry are incompatible with even the weakest notion of economic
efficiency in this setting. On the plus side, we adapt some well-known
matching mechanisms to incorporate the restricted cycle constraint and
evaluate their performance experimentally on instances of the kidney
exchange problem, showing tradeoffs between fairness and efficiency.

1 Introduction

Over the past years, barter exchanges, with kidney exchange as a representa-
tive example, have become a topic of intensive research at the intersection of AI
and economics. In a barter exchange, participants enter the system with some
endowment and then exchange their endowments in order to obtain better allo-
cations. Such exchanges are very popular in settings such as exchanges of used
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books or DVDs where agents do not have very high values for their endowments
and would rather trade them with others.

The current literature on barter exchanges presents two major challenges,
fairness and implementability [13,2,3,7,8,9,6]. Most would agree that a fair pro-
cedure should guarantee at least properties like symmetry and envy-freeness. In
practical applications, barter exchanges tend to be carried out deterministically ;
on the other hand as argued in a number of papers [5,14,11], central economic
notions of fairness such as the ones stated above, require randomization.

Implementability has to do with whether the designed exchanges can be
carried out in practice. The simplest exchanges are pairwise exchanges, involving
only two agents [14,12]. Exchanges can also be more complicated, involving
multiple participants, exchanging endowments in a cycle. A vital constraint of
most such exchange systems (kidney exchanges, room exchanges3) is that the
number of agents involved in a cycle must be bounded [14,2]. Such constraints
may be imposed for a number of reasons; a real-life motivating example comes
from perhaps the most widespread applications of barter exchanges, the kidney
exchange problem.

In a kidney exchange market, pairs consisting of incompatible donors and
patients enter the market, in search for other pairs to exchange kidneys with. In
case of inter-pair compatibility, i.e. when the donor of the first pair is compatible
with the patient of the second pair and vice-versa, an exchange is carried out.
In many countries, such exchange systems have been in effect for several years.

There are several constraints on the length of such exchanges however, im-
posed for both practical and ethical reasons. First of all, participants involved in
an exchange cycle must conduct surgery simultaneously at the same hospital4,
making it logistically infeasible for any hospital to host a large cycle. Secondly,
donors can not be contractually obligated to donate their kidneys, since it is
illegal in most countries. If an “offline” exchange were to take place, there is no
guarantee that donors would not opt out after their counterparts receive their
transplants. [8].

For this reason, the length of the exchange cycles is constrained to be a small
number (three in most cases). This however, makes the problem much more
challenging. It is known that, under such constraints on the cycle-length, the
problem of finding an efficient exchange is NP-hard [2]. Despite the theoretical
hardness results, Abraham et al. [2] designed an algorithm that through several
optimization techniques produces an optimal exchange on typical instances of
the problem in reasonable running time. The algorithm, while efficient, is de-
terministic and not tailored to incorporate fairness criteria. On the other hand,
fairness is a key property here; between patients with similar compatibility char-
acteristics and similar needs, no deterministic choice can be justified, especially
if it results in loss of human life. In fact, Dickerson et. al. [8] observe that, among

3 http://reslife.umd.edu/housing/reassignments/roomexchange/
4 In this paper, we do not consider the use of altruistic chains, which may circumvent

this requirement.
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the exchanges in the major organ exchange system in the United States, UNOS,5

only 7 percent of them finally make it to surgery. The lack of fairness guarantees
might be a possible explanation for this phenomenon.

As mentioned earlier, randomization can be used as a way of achieving fair-
ness and there are many candidate mechanisms in matching and exchange liter-
ature to choose from. Perhaps the two best-studied are the Probabilistic Serial
mechanism [5] and Random Serial Dictatorship [1]. Both achieve fairness in the
sense of symmetry but the former is also envy-free. However, the implementabil-
ity constraint introduces complications to the use of randomized mechanisms as
well. Given the natural interpretation of a randomized exchange as a probability
mixture over deterministic exchanges, the constraint requires that every such
exchange does not contain long cycles. If we restrict the possible outcomes to
those assignments only, it is unclear whether the mechanisms maintain any of
their fairness properties. This is one of the questions that we address in this
paper.

