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Abstract. We consider the egalitarian welfare aspects of random assignment
mechanisms when agents have unrestricted cardinal utilities over the objects. We
give bounds on how well different random assignment mechanisms approximate
the optimal egalitarian value and investigate the effect that different well-known
properties like ordinality, envy-freeness, and truthfulness have on the achievable
egalitarian value. Finally, we conduct detailed experiments analyzing the trade-
offs between efficiency with envy-freeness or truthfulness using two prominent
random assignment mechanisms — random serial dictatorship and the probabilis-
tic serial mechanism — for different classes of utility functions and distributions.

1 Introduction

We explore the tradeoffs between fairness and efficiency for randomized mechanisms
for the assignment problem. Specifically, we consider settings where n agents express
preferences (cardinal or ordinal) over a set of m indivisible objects. The objective
is to assign the objects to agents in a fair and mutually beneficial manner (see e.g.,
[5, 6, 10, 25]). This general setting has a number of important and significant applica-
tions including the assignment of tasks to cores in cloud computing, kidneys to patients
in organ exchanges, runways to airplanes in transportation, and students to seats in
schools.

While it is sometimes assumed that the agents’ preferences over the objects can
be expressed fully through ordinal rankings, most of the classical literature on the as-
signment problem [10, 25, 41] assumes the existence of an underlying utility structure,
where each agent assigns real values or cardinal valuations to the different objects;
these are von Neumann-Morgenstern utilities that specify the intensity of the agents’
preferences. Some classical papers (see e.g. [10]) focus on ordinal mechanisms, i.e.
mechanisms that operate solely on the rankings consistent with the cardinal valuations,
but cardinal mechanisms, where agents explicitly report their numerical values, have
also been considered in literature [25, 40, 41].

A well-established criterion for fairness is the Rawlsian concept of maximizing the
happiness of the least satisfied agent [37]. Following the spirit of this idea, we quantify
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the fairness of an allocation in terms of its egalitarian value: the minimum ratio of
the value of objects assigned to an agent to his total valuation for all the objects. The
optimal egalitarian value for a valuation profile of all agents is the best egalitarian
value achievable over all assignments. The optimal egalitarian value is equivalent to the
maximum egalitarian welfare if each agent has a total utility of one for the set of all
objects. The advantage of considering the optimal egalitarian value is that it does not
change if agents scale their relative values for the objects.

The egalitarian value is not the only criterion for desirable allocation mechanisms.
Allocation mechanisms may have other goals and requirements such as envy-freeness
or truthfulness. Crucially, both these properties are incompatible with optimizing the
egalitarian value except in very restricted domains [11]. Thus, it is natural to examine
the tradeoffs between optimizing the egalitarian value and achieving other desirable
properties. In some settings, such as kidney exchanges, the tradeoff between fairness
and efficiency is of the utmost concern [17].

Evaluating these tradeoffs also motivates the study of how established mechanisms
with other desiderata perform in terms of the egalitarian value. For a given mechanism
J , we examine the approximation ratio guar(J), which is the minimum ratio (among
all valuation profiles) of the egalitarian value of an allocation returned by the mecha-
nism to the optimal egalitarian value. Our work falls under the umbrella of approximate
mechanism design without money, a framework set by Procaccia and Tennenholtz [35]
for the study of how well mechanisms with certain properties approximate some objec-
tive function of the agents’ inputs.

In this paper, we study randomized assignment mechanisms for which achieving
ex ante fairness is easier compared to deterministic mechanisms. Thus, to evaluate the
performance of the mechanisms, we compare their egalitarian value with the optimal
egalitarian value achieved by any randomized allocation. Note that computing the al-
location with the optimal egalitarian value is an NP-hard problem when we restrict
ourselves to deterministic allocations [16]. On the other hand, when we consider ran-
domized allocations, the optimal egalitarian value can be computed in polynomial time
via a linear program.

We give extra consideration to two randomized assignment mechanisms — random
serial dictatorship (RSD) and probabilistic serial (PS), which are probably the best-
known and most-studied mechanisms in the random assignment literature. In RSD,4

a permutation over the agents is selected uniformly at random and each agent in
the permutation picks the most preferred m/n units of object that are not yet allo-
cated [4, 10, 38]. In PS, each object is considered to have an infinitely divisible prob-
ability weight of one. To compute an allocation, agents simultaneously and with the
same speed eat the probability weight of their most preferred object which has not been
completely consumed. Once an object has been completely eaten by a subset of agents,
each of these agents moves on to eat their next most preferred object that has not been
completely eaten. The procedure terminates after all the objects have been eaten. The
random allocation of an agent by PS is the amount of each object he has eaten (see e.g.,
[10, 27]). PS satisfies stochastic dominance (SD) envy-freeness (envy-freeness with

4 The original definition of RSD is for n agents and n objects; the definition here is a straight-
forward adaptation for n < m.
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respect to all cardinal utilities consistent with the ordinal preferences). We also formal-
ize a mechanism which we refer to as Optimal Egalitarian and Envy-Free Mechanism
(OEEF), which maximizes the egalitarian value of an allocation under the constraint
that the allocation is envy-free. Allocations under this mechanism can be computed in
polynomial time via linear programming.

