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Abstract. We study a mechanism design version of matching compu-
tation in graphs that models the game played by hospitals participating
in pairwise kidney exchange programs. We present a new randomized
matching mechanism for two agents which is truthful in expectation and
has an approximation ratio of 3/2 to the maximum cardinality matching.
This is an improvement over a recent upper bound of 2 [Ashlagi et al., EC
2010] and, furthermore, our mechanism beats for the first time the lower
bound on the approximation ratio of deterministic truthful mechanisms.
We complement our positive result with new lower bounds. Among other
statements, we prove that the weaker incentive compatibility property
of truthfulness in expectation in our mechanism is necessary; universally
truthful mechanisms that have an inclusion-maximality property have
an approximation ratio of at least 2.

1 Introduction

In an attempt to address the wide need for kidney transplantation and the
scarcity of cadaver kidneys, several countries have launched, or are considering,
national kidney exchange programs involving live donors [7,11,1,4]. Patients can
enter such a program together with a member of their family or friend who is
willing to donate them a kidney but cannot due to incompatibility. National
kidney exchange programs aim to implement exchanges between two compatible
patient-donor pairs u and v so that the donor of pair u donates her kidney to
the patient of pair v and vice versa. This requires four simultaneous operations.
More complicated exchanges involving more than two donor-patient pairs are
also possible; however, we focus on pairwise exchanges since they are easier to
perform in practice.

Donor-patient pairs approach a hospital in order to enroll into the national
kidney exchange programs. In an ideal scenario, each hospital reports its donor-
patient pairs to the program and a central authority runs an algorithm that
decides which pairwise kidney exchanges will take place. In practice, strategic
issues immediately arise. A hospital may prefer to not enroll some easy-to-match
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donor-patient pairs to the program and instead match them and perform the
kidney exchange operations internally. This may have an impact on patients
of other hospitals who could have benefited if the hospital truthfully reported
all its donor-patient pairs to the program. The current paper follows the line
of research that seeks to design algorithms (or mechanisms) that discourage
hospitals from behaving untruthfully. The main objective is to perform as many
kidney exchanges as possible under this constraint. This is a mechanism design
[5] problem, and in particular—because paying for organs is illegal in almost all
countries—it falls within the scope of approximate mechanism design without
money [6].

We can model the problem as a matching problem in graphs. The input con-
sists of a graph in which the nodes represent donor-patient pairs and an edge
connects two nodes u and v when the donor of pair u and the patient of pair v
are compatible, and the donor of pair v and the patient of pair u are compati-
ble. Each node of the graph is controlled by exactly one self-interested agent (a
hospital). A mechanism takes the graph as input and returns a matching, i.e., a
disjoint pair of edges indicating which pairwise kidney exchanges will take place.
The gain of an agent is the number of nodes under her control that are matched.
Clearly, an optimal solution is easy to find by a maximum matching computa-
tion. Unfortunately, a mechanism that returns such a solution may incentivize
hospitals to behave untruthfully in the following sense. A hospital could hide
some of its nodes from (i.e., not enroll them into) the system so that the mecha-
nism is essentially applied on a graph that contains neither the hidden nodes nor
the edges incident to them. Then, the gain of the hospital is the number of its
nodes that are matched by the mechanism plus the number of nodes it managed
to match internally. Such behavior can lead to fewer matched nodes compared
to the best possible solution, i.e., fewer patients who receive kidneys. So, we
seek mechanisms that guarantee that no agent has any incentive to deviate from
truth-telling. Our goal is to design such mechanisms that also return matchings
of high cardinality, i.e., high total gain.

The mechanisms can be deterministic or randomized. Given an instance of the
problem, a deterministic mechanism returns a simple matching. A randomized
mechanism returns a probability distribution over matchings. In the latter case,
we distinguish between universally truthful mechanisms and mechanisms that
are truthful in expectation. The former are induced by a probability distribution
over truthful deterministic mechanisms, whereas the latter guarantee that no
agent can deviate from truth-telling in order to increase her expected gain. The
efficiency of truthful mechanisms is assessed through their approximation ratio,
i.e., the maximum ratio over all possible instances of the problem of the size
of the maximum cardinality matching over the expected size of the matching
returned by the mechanism.