We investigate the problem of designing barter exchanges that meet the two
desiderata above. In particular, we explore the use of randomized mechanisms for
achieving tradeoffs between efficiency and fairness, under the added constraint
of restricted cycle-length in their decomposition. We make the following two-fold
contribution.

– First, we consider the tradeoffs between economic efficiency and fairness
from a theoretical point of view and prove that even the weakest form of
economic efficiency (a relaxation of ex-post Pareto efficiency that is suitable
for the problem) is incompatible with both envy-freeness and symmetry.
On the other hand, we show that it is possible to satisfy each property
independently, together with the restricted cycle-length.

– Next, we adapt two well-known mechanisms, Random Serial Dictatorship
and Probabilistic Serial to incorporate the cycle-length constraint and evalu-
ate their performance on instances of the kidney exchange problem. We show
tradeoffs between the efficiency (in the sense of social welfare) and quantified
envy-freeness of the exchange for those adaptations of the mechanisms and
compare them to the mechanism that produces an optimal assignment.

Most relevant to the current paper is the work by Balbuzanov [4], where the
author considers deterministic and randomized mechanisms for barter exchanges,
under the restriction of the cycle length in the components of the decomposition,
very similarly to what we do here. Interestingly, he presents an adaptation of the
Probabilistic Serial mechanism (named the “2-cycle Probabilistic Serial”) that
always produces components with cycles of length two and satisfies two desired
properties: ordinal efficiency (a stronger notion of efficiency than the one we
consider here) and anonymity, i.e. a guarantee that the outcome is imprevious
to renaming agent/item pairs. It is well-known that ordinal efficiency implies ex-
post Pareto efficiency; in particular this is also true for the relaxed versions of
efficiency that we consider in this paper. Furthermore, anonymity (together with

5 www.unos.org.
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neutrality) is known to imply symmetry. The existence of 2-cycle Probabilistic
Serial however does not contradict our negative result on compatibility between
ex-post efficiency and symmetry; crucially, the anonymity notion used in [4] does
not imply symmetry in our setting.

2 Background

Let N = {1, . . . , n} be a set of agents and let M = {1, . . . , n} be a set of items.
We assume that each agent is associated with exactly one item and without loss
of generality, let agent i be associated with item i. Let item i be the endowment
of agent i. Each agent has valuations over the items., i.e. numerical values that
denote her levels of satisfaction. Let vi = (vi1, . . . , vin) be the valuation vector
of agent i and let V = (v1 . . .vn) be a valuation matrix.

An assignment D is a matching of agents to items, such that each agent
receives exactly one item. This is precisely a permutation matrix, where entry
dij = 1 if agent i receives item j and 0 otherwise. Alternatively, one can view
D as a directed graph D = (N,E), where a vertex vi corresponds to both agent
and item i and an edge (i, j) means that agent i is matched with item j in D.
Given this interpretation, an assignment is a set of disjoint cycles, where agents
exchange endowments along a cycle. If the maximum length of any cycle in such
an assignment is k, we will say that the assignment is k-restricted.6

Since each agent receives exactly one item in expectation, a probabilistic or
randomized assignment is a bistochastic matrix P where entry pij denotes the
probability that agent i is matched with item j. We will call pi = (pi1, . . . , pin) an
assignment vector. A mechanism is a function that on input a valuation matrix
V outputs an assignment P .

A probabilistic assignment P can be viewed as a probability mixture over
deterministic assignments. This is due to the Birkhoff-von Neumann theorem
that states that each bistochastic matrix of size n can be written as a convex
combination of at most n2 permutation matrices. Since it is particularly relevant
to the design of our mechanisms, we will describe the decomposition process
in more detail in Section 4. We will say that a randomized assignment P is k-
restricted if it can be written as a probability mixture of k-restricted determnistic
assignments.

The two standard notions of fairness that we consider in this paper are
envy-freeness and symmetry. An assignment is (ex-ante) envy-free if no agent
would prefer to swap assignment vectors with any other agent. An assignment is
symmetric if all agents that have identical valuation vectors receive identical as-
signment vectors. Note that envy-freeness does not imply symmetry; two agents
with identical valuations could be equally satisfied with an assignment without
having the same probabilities of receiving each item7.