1.1 Our contributions

We present novel theoretical and empirical results regarding fairness in randomized
mechanisms. Our main theoretical contributions are as follows.

– For any SD envy-free mechanism J : guar(J) = O(n−1).
– For any envy-free mechanism J : guar(J) = Ω(n−1) and guar(J) = O(n−1/5).
– For any truthful-in-expectation mechanism J : guar(J) = O(n−1/5).
– For any ordinal mechanism J : guar(J) = O(n−1).

As a result of our general bounds, we also get asymptotically tight bounds of Θ(n−1)
for RSD and PS. As a result of our general bounds for envy-free mechanisms, we obtain
bounds for well-known envy-free mechanisms such as competitive equilibrium with
equal incomes (CEEI) [40] and the pseudo-market mechanism [25]. Since a random
assignment of indivisible objects can also be interpreted as a fractional assignment of
divisible objects, our results apply as well to fair allocation of divisible objects.

The constructions that provide the upper bounds for the guar values can be con-
sidered as extreme examples that may not be common in real-life scenarios. In order
to better understand how the mechanisms may perform in practice, we consider the
approximation ratio achieved by RSD and PS. We also examine the effect of impos-
ing the envy-freeness constraint. We generate ordinal profiles via a Mallow’s model
for different levels of dispersion φ from a common reference ranking of objects, as-
signing cardinal utilities via the Borda and exponential scoring functions. Sweeping φ
from 0, where all agents have the same preference, to 1.0, where all preference orders
are equally likely (the Impartial Culture), allows us to make statements regarding sit-
uations where agent preferences are more or less correlated. We make the following
observations.

– There is a negligible difference between the minimum and average achievable
approximation ratios for PS and RSD under Borda utilities. While PS preforms
slightly better than RSD when agents have more extreme (exponential) utilities,
both mechanisms preform strictly worse when agents’ valuations are more similar,
as they are under Borda utilities.

– When we require envy-freeness (as in OEEF) with exponential utilities, as φ in-
creases towards 1.0 (i.e. Impartial Culture) the achievable approximation ratio first
decreases slightly and then increases. Hence, as agents value more disparate objects
highly, satisfying envy-freeness does not impose as stiff a penalty on the achievable
approximation ratio.

– In our experiments, the requirement of envy-freeness as a constraint in itself (as in
the OEEF mechanism) does not have a large impact on the OEV. However, since
PS returns an SD envy-free (envy-free for all cardinal utilities consistent with the
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ordinal preferences) allocation, its achievable approximation ratio is strictly less
than OEEF.

1.2 Related work

The assignment problem has been in the center of attention in recent years in both
computer science and economics [2, 13, 22, 24, 21, 23, 33]. Often, in the classical
assignment literature, agents are assumed to have an underlying cardinal utility pref-
erence structure, even if they are not asked to report it explicitly. On the other hand,
there are many examples of well-known cardinal mechanisms, such the pseudo-market
(PM) mechanism of Hylland and Zeckhauser [25] and the competitive equilibrium with
equal incomes (CEEI) mechanism [40]. Both mechanisms return allocations that are
envy-free in expectation. The two prominent ordinal mechanisms in the literature are
the probabilistic serial mechanism (PS) [10, 14, 39] and random serial dictator (RSD), a
folklore mechanism that pre-existed the formulation of the assignment problem in [25].
Later, Che and Kojima [14] proposed a variant of PS called multi-unit eating proba-
bilistic serial (MPS) that was formalised and axiomatically studied by Aziz [2].

The egalitarian welfare has received considerable interest within the computer sci-
ence literature, especially for allocation of discrete objects in a deterministic manner.
The problem is also referred to as the Santa Claus problem in which the goal is to
compute an assignment which maximizes the utility of the agent that gets the least util-
ity (see e.g., [1, 7, 18, 32]). For deterministic settings, Demko and Hill [16] proved
that the problem is NP-hard. On the other hand, for randomized/fractional allocations,
the problem can be solved via a linear program.5 Recently, another fairness constraint
that has been considered is the maxmin fair share [12, 36]. The notion coincides with
proportionality in the context of randomized/fractional allocations and hence is weaker
than OEV.