Early work on kidney exchange problems in Economics [8,9,10] has considered
the incentives of incompatible donor-patient pairs. However, as national kidney
exchange programs emerged, it has become apparent that such incentives are less
important compared to the incentives of the hospitals [3]. The model considered
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in the current paper has also been studied in [2,3,12,13]. The fact that the
maximum cardinality matching mechanism is not truthful was first observed by
Sönmez and Ünver [12] (see also [3]). Ashlagi et al. [2] present a universally
truthful randomized 2-approximation mechanism (called Mix-and-Match) for
arbitrarily many agents. Mix-and-Match is based on a simple deterministic
truthful 2-approximation mechanism for two agents, henceforth called Match.
Match returns a matching that contains the maximum number of internal edges
(where the nodes on both sides are controlled by the same agent), breaking ties
in favor of the matching with maximum cardinality. A nice property of Match
is inclusion-maximality; this translates to the requirement that a donor-patient
pair does not participate in any kidney exchange only when all its compatible
donor-patient pairs participate in some pairwise kidney exchange. A randomized
mechanism has this property when it returns a probability distribution over
inclusion-maximal matchings. On the negative side, there are lower bounds of 2
and 8/7 for deterministic truthful mechanisms and randomized mechanisms that
are truthful in expectation, respectively [2,3]. Ashlagi et al. [2] also propose the
mechanism Flip-and-Match for two agents. Flip-and-Match equiprobably
selects among the outcome of Match and a maximum cardinality matching.
They prove that this mechanism has approximation ratio 4/3 and leave open
the question of whether it is truthful in expectation. Ashlagi and Roth [3] and
Toulis and Parkes [13] consider weaker notions of truthfulness in random graph
models that reflect the compatibility frequency among donors and patients from
the human population. As in [2], no such information is required in our setting.

In an attempt to better understand the potential and limitations of random-
ized mechanisms, we consider the case of two agents. This case is of special
interest because efficient mechanisms can enable cooperation between pairs of
hospitals on an ad-hoc basis, in countries where a national kidney exchange pro-
gram is not yet in place. Our main result is a randomized mechanism called
Weight-and-Match for 2-agent pairwise kidney exchange that is truthful in
expectation and has a tight approximation ratio of 3/2. This establishes, for
the first time, a separation between the power of randomized mechanisms and
deterministic mechanisms (for which there is a lower bound of 2).

Weight-and-Match is inspired by the mechanism Flip-and-Match pro-
posed in [2]. Unfortunately, it turns out that Flip-and-Match is not truthful
due to its use of maximum cardinality matchings. This observation is our start-
ing point for the definition of the new mechanism. Weight-and-Match first
assigns weights to the edges of the input graph and then selects equiproba-
bly among two maximum-weight matchings: one with minimum cardinality (the
particular weights assigned to the edges guarantee that this matching is identi-
cal to the one returned by Match) and one with maximum cardinality (which
replaces the second matching used by Flip-and-Match). Informally, this def-
inition guarantees that the bad incentives created by the second matching are
canceled out by the outcome of Match.

We complement this result with new lower bounds on the approximation ra-
tio of randomized mechanisms that are truthful in expectation or universally
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truthful, distinguishing between mechanisms that are inclusion-maximal and
those that are not. Here we use the same 2-agent instance as in previous
work [2,3,12] but our stronger analysis leads to improved bounds for inclusion-
maximal and universally truthful mechanisms. Our general lower bound is 5/4.
Interestingly, we prove a lower bound of 2 for inclusion-maximal universally
truthful mechanisms that indicates that the weaker notion of truthfulness satis-
fied by Weight-and-Match (which is inclusion-maximal) is indeed necessary.

The rest of the paper is structured as follows. We warm up by showing that
Flip-and-Match is not truthful in Section 2. Our mechanism and its analysis
are presented in Section 3. The lower bounds are presented in Section 4. We
conclude with a short discussion of open problems in Section 5.