6 Balbuzanov [4] uses the term k-constrained to describe such assignments.
7 This is true in particular because we consider all mechanisms, including cardinal

mechanisms, i.e. mechanisms that can use the numerical values when outputting
assignments.



A deterministic assignment D is Pareto efficient if there is no other assign-
ment D′ that is not less preferable for any agent and strictly more preferable for
at least one agent. If such an assignment D′ exists, we will say that D′ Pareto
dominates D.

It is not hard to see that standard efficiency is not compatible with k-
restricted assignments. To see this, let n > k and let V be such that for
i = 1, . . . , n − 1, maxj∈M vij = i + 1 and maxj∈M vnj = 1. Any ex-post Pareto
efficient assignment must consist single permutation matrix D consisting of only
one cycle of length n, which is of course not a k-restricted assignment. For that
reason, it makes sense to only define Pareto efficiency in terms of k-restricted
assignments.

Definition 1. A deterministic assignment D is Pareto efficient if there does
not exist any k-restricted assignment that Pareto dominates it.

Remark 1. Note that this is the same definition of k-constrained Pareto effi-
ciency used in [4]. For simplicity and since the only notion of efficiency in this
paper is with respect to k-restricted assignments, we simply use the term Pareto-
efficiency.

For randomized mechanisms, an assignment is ex-ante Pareto efficient, if
there is no other assignment that satisfies the condition above in expectation. An
assignment is ex-post Pareto efficient if for every realization of randomness, there
is no other assignment that Pareto dominates it. In other words, a randomized
assignment is ex-post Pareto efficient if it can be written as a probability mixture
of Pareto efficient deterministic assignments. Note that ex-post Pareto efficiency
is the weakest efficiency notion for randomized mechanisms in literature.

3 Fairness and economic efficiency

In this section, we explore the compatibility and incompatibility between fairness
and efficiency properties given the constraint of small cycles. We show that
even the weakest form of efficiency is incompatible with two well-known fairness
criteria, even in the case when k = 3. Note that k = 3 is the common choice
for the maximum allowed cycle length in the most important applications of the
problem, that of kidney exchange that we discuss in Section 5.

Theorem 1. There is no mechanism that always outputs an assignment which
is envy-free, ex-post Pareto efficient and 3-restricted.

Proof. First, we prove the theorem for n = 4. First we construct the valuation
profile v with v1 = (22, 27, 81, 79), v2 = (14, 67, 36, 16), v3 = (48, 6, 33, 88) and
v4 = (36, 87, 91, 90). Next, we generate all possible permutation matrices with
four elements and eliminate those that contain cycles of length more than 3.
Then also remove those that are not Pareto efficient according to the preference
orderings profile induced by v. Let D = {D1, D2, . . . , D|D|} be the resulting



set of permutation matrices. Then, we need to solve the following constraint
satisfaction problem:

Find P, α1, . . . , α|D| such that

(i)
∑
j

pkjvkj ≥
∑
j

pljvkj ∀k, l, (envy-freeness)

(ii) P =

|D|∑
i=1

αiDi, (decomposition)

(iii)

n∑
i=1

pij =

n∑
j=1

pij = 1, (valid assignment)

(iv) αi ≥ 0 ∀i, (valid coefficients)

(v) 0 ≤ pij ≤ 1 ∀i, j. (valid probabilities)

For the valuation profile that we created, the constraint satisfaction problem
is infeasible. This proves the theorem for n = 4. We will use that as the base
case to prove that the theorem is true for any n using induction on the size of
the valuation matrix.