Another popular objective is the maximization of the utilitarian welfare, i.e. the sum
of agents’ valuations for an assignment. Filos-Ratsikas et al. [19] proved that RSD guar-
antees Ω(n−1/2) of the total utilitarian welfare if the utilities are normalized to sum up
to one for each agent, which is asymptotically optimal among all randomized truthful
mechanisms. In a recent paper, Christodoulou et al. [15] proved similar results for the
price of anarchy with respect to the utilitarian welfare of random assignment mecha-
nisms, including RSD and PS. In this paper, we consider the effect on approximations
of the egalitarian value from strategic aspects (truthful mechanisms), limited informa-
tion (ordinal mechanisms), or additional fairness requirements (envy-free mechanisms).
The egalitarian value does not require the agents’ utilities to be normalized and does not
require agents’ utilities to be added.

Bhalgat et al. [8] determined the approximation ratio of RSD and PS when the
objective is the maximization of a different notion, the ordinal social welfare, which is
related to the “popularity” of an assignment [5, 26]. Caragiannis et al. [13] examined
the issue of how much efficiency loss fairness requirements like envy-freeness incur but
crucially, their objective is maximization of utilitarian welfare.

5 Even a lexicographic refinement of the OEV maximizing allocations (in which the value of the
worst off agent, then the second worst off agent, and so on, are maximized) can be computed
in polynomial time via a series of linear programs [20].
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2 Preliminaries

An assignment problem is a triple (N,O, v) such that N = {1, . . . , n} is the set of
agents, O = {o1, . . . , om} is the set of indivisible objects, and v = (v1, . . . , vn) is the
valuation profile which specifies for each agent i ∈ N utility or valuation function vi
where vij or vi(oj) denotes the value of agent i for object oj . We will denote by V n the
set of all possible valuation profiles.

A fractional or random allocation p is a (n×m) matrix [p(i)(j)] such that p(i)(j) ∈
[0, 1] for all i ∈ N , and oj ∈ O. We denote by P the set of all feasible allocations. The
term p(i)(j) which we will also write as p(i)(oj) represents the probability of object
oj being allocated to agent i. Each row p(i) = (p(i)(1), . . . , p(i)(m)) represents the
allocation of agent i. The set of columns correspond to the objects o1, . . . , om. We
will denote by p̂ the m dimensional vector where the j-th entry is

∑
i∈N p(i)(j) is the

total probability that object j will be allocated to some agent.6 The utility of agent i
from allocation p is ui(p(i)) =

∑
j∈O(p(i)(j))vij . An allocation p is proportional if

for all i ∈ N , ui(p(i)) ≥ 1
nui(O). An allocation p is envy-free if for all i, j ∈ N ,

ui(p(i)) ≥ ui(p(j)). An allocation is SD envy-free if it is envy-free with respect to all
cardinal utilities consistent with the ordinal preferences.7

We will consider randomized mechanisms that return a random allocation for each
instance of an assignment problem. Note the connection between random assignments
for indivisible objects and fractional assignments of divisible objects; a random assign-
ment can be viewed as a fractional assignment when agents have additive utilities over
the objects. In that sense, we can use well-known mechanisms for fractional assign-
ments, like the CEEI mechanism, as randomized mechanisms for our setting.

We say that a mechanism is proportional if it always returns a proportional allo-
cation. Similarly, a mechanism is envy-free if it always returns an envy-free alloca-
tion. A mechanism M is truthful-in-expectation, if for any agent i ∈ N , any valuation
profile v = (vi, v−i) and any misreport v′i of agent i it holds that ui(M(vi, v−i)) ≥
ui(M(v′i, v−i)), i.e. no agent has any incentive to misreport her true valuation.

Two valuations vi and v′i are ordinally equivalent if they induce the same ranking
over objects, formally vi(oj) ≥ vi(ok) iff v′i(oj) ≥ v′i(ok). A profile v is ordinally
equivalent to profile v′ if for each i ∈ N , vi and v′i are ordinally equivalent. A mecha-
nism J is ordinal if for any two preference profiles v and v′ that are ordinally equiva-
lent, J(v) = J(v′), i.e., the allocations are the same for any pair of ordinally equivalent
profiles. We now define the main efficiency measures that we will examine in the paper.

– The egalitarian value (EV) of an allocation p with respect to valuation profile v is
EV (p, v) = inf{ui(p(i))

ui(O) : i ∈ N}.
– For a given valuation profile, the optimal egalitarian value (OEV) is the maxi-

mum possible egalitarian value that can be achieved OEV (v) = supλ{∃p ∈
P : EV (p, v) = λ}.

– For a given valuation profile v, an allocation p achieves approximation ratio
EV (p,v)
OEV (v) .