For size k− 1, there is no envy-free, ex-post Pareto efficient mechanism that
produces a 3-restricted assignment by the induction hypothesis. Let Vk−1 be the
valuation matrix for size k − 1 and let Uk be the matrix obtained by Vk−1 by
adding agent k and item k such that for all agents i 6= k, vij > vik for all items
j 6= k and vkk > vjk for all items j 6= k. Then, any ex-post Pareto efficient
mechanism on input Vk must allocate item k to agent k with probability 1,
otherwise there would be some Pareto-dominated permutation matrix in the
decomposition. If such a mechanism existed, the assignment of the remaining
k − 1 items to the remaining k − 1 agents would imply the existence of an
envy free, ex-post Pareto efficient mechanism for input Vk−1, contradicting the
induction hypothesis. �

Next, we prove a similar impossibility theorem for the case when the notions
of fairness is symmetry.

Theorem 2. There is no mechanism that always outputs an assignment which
is symmetric, ex-post Pareto efficient and 3-restricted.

Proof. The proof idea is similar to that of the proof of Theorem 1, the main
difference being that in the constraint satisfaction problem, the constraint for
envy-freeness is replaced by:

Pik = Pjk,∀k ∈M,∀i, j ∈ N such that vil = vjl ∀l ∈M,



which is the constraint for symmetry. For the new constraint satisfaction prob-
lem, for n = 5, if we let v1 = v2 = (4, 3, 5, 1, 2), v3 = v4 = v5 = (2, 5, 1, 4, 3),
then the problem is infeasible. To extend the theorem for any n, we can use
exactly the same inductive argument we use in the proof of Theorem 1. �

Remark 2. As we mention in the introduction, Balbuzanov proposes the 2-cycle
Probabilistic Serial mechanism, which is ex-ante Pareto efficient and anonymous.
This does not contradict Theorem 2 because his definition of anonymity is with
respect to pairs of agents and endowed items and does not imply symmetry. 8

Next, we prove that both ex-post Pareto efficiency and envy-freeness or sym-
metry are needed for the impossibilities. If we remove ex-post efficiency, the
simple mechanism that allocates all items uniformly at random, which is triv-
ially both envy-free and symmetric, also produces k-restricted assignments.

Theorem 3. The mechanism Un that always outputs a uniform random assign-
ment always produces a k-restricted assignment for k ≥ 2. Furthermore, if n is
odd, then the decomposition of the assignment consists of n permutation matri-
ces, each one of which contains a self-loop and n−1

2 pairs. If n is even, then the
decomposition consists of n permutation matrices, n−1 of which contain n

2 pairs
and one which contains n self-loops.

Proof. We will consider the cases when n is odd and n is even separately. Since all
entries pij of the assignment matrix are 1/n, the coefficients of the decomposition
will be 1/n and for any i and j, dij will be 1 in exactly one component D and
0 in all others. Assume first that n is odd. Recall the graph interpretation of D
and observe that D is a regular n− 1-sided polygon. For vertex i, let ei be the
opposite side of G to vertex i and let Di be the permutation matrix consisting of
the self-loop (i) and pairs (kl) where k and l are adjacent to ei or adjacent to a
diagonal parallel to ei. To get the decomposition, we iterate over all i = 1, . . . , n
and obtain the permutation matrices Di. Note that each permutation matrix
consists of one self-loop and n−1

2 pairs. Next, assume that n is even, which
means that n−1 is odd. Let Un−1 be the assignment matrix of size n−1 and Un

be the assignment matrix after we add agent n and item n. Since n− 1 is odd,
Un−1 can be decomposed into permutation matrices that contain one self-loop
and n−2

2 pairs. The decomposition of Un will be exactly the same, except that
for each self-loop of each permutation matrix, we create a pair with item n, and
we add an additional permutation matrix consisting only of self-loops. Again,
it is not hard to see that the decomposition consists of n components, n − 1 of
which contain n

2 pairs and one that contains n self-loops. �

Finally, if we only require Pareto efficiency without any regard to fairness, it
is trivial to obtain a deterministic Pareto efficient mechanism. The mechanism
is the following simple one. Given an input valuation matrix V , generate all
possible permutation matrices and find a feasible one that is Pareto efficient
(with respect to the set of k-restricted components).

8 A simple example with two agents 1, 2 that have the same preference over items 1, 2
is sufficient to see this.



4 Randomized Mechanisms

In this section, we design mechanisms that output k-restricted assignments. Re-
call that a randomized mechanism inputs a valuation profile (or a preference
profile) for n agents and outputs a bistochastic assignment matrix P . The as-
signment P can then be decomposed into at most n2 permutation matrices using
the Birkhoff-von Neumann decomposition.

The Birkhoff-von Neumann decomposition

The decomposition works as follows. First, from P , construct a binary matrix
P bin by setting pbinij = 1 if pij > 0 and 0 otherwise. From P bin, construct a
bipartite graph G with vertices corresponding to the rows and the columns of
P bin and with edges corresponding to the non-zero entries of P bin. In other
words, edge (i, j) exists in G if and only if pbinij = 1. Using Hall’s theorem,
one can easily prove that G has a perfect matching. Note that this matching
corresponds to some permutation matrix Π. Find such a D in G and find the
smallest entry (i, j) in P such that Πij = 1 and let a be the value of that entry.
For every entry (i, j) in P such that Πij = 1, subtract a from (i, j) to obtain
a substochastic matrix P ′. Then apply the same procedure again on P ′. Note
that a will be the coefficient of the first component of the decomposition and D
will be that component. Also note that since P ′ has at least one more zero entry
than P , the procedure will terminate in at most n2 steps.

In our case, we are interested only in k-restricted components of the decom-
position. One way to handle components with longer cycles is to remove them
from the decomposition and redistribute their probabilities (given by their coef-
ficients) to k-restricted components. It is conceivable that some of the properties
of the assignment that are satisfied in expectation might be lost during the pro-
cess; on the other hand, properties satisfied ex-post are preserved. To evaluate
the ex-ante properties of the new assignment, we can re-construct the bistochas-
tic matrix based on the components that survived the previous step. We will call
this process the recomposition of the assignment matrix.

The process described above can be used to transform any mechanism to one
that produces k-restricted assignments, assuming that the original decomposi-
tion had at least one k-restricted component. In general, this is not always the
case however; it could be that some other decomposition (with possibly more
than n2 components) is needed in order to find such a component. Even worse,
it could be the case that such a decomposition does not exist. We observe that
in general, it is hard to decide whether this is the case or not.

Theorem 4. Let P be an assignment. Deciding whether any decomposition of
P has a 3-restricted component is NP -hard.

Proof. Abraham et al. [2] proved that finding a cycle-cover consisting of cycles
of length at most 3 is NP-hard. In their reduction, they use the gadget shown
in Figure 4, also known as a clamp. They construct a graph where clamps only



intersect with other clamps on vertices, xa, yb and zc. To get some intuition
about the construction, one can think as xa, yb and zc as elements in sets X,Y
and Z respectively. Let T ⊆ X ∪ Y ∪Z be a set of triples. Two clamps intersect
at a vertex xa if xa is part of two different triples (xa, yb, zc) and (xa, y

′
b, z
′
c)

9.
We will refer to the subgraph consisting of vertices xa, 1, . . . , L− 1 (on the left
in Figure 4), xia and the edges indicident to them as “the x part of the clamp”.

Recall the definition of graph D corresponding to the binary matrix P bin at
the Birkhoff-von Neumann decomposition described earlier; the graph has edges
(i, j) only between vertices satisfying P bin

ij = 1. We claim that there exists a
decomposition of P with at least one 3-restricted component if and only if graph
D has a cycle cover consisting of cycles of length at most 3. It is not hard to see
that there exists a decomposition of P with at least one 3-restricted component
if and only if Graph D has a cycle cover consisting of cycles of length at most 3.
It then suffices to prove that the graph used in [2] corresponds to some binary
matrix P bin associated with a bistochastic matrix P .

To find such a matrix, it is enough to find an assignment of weights p1, . . . , p|E|
to the edges of the graph, such that for every vertex, the total weight of incom-
ing edges and the total weight of outgoing edges is 1; such a weight assignment
corresponds directly to a bistochastic matrix. We will only specify the weights
for edges in the x part of the clamp; the rest are defined symmetrically. Let s
be the in-degree of xa.

First, for edges e = (1, 2), . . . , (L− 2, L− 1), let pe = 1.