6 We assume that objects can also be left unallocated with some probability.
7 SD envy-freeness also applies to cardinal mechanisms e.g., one that maximize total welfare

subject to SD envy-freeness constraints.
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– For a given mechanism J and valuation profile v, we will say that J achieves ap-
proximation ratio of J for valuation v as aar(J, v) = EV (J(v),v)

OEV (v) .

– An allocation rule J guarantees an approximation ratio of guar(J) where guar(J)
is defined as guar(J) = infv∈V n{aar(J, v)}.

The guaranteed approximation ratio guar(J) is the worst-case guarantee over all in-
stances of the problem that we will be looking to maximize in our theoretical results.

3 Theoretical Results

We first note that for a deterministic mechanism J , guar(J) = 0; in the worst case, if
all the agents only value the same object then all agents get zero utility except the agent
who gets the valued object. From now on, we will focus on randomized mechanisms.
We start with the following lemma about proportional mechanisms.

Lemma 1. For any mechanism J that is proportional, guar(J) ≥ n−1.

Proof. If the allocation p is proportional then for each i ∈ N , ui(p(i)) ≥ n−1(ui(O)).
Since EV (p, v) ≥ infi∈n(ui(p(i))/(ui(O)) and (ui(p(i))/(ui(O)) ≥ n−1 for all i ∈
N , we get that EV (x) ≥ n−1. Since OEV (v) ≤ 1, EV (J(p,v))

OEV (v) ≥ n
−1. ut

Since both PS and RSD are proportional (see e.g., [3, 10]), we obtain the following
guarantee on their approximation ratio.

Corollary 1. guar(PS) ≥ n−1 and guar(RSD) ≥ n−1.

A mechanism satisfies the favourite share property if whenever all the agents have the
same most preferred object then each agent is assigned to it with probability n−1. We
obtain the following theorem.

Theorem 1. For any mechanism J that satisfies the favourite share property,
guar(J) = O(n−1).

Proof. Consider the following valuation profile with n = m, where ε is an arbitrarily
small positive value.

v1(oj) =

{
1, if j = 1

0, otherwise.

For i ∈ {2, . . . , n},

vi(oj) =


0.5 + ε, if j = 1

0.5− ε, if j = i

0, otherwise.

Note that in the assignment which achieves OEV , agent 1 is assigned object o1 and the
rest of the agents get utility 0.5− ε and hence OEV (v) = 0.5− ε. On the other hand,
J gives 1/n of o1 to each of the agents so that agent 1 gets utility 1/n. Since ε can be
arbitrarily small, it follows that guar(J) = O(n−1). ut
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We remark here that Theorem 1 holds even if agents have strict preferences; the utilities
can be perturbed slightly to reflect strict preferences. Theorem 1 gives us the following.

Corollary 2. guar(RSD) = O(n−1) and guar(PS) = O(n−1).

Theorem 2. For any mechanism J that satisfies SD envy-freenes, guar(J) = O(n−1).

Proof. SD envy-freeness implies the favourite share property. If an allocation does not
satisfy the favourite share property, then the agent who gets less than 1/n of his most
preferred object will be envious of another agent if he has extremely high utility for the
object. ut

In the following, we will prove an upper bound on the approximation ratio of the
OEV for two classes of mechanisms: envy-free mechanisms and truthful mechanisms.
First we prove the following lemma that states that when looking for upper bounds on
the approximation ratio, it suffices to only consider anonymous mechanisms. Similar
lemmas have been proven before in literature [19, 22].

Lemma 2. Let J be a mechanism with approximation ratio ρ. Then, there exists an-
other mechanism J ′ which is anonymous and has approximation ratio at least ρ. Fur-
thermore, if J is truthful or truthful-in-expectation, then J ′ is truthful-in-expectation
and if J is envy-free, J ′ is envy-free.

Proof. Let J ′ be the mechanism that on input valuation profile v first applies a uni-
formly random permutation to the set of agents and then runs mechanism J on v. Ob-
viously, J ′ is anonymous. Additionally, since v can be an input to J and the approx-
imation ratio is calculated over all possible instances, the ratio of J cannot be better
than the ratio of J ′. Finally, since the permutation is independent of valuations, if J is
truthful or truthful-in-expectation, J ′ is truthful-in-expectation. ut

Now we state the following theorem, bounding the approximation ratio of any
truthful-in-expectation mechanism. RSD and the uniform mechanism (that gives as-
signment probability of 1/n of each object to each agent) are strategyproof and ordinal
mechanisms that both achieve a Θ(n−1) approximation of the OEV. We prove that for
any truthful-in-expectation mechanism J , it holds that guar(J) = O(n−1/5).