Then let:

p(L−1,xa) =
1

s
, p(L−1,xi

a)
=
s− 1

s
,

p(xa,1) =
1

s
, p(zi

c,x
i
a)

=
1

s
,

p(xi
a,1)

=
s− 1

s
, p(xi

a,y
i
b)

=
s− 1

s
.

It is not hard to see that the assigned weights satisfy the constraint above
and hence correspond to some bistochastic matrix P . �

In the following, we describe a general method to generate k-restricted as-
signments based on some original assignment P . We will call this method small-
cycle projection. Note that the decomposition-recomposition procedure that we
described earlier can be viewed as such a projection.

Small-cycle Projection : Given a bistochastic matrix P and a “distance”
measure d, the small-cycle projection P ∗ of P with respect to d is the solution
of the following program,

minimize d(P ∗, P ) (1)

subject to P ∗ ∈ Conv(Dk)

9 This interpretation is very natural given that the proof in [2] uses a reduction from
3D-Matching.



Fig. 1. The gadget used in in the proof of Theorem 4 as it appears in Abraham et al.
[2].

where Dk is the set of all k-restricted deterministic assignments and Conv(Dk)
is the convex hull of Dk.

A key observation here is that if d is a linear function, Program (1) is a linear
program. Unfortunately, even if k is chosen to be 3, the set Dk is exponentially
large in n. For this reason, we present two ways to approximate Conv(Dk) via a
small subset of Dk.

Small-Cycle Projection via Randomized Birkhoff-von Neumann
Decomposition

Recall that the Birkhoff-von Neumann decomposition operates by finding a
perfect matching on a bipartite graph in each step. Using the decomposition-
recomposition procedure, we can approximate P by the matrix composed of the
k-restricted components of the decomposition. It is conceivable however that dif-
ferent decompositions yield different k-restricted components and the choice of
decomposition plays a central role to the quality of the approximation. For this
reason, we need to have some freedom to choose between decompositions. On
the other hand, iterating over all decompositions is computationally intractable.
To balance the need for flexibility and the computational burdens, we employ
the algorithm proposed by Goel, Kapralov, and Khanna [10]. Their algorithm
computes random perfect matchings which can then be used to obtain random
decompositions. The mechanism is then simply:

(i) decompose P as
∑

i λiDi;
(ii) recompose P ∗ =

∑
Di∈Dk

λ∗iDi.

The redistribution of probabilities can be done in various ways; the simplest
being equally among k-restricted components.

Small Cycle Projection via Sequential Randomized Small-cycle Cover

The second approach generates a set of random k-restricted permutations to
approximate Dk in program (1). Particularly, these k-restricted permutations are



generated by an algorithm that finds a maximum weight cycle cover consisting
of cycles of length at most k, on Graph G corresponding to assignment P . For
example, when k = 3, the algorithm by [2] can be used, where the weights are
randomly assigned to the edges induced by the fractional allocation P . Formally,
we describe our generating method in Algorithm 1.

Algorithm 1: Generating Small-cycle Permutations.

input : P
output: D̂k

D̂k ← ∅;
while |D̂k| < α(n) do

for i, j in [n] do
if Pij = 0 then

Gij ← 0;

else
Gij ← rand();

D̂k ← D̂k ∪ {MaxWeightSmallCycleCover(G, k)};

return Ŝk

In the algorithm, α(n) is the desired size of set D̂k, rand() generates a random
number in [1, 1 + ε], and finally MaxWeightSmallCycleCover(G, k) returns the
maximum weighted cycle cover of length at most k in graph G.

Unlike the randomized Birkhoff-von Neumann decomposition, the k-restricted
permutations generated here are not a decomposition of the input P . Hence we
need to solve Program (1) with some properly chosen “distance measure” d to
approximate the assignment P . For linear distance measures, the program can
be easily solved.

In the remainder of the section, we adapt two well-known mechanisms, Prob-
abilistic Serial and Random Serial Dictatorship to make them compatible with
3-restricted allocations, in order to use them in our experiments in Section 5. As
mentioned earlier, the reason for the choice of k = 3 is because this is the stan-
dard maximum allowed cycle length in kidney exchange operations. For Prob-
abilistic Serial, we apply the small-cycle projection method; for Random Serial
Dictatorship, we apply a different construction that always admits a decompo-
sition with small cycles.