Theorem 3. For any truthful-in-expectation mechanism J , guar(J) = O(n−1/5).

Proof. Let J be a truthful-in-expectation mechanism; by Lemma 2, we can assume
without loss of generality that J is anonymous. Consider the following valuation profile
v (summarized in Figure 1) with n = n1+n1

2+n
5/2
1 agents and n12+1 objects, where

ε will be defined later:

– For every agent i ∈ A = {1, . . . , n1}, it holds that vi(1) = 1 and vi(j) = 0 for
every object j 6= 1.

– For every agent i ∈ B = {n1+1, n1
2}, it holds that vi(1) = 1−ε, vi(i−n1+1) = ε

and vi(j) = 0 for all objects j ∈ O\{1, i− n1 + 1}.
– For every ` = 1, . . . , n1

2 and agent i ∈ C` = {n12+(`−1)√n1+1, n1
2+`
√
n1},

it holds that vi(`+ 1) = 1 and vi(j) = 0 for all objects j 6= `.

7



n1
2 + 1 Objects 1 2 3 4 · · · n2

1 + 1

n1 agents, set A

1 0 0 0 · · · 0
1 0 0 0 · · · 0
...

...
...

...
. . .

...
1 0 0 0 · · · 0

n1
2 agents, set B

1− ε ε 0 0 · · · 0
1− ε 0 ε 0 · · · 0
1− ε 0 0. ε · · · 0

...
...

...
...

. . .
...

1− ε 0 0 0 · · · ε

n1
5
2 agents, set C

0 1 0 0 · · · 0
...

...
...

...
. . .

...
√
n1 agents, set C1

0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
. . .

...
√
n1 agents, set C2

0 0 1 0 · · · 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1
...

...
...

...
. . .

...
√
n1 agents, set Cn2

1

0 0 0 0 · · · 1

Fig. 1. Valuation profile v.

In other words, the instance consists of n1 agents that have value 1 for the first object
(set A) and 0 for everything else, n12 agents that value object 1 at 1 − ε and another
object at value ε (set B) and n5/21 agents that value a single object at 1 (set C = ∪lCl),
such that

√
n1 agents value the object that some agent in the set B has value ε for.

Now if we let ε = 1/(n1−
√
n1), then the egalitarian value of the optimal allocation

is at least 1/n1; an allocation with such a value is the following:

– Every agent i ∈ A is allocated 1/n1 of object 1.
– Every agent i ∈ B is allocated (n1 −

√
n1)/n1) of the object they value at ε.

– Every agent i ∈ Cl is allocated 1/n1 of object l + 1.

Next consider a family of valuation profiles V , consisting of profiles where all agents
have the same valuations as in v, except one agent fromB that has value 1 for the object
that she had value ε in v and 0 for all other objects. Formally, for ` = 1, . . . , n1

2, we
define a profile v` ∈ V as follows:

– For every agent i 6= n1 + `, it holds that v`i (j) = vi(j) for all objects j ∈M .
– For agent n1 + `, it holds that v`n1+`

(`+ 1) = 1 and v`n1+`
(j) = 0, for all objects

j 6= `+ 1.

Consider now any ` and the corresponding valuation profile v`. Since J is anonymous
and agents in C` ∪ {n1 + `} have identical valuations and since |C`| =

√
n1, the

probability that agent n1 + ` is allocated object ` + 1 is at most 1/(
√
n1 + 1) and her

utility is hence at most 1/(
√
n1+1). Now consider valuation profile v and consider the

probability p(n1+ `)(`+1) that agent n1+ ` is allocated object `+1. By truthfulness,
and since vn1+` could be a misreport from v`n1+`

, it must hold that p(n1 + `)(`+ 1) ≤

8



1/(
√
n1+1) < 1/

√
n. This implies that the contribution to the expected utility of agent

n1 + ` from object `+ 1 is at most ε/
√
n1, which is at most 1/(n1

√
n1 − n1).

Now consider the probability p(n1 + `)(1) that agent n1 + ` is allocated object 1.
From the arguments above, if p(n1 + `)(1) < 1/(n1

√
n1 − n1), then the expected

utility of agent n1 + ` is at most 2/(n1
√
n1 − n1) and the ratio is O(1/

√
n1). Since

n = n1 + n1
2 + n

5/2
1 , that would mean that the theorem is proven. Hence, for J to

achieve a better ratio than O(n−1/5), it has to be the case that for every ` = 1, . . . , n1
2,

it holds that p(n1 + `)(1) ≥ 1/(n1
√
n1 − n1). This is not possible however, since then∑n1

2

`=1 p(n1 + `)(1) ≥ n1/(
√
n1 − 1) > 1. This completes the proof. ut

Note that for utilitarian welfare maximization, Filos-Ratsikas et al. [19] proved that
an ordinal mechanism, RSD achieves the best approximation ratio among all truthful
mechanisms. We conjecture that this is the case for the maximization of the egalitarian
value as well, i.e. for any truthful mechanism J , guar(J) = O(n−1).

We now turn our attention to envy-free mechanisms. For this class, we will prove
an O(n−1/5) upper bound as well; the proof actually uses the same valuation profile as
the proof of Theorem 3.

Theorem 4. For any mechanism J that satisfies envy-freeness, guar(J) = O(n−1/5).

Proof. Consider the valuation profile v used in the proof of Theorem 3 and again con-
sider the probability p(n1 + `)(`+1) that agent n1 + ` is allocated object `+1. Recall
the definition of sets A,B and C from the proof of Theorem 3. By envy-freeness, it
holds that p(n1+ `)(`+1) ≤ 1/(

√
n+1) ≤ 1/

√
n otherwise some agent j ∈ C` (who

only values object `+ 1) would be envious of agent n1 + `.
The rest of the steps are the same as in the proof of Theorem 3. Again, consider

the probability p(n1 + `)(1) that agent n1 + ` is allocated object 1. Since p(n1 +
`)(1) < 1/(n1

√
n1−n1), if p(n1+`)(1) < 1/(n1

√
n1−n1) then for the same reasons

mentioned in the last paragraph of the proof of Theorem 3, we are done. Hence, we can
assume that for every ` = 1, . . . , n1

2, it holds that p(n1 + `)(1) ≥ 1/(n1
√
n1 − n1).

This is not possible however, since then
∑n1

2

`=1 p(n1 + `)(1) ≥ n1/(
√
n1− 1) > 1. ut

From Theorem 4, we obtain the following corollary.

Corollary 3. guar(CEEI) = O(n−1/5) and guar(PM) = O(n−1/5).

It would be interesting to provide a better bound for Theorem 4 or show it is optimal,
i.e. come up with an envy-free mechanism that actually achieves the ratio. Finally, we
consider the OEV guarantees of ordinal mechanisms.

Theorem 5. For any mechanism J that is ordinal, guar(J) = O(n−1).

Proof. Consider the setting with n agents and n + 1 objects {o∗, o0, . . . , on−1}. The
preferences are as follows: each agent values o∗ the most. Agent 1 has preference order
o∗, o0, . . . , on−2, on−1. The preference of each agent i ∈ N \ {1} over the objects
O \ {o∗} are obtained as follows: take agent i− 1 preference order over O \ {o∗} and
move the most preferred object of i − 1 among O \ {o∗} to the end of the preference
order for agent i.

9



1 : o∗, o0, , . . . , on−2, on−1

2 : o∗, o1, , . . . , on−1, o0

...
i : o∗, oi−1, , . . . , on−i+1, oi−2

By Lemma 2, we can assume without loss of generality that J is anonymous. Fur-
thermore, since J is ordinal, due to the preference profile, the mechanism cannot dif-
ferentiate among the agents even though they may have different valuations over the
objects. Assume that there is some agent that is allocated at most 1/n of the universally
most preferred object o∗. In this case case, consider the scenario where this agent has
utility almost 1 for o∗ and the other agents i have utility 0.5+ ε for o∗ and utility 0.5− ε
for oi−1 where ε is an arbitrarily small positive value.. In this case, the egalitarian value
achieved is 1/n whereas the OEV is almost 0.5. Hence guar(J) = O(1/n). ut

Since MPS is an ordinal mechanism, it follows that guar(MPS) = O(n−1).

4 Experimental Results

The results in Section 3 give us worst case bounds on the guaranteed approximation ra-
tios (guar(J)) for a number of prominent randomized mechanisms including RSD and
PS. Hence, in this section we present experimental results which provide a perspective
on what may happen “in practice.” Since PS can be considered as the most efficient SD
envy-free mechanism (in view of various characterizations [9, 39]), the results for PS
can also be viewed as the effect of enforcing SD envy-freeness. In order to test the qual-
ity of RSD and PS we need to generate both preferences and cardinal utilities for the
agents. There are a number of generative statistical cultures that are commonly used to
generate ordinal preferences over objects and the choice of model can have significant
impact on the outcome of an experimental study (see e.g. [34]).