4.1 Probabilistic Serial with restricted cycles

The Probabilistic Serial mechanism works as follows. Each item is interpreted
as an infinitely divisible good that the agents consume over the unit interval
[0, 1] at the same fixed speed. Each agent starts consuming her favorite item
until the item is entirely consumed. Then, she moves to the next item on her



preference list that has not been entirely consumed and starts consuming it. The
procedure terminates when all items are entirely consumed. The fraction pij of
item j consumed by agent i is then interpreted as the probability of assigning
item j to agent i.

Using the small-cycle projection methods described above, we can construct
two variants of the mechanism. For the variants generated using the randomized
small-cycle cover method, we choose two appropriate distance metrics as follows
to generate the approximate assignment P ∗.

– Social welfare distance: dwelfare(P, P
∗) = 〈V, P − P ∗〉 measuring the differ-

ence of social welfares induced by P and P ∗, where 〈·, ·〉 is the pointwise
product of matrices.

– l∞ distance: dnorm(P, P ∗) = maxi,j |Pij − P ∗ij | measuing the l∞ error of P ∗

approaching P .

4.2 Random Serial Cycle

Random Serial Cycle, or RSC for short is a straightforward adaptation of Ran-
dom Serial Dictatorship to incorporate the short cycle constraint. Specifically,
the mechanism first uniformly at random fixes an ordering of agents and then
matches them serially with their favorite items from the set of available items,
just like Random Serial Dictatorship does. The difference is that whenever the
length of an exchange is k − 1 and the exchange is not a cycle, the next agent
to be picked is matched with the item that “closes” the cycle, regardless of her
preferences. For example, for k = 3, if some agent i is matched with item j and
agent j is matched with item l and agent l is next to pick an item, she will be
matched with item i.

By construction, any run of the mechanism outputs a k-restricted assignment.
To evaluate its properties however, we need to compose the assignment matrix
from the probability mixture of the outcomes, which if done naively would require
us to generate all possible n! orderings of agents. In fact, it has been shown [15]
that it is #P -hard to compute the assignment matrix of RSD given an input
valuation matrix.

To sidestep this complication, we modify the mechanism to instead generate
n2 orderings at random using a Monte-Carlo process. The details follow. First
we explain how to generate the orderings that we use and then we describe the
mechanism.

Orderings generation

– Fix a permutation π of {1, . . . , n} uniformly at random from the set of all
permutations with n elements. Initialize position i of order π to be 1.

– For each position i, swap the agent in position i, denoted by πi, with ran-
domly chosen from πi to πn (could be agent πi as well). Increase i by 1 at
each iteration.

– Repeat until i = n.



Random Serial Cycle mechanism

– Generate n2 orders uniformly at random by Monte-Carlo process. Initialize
the assignment matrix to be n-by-n zero matrix.

– For each order π, Initialize position i of order π to be 1. Agent πi tries to
be matched with the most preferred available item, denoted by µ(πi), until
reaches one of the following conditions:

• Agent µ(πi) ranks item πi on top of her preference list and πi, µ(πi) are
matched together.

• Agent µ(πi) finds an item j such that agent j has positive value for πi
after searching for the most preferred available item. Then the exchange
cycle is completed.

Remove these matched pairs from the ordering. If agent πi does not find a
qualified item µ(πi), then she is matched to item πi. Increase i by 1 at each
iteration.

– When position i is bigger than n, the k-restricted permutation matrix for
ordering π can be produced. Multiply it by 1/n2 and add it to allocation
matrix.

– After processing all the orderings, the assignment matrix P is produced.