Since our focus is fairness, and fairness is often hard to achieve when agents have
similar valuations, we employ the Mallows model [29] and use the generator from
WWW.PREFLIB.ORG [31] in our study. Mallows models are often used in machine learn-
ing and preference handling as they allow us to easily control the correlation between
the preferences of the agents; a common phenomena in preference data [31, 30, 28]. A
Mallows model has two parameters: (1) a Reference Order (σ), the preference order
at the center of the distribution, and (2) a Dispersion Parameter (φ), the variance in
the distribution which controls the level of similarity of the agent preference orders.
When φ = 0 all agents have the same ordinal preference; when φ = 1 then the ordinal
preferences are drawn uniformly at random from the space of all preference orders.

Formally, the probability of observing an ordering r is inversely proportional to the
Kendall Tau distance between σ and r. This probability is weighted by φ, which allows
us to control the shape of the distribution. For a given ordinal preference, we super-
impose cardinal utilities for the agents using two well-established scoring functions:
(1) Borda Utilities, each agent has valuation of m − i for his i-th preferred object,
and (2) Exponential Utilities, each agent has valuation of 2m−i for his i-th preferred
object.
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In our experiments we generate 10,000 valuation profiles (instances) for each com-
bination of parameters with the number of agents n ∈ {2, . . . , 9}, number of objects
m ∈ {2, . . . , 9}, and dispersion parameter φ ∈ {0.0, 0.1, . . . , 1.0}. We draw σ i.i.d. for
each instance.

4.1 Experiments: The Performance of RSD and PS

For each instance v generated, and each mechanism J , we examined the achieved ap-
proximation ratio, aar(J, v) = EV (J(v),v)

OEV (v) , of the RSD and PS mechanisms. Among
all such values computed, we examined the minimum and average ratio achieved for a
given set of parameters. The results of our experiments for Borda Utilities are shown in
Figure 2 while the results for exponential utilities are shown in Figure 3. All our figures
are aggregations over all values of m for particular combinations of n and φ. Note that
since aar(J, v) is normalized over the total utility we can aggregate these terms as it is
invariant to this scaling. This allows us to draw more general conclusions as we range
over the number of agents and objects. Empirically we found that increasing the num-
ber of agents has a greater impact on the approximation performance of the mechanisms
compared to an increase in the number of objects, hence the decision to aggregate the
graphs in the manner chosen. This empirical result is in line with our theoretical results
showing that the worst case approximation ratio is a function of n. The results for both
mechanisms in Figure 2 strictly dominate the results in Figure 3. Hence, we observe
that the achieved approximation ratio is better for Borda utilities than for exponential
utilities.

When φ = 0.0 (not shown in our graphs), the achieved approximation ratio is 1 for
both PS and RSD. Both of these mechanisms return the uniform allocation, assigning
probability of 1/n for each object to each agent, when all the agents have identical pref-
erences. In general, sweeping the value of φ from completely correlated to completely
uncorrelated preferences has little impact on the overall achievable approximation ratio,
though for both models the achievable approximation ratio did strictly decrease as we
increased φ. Comparing Figures 2 and 3, the impact of changing φ was strictly greater
for the exponential utility model than it was for the Borda utility model, highlighting
again that, as the difference between the valuations of the objects grows large, it be-
comes harder to achieve fair allocations.

Interestingly, in Figure 2 there appears to be almost no difference between the mini-
mum and average ratios for PS and RSD under Borda utilities. Furthermore, these ratios
appear to be very high compared to our theoretical results. Finally, PS consistently per-
forms slightly better than RSD for the minimum and average ratios under exponential
utilities and on par with RSD for Borda utilities. This provides more empirical support
to the argument that PS is superior to RSD in terms of fairness.

4.2 Experiments: The Effect of Envy-freeness

In order to evaluate the effect that envy-freeness has on the allocations we turn to the
OEEF mechanism. To understand the worst case effects of adding envy-freeness as a
hard constraint has on small instances we exhaustively tested the parameter space with
agents n ∈ {2, . . . , 6}, number of objects m ∈ {3, . . . , 4} under Borda and exponen-
tial utilities. In this entire parameter space, the worse case achievable approximation
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Fig. 2. Minimum (top) and average (bottom) achieved approximation ratio for the RSD (left) and
PS (right) mechanisms with Borda utilities. Observe that both mechanisms preform similarly and
significantly better than the derived guar(J). Both mechanisms are relatively invariant to the
level of dispersion in the underlying valuation profiles. For each n = {1, . . . , 9} the graphs are
aggregated over the complete range of objects. For example, the cell (n = 4, φ = 0.2) is the
minimum (resp. average) achieved approximation ratio over all instances with m ∈ {1, . . . , 9}.

ratio was 0.87, significantly higher than the theoretical worst case. This shows that for
smaller instances and some standard utility models, the requirement of envy-freeness
does not have a significant negative impact on the achievable approximation ratio. To
get an understanding of the performance of OEEF in a larger parameter space we re-
peated the experiments from the previous section here, evaluating the performance of
OEEF across a large parameter space with number of agents n ∈ {2, . . . , 9}, number of
objects m ∈ {2, . . . , 9}, and dispersion parameter φ ∈ {0.0, 0.1, . . . , 1.0}. The results
of these tests, again aggregated by m and φ, are shown in Figure 4.

When agents have exponential utilities, the achieved approximation ratio, much like
in the last section, is strictly worse. Additionally, when we have exponential utilities,
as φ increases, the approximation ratio for the envy-free mechanisms first decreases
slightly and then increases for higher number of agents. Since φ = 1.0 means that
agents preferences are drawn uniformly at random, it is more likely that each agent has
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Fig. 3. Minimum (top) and average (bottom) achieved approximation ratio for the for the RSD
(left) and PS (right) mechanism with exponential utilities. These results are strictly dominated
by those in Figure 2; implying that as difference between the valuations of the objects grows the
achieved approximation ratio decreases. For each n = {1, . . . , 9} these graphs are aggregated
over the complete range of objects. For example, the cell (n = 4, φ = 0.2) is the minimum (resp.
average) approximation ratio achieved over all instances with m ∈ {1, . . . , 9}.

high valuation for different objects. Hence, as the preferences move from concentrated
to dispersed, there seems to be an interesting transition from high to low and back to
high in terms of the achievable approximation ratio. As in the previous subsection, we
observe that when all agents have the same preferences, the uniform allocation is both
envy-free and has maximal achieved approximation ratio. Hence, when φ = 0, the ratio
is 1.0 (not shown in Figure 4). We note that RSD preforms much more poorly across
the board compared to OEEF. The results in Figure 4 strictly dominate the results for
PS in Figures 2 and 3. Hence, SD envy-freeness that is satisfied by PS has a significant
impact on the achieved approximation ratio.
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Fig. 4. Minimum achieved approximation ratio when we enforce envy-freeness as a hard con-
straint. Contrasting these results with those from Figures 2 and 3 for the PS mechanism demon-
strates that the stronger notion of envy-freeness that is satisfied by PS has a significant impact
on the achieved approximation ratio while the more common notion of envy-freeness does not.
For each n = {1, . . . , 9} these graphs are aggregated over the complete range of objects. For
example, the cell (n = 4, φ = 0.2) is the minimum (resp. average) approximation ratio achieved
over all instances with m ∈ {1, . . . , 9}.

5 Conclusion

We present theoretical and experimental results concerning how well different random-
ized mechanisms approximate the optimal egalitarian value. It has been well-known
that egalitarianism can be incompatible with envy-free or truthfulness. In this paper, we
quantified how much egalitarianism is affected by such properties. In a recent paper,
Christodoulou et al. [15] proved results for the utilitarian welfare of the Nash equilib-
ria of assignment mechanisms. It will be interesting to adopt a similar approach with
respect to the egalitarian value and study the price of anarchy of randomized mecha-
nisms with respect to that objective. We assume additive cardinal utilities in this paper,
it would be interesting to consider other assumptions. To conclude, we mention an open
problem: what is the best OEV approximation guaranteed by truthful mechanisms?

Acknowledgments

NICTA is funded by the Australian Government through the Department of Communications
and the Australian Research Council through the ICT Centre of Excellence Program. Aris Filos-
Ratsikas was supported by the Sino-Danish Center for the Theory of Interactive Computation,
funded by the Danish National Research Foundation and the National Science Foundation of
China (under the grant 61061130540), and by the Center for research in the Foundations of Elec-
tronic Markets (CFEM), supported by the Danish Strategic Research Council.

References

1. A. Asadpour and A. Saberi. An approximation algorithm for max-min fair allocation of
indivisible goods. SIAM Journal on Computing, 39(7):2970–2989, 2010.

14



2. H. Aziz. Random assignment with multi-unit demands. Technical Report 1401.7700,
arXiv.org, 2014.

3. H. Aziz and C. Ye. Cake cutting algorithms for piecewise constant and piecewise uniform
valuations. In Proc. of 10th WINE, pages 1–14, 2014.

4. H. Aziz, F. Brandt, and M. Brill. The computational complexity of random serial dictator-
ship. Economics Letters, 121(3):341–345, 2013.

5. H. Aziz, F. Brandt, and P. Stursberg. On popular random assignments. In Proc. of 6th In-
ternational Symposium on Algorithmic Game Theory (SAGT), volume 8146 of LNCS, pages
183–194. Springer, 2013.

6. H. Aziz, S. Gaspers, S. Mackenzie, and T. Walsh. Fair assignment of indivisible objects
under ordinal preferences. In Proc. of 13th AAMAS Conference, pages 1305–1312, 2014.
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