5 Experimental results

In this section, we design experiments to evaluate the performance of our mech-
anisms in terms of efficiency and fairness. Our experiments are conducted on the
kidney exchange domain with input from realistic data. Our data generator is
carefully designed based on statistics of the population in the United States. The
generator incorporates patients and donors’ physiological characteristics such as
age, gender, blood type, HLA antigen, panel reactive antibodies (PRA) and
number of waiting years prior to transplantation. It then produces a matching
score for each patient-donor pair to quantify the transplantation quality. The
input is then a weighted, directed, bipartite graph where the weight of an edge
(i, j) is the utility (transplantation quality) of the patient of a donor-patient pair
i when being matched with the donor of pair j. The transplantation quality can
be interpreted as the probability that an exchange between the two participating
pairs will be successful. For all of the experiments, k will be equal to 3.

Our measure of efficiency will be the social welfare, i.e. the sum of the trans-
plantation qualities of the expected matching over all participating pairs. For
fairness, we will try to minimize the fraction of envious agents, where the envy
is calculated in expectation, i.e. an agent is envious if she would prefer another
agents expected assignment to hers. We run experiments for different input sizes,
ranging from a few agents to a hundred agents. Real-life input sizes can be larger
but exchanges involving no more than a hundred agents are often carried out as
well in practice. The bottleneck for the running time is the decomposition; as
the number of agents grows larger, the harder it gets to achieve a decomposition
with 3-restricted components.



We compare three mechanisms in terms of their social welfare and fraction of
envy. The first one is the modification of Probabilistic Serial (PS) that we obtain
by applying the randomized small-cycle cover method for small-cycle projection.
We implement two variants of modified Probabilistic Serial, namely PS-welfare
and PS-norm, based on the social welfare distance and the l∞ distance respec-
tively. The second mechanism that we use is Random Serial Cycle (RSC) with
Monte-Carlo random generation of n2 orderings of agents. Finally, we consider
the optimal mechanism (denoted OPT in Figures 2 and 3) that computes the
optimal social welfare of the exchange, by Abraham et al. [2]. The variant of
Probabilistic Serial that we obtain from applying the randomized Birkhoff-von
Neumann small-cycle projection turned out to be ineffective for our goals, the
problem being that k-restricted components were not present in most decomposi-
tions, but it is conceivable that it could be effective using some other mechanism
as the “basis” of the decomposition.
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5.1 Fairness/Efficiency tradeoffs

In Figures 2 and 3, we show the results of the experiments for data from the
U.S. population. As expected, the optimal mechanism performs better in terms
of social welfare. The performance of our mechanisms (the two variants of PS
and RSC) is very similar and not too far from the performance of the optimal
mechanism, at least for smaller input sizes. Among the three, the best social
welfare is achieved PS-welfare, since it was designed to extract higher levels of
welfare.

In terms of fairness, the optimal mechanism fairs worse in comparison to
our mechanisms. From the two versions of PS, PS-welfare is also slightly more
fair, which suggests that it is a better choice than its norm-counterpart for this
particular problem. Interestingly, RSC outperforms all mechanisms in terms of
fairness by a big margin. In fact, for some input sizes, the proportion of envious
agents is less than 40% whereas for the optimal mechanism it is close to 80%.
This suggests that among the mechanisms we consider, RSC is the one that
achieves the best fairness/efficiency guarantees.



The final result seems to be in contrast to the theoretical superiority of
Probabilistic Serial over Random Serial Dictatorship in terms of fairness but it
can be attributed to two factors: the inputs are not worst-case inputs and more
importantly, it seems that the assignment produced by RSC is “closer” to the
one outputted by Random Serial dictatorship, when compared to the outputs of
Probabilistic Serial and its 3-restricted counterparts.

6 Conclusion

We considered the problem of random assignments in barter exchanges under the
additional constraint on the cycle-length of the decomposition. We proposed two
new mechanisms for the problem and a general method for designing mechanisms
that produce assignments with small cycles. We evaluated our mechanisms on
instances of the kidney exchange problem and found that they are better in terms
of fairness and not much worse in terms of efficiency, when compared with the
optimal exchange. An interesting future direction is to consider other notions of
fairness and design different mechanisms for achieving better tradeoffs between
fairness and efficiency. The 2-cycle Probabilistic Serial mechanism of Balbuzanov
[4] seems like an obvious choice, given that it is designed to produce 3-restricted
assignments.
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