2 An Unsuccessful Attempt: Flip-and-Match

Throughout the paper, we refer to the two agents as agent 1 and agent 2. We
also call the nodes of agents 1 and 2 white and gray nodes, respectively.

Let us warm up by considering the mechanism Flip-and-Match proposed
in [2]. Flip-and-Match selects equiprobably among the matching returned by
Match and a maximum cardinality matching. In the original definition of [2],
ties among maximum cardinality matchings are broken in favor of matchings that
maximize the number of internal edges (i.e., edges between two nodes controlled
by the same agent) and then arbitrarily. In our proof, we essentially show that
any modification of the tie-breaking rule violates truthfulness.

Theorem 1. Flip-and-Match is not truthful.

Proof. Our proof uses the instance I and subinstances I1 and I2 of Fig-
ure 1. When applied to instance I, Match returns the matching M1 =
{(v2, v3), (v4, v5), (v7, v8)}. The gain of agent 1 is 4 while the gain of agent 2
is 2. Let M2 be a maximum cardinality matching. It leaves exactly one node
unmatched; this can be either a white or a gray node, i.e., M2 matches either
4 white nodes and 4 gray nodes or 5 white nodes and 3 gray nodes. We distin-
guish between these two cases and show that, in both cases, some agent has an
incentive to withhold nodes.

v1 v2 v3 v4 v5 v6 v7 v8 v9

v1 v2 v3 v4 v5 v6 v7 v8 v9

v1 v2 v3 v4 v5 v6 v7 v8 v9

Fig. 1. The original instance I used in the proof of Lemma 1 and the two subinstances
I1 and I2 used in cases 1 and 2, respectively. The dashed nodes and edges are not part
of the instances I1 and I2 but are shown here in order to compare with instance I .
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Case 1. M2 matches 4 white nodes and 4 gray nodes and, hence, the expected
gain of agent 1 from the application of Flip-and-Match on instance I is 4.
Consider the instance I1 in which agent 1 hides the white nodes v7 and v8 and
matches them internally. In the new instance, Match returns the matching
{(v2, v3), (v4, v5)} that contains 2 matched white nodes while the maximum car-
dinality matching is {(v1, v2), (v3, v4), (v5, v6)} that contains 3 matched white
nodes. The expected gain of agent 1 (including the hidden nodes) is 4.5.

Case 2. M2 matches 5 white nodes and 3 gray nodes and hence the expected
gain of agent 2 from the application of Flip-and-Match to the original in-
stance I is 2.5. Consider the instance I2 in which agent 2 hides nodes v2 and v3

(and matches them internally). In the new instance, Match returns the match-
ing {(v4, v5), (v7, v8)} that contains no matched gray nodes while the maximum
cardinality matching is {(v4, v5), (v6, v7), (v8, v9)} that contains 2 matched gray
nodes. The expected gain of agent 2 (including the hidden nodes) is 3. ��

3 Our Mechanism: Weight-and-Match

In this section, we present our new mechanism for two agents, which we call
Weight-and-Match. The main idea behind it is similar to the one that led to
Flip-and-Match: we try to combine mechanism Match with another mech-
anism that yields a higher gain. However, given the negative result for Flip-
and-Match presented in the previous section, we should be careful with the
definition of our mechanism. We can think of the following alternative definition
for Match. We first assign weights to the edges of the input graph as follows.
Internal edges have weight 1; edges between nodes of different agents have weight
1/2. The matching returned by Match is then a maximum-weight matching on
the weighted version of the input graph, where ties are broken in favor of the
matching with minimum cardinality. Our mechanism Weight-and-Match also
computes a maximum-weight maximum-cardinality matching on the weighted
version of the input graph, and selects equiprobably among the two matchings.
Note that Weight-and-Match is inclusion maximal. The rest of the section is
devoted to proving the following statement.

Theorem 2. Mechanism Weight-and-Match can be implemented in polyno-
mial time, has approximation ratio 3/2, and is truthful in expectation.

Due to lack of space, we omit the proof that our mechanism can be implemented
efficiently; we proceed with the proof of its approximation guarantee.

Lemma 1. Weight-and-Match has an approximation ratio of 3/2.

Proof. Let M be a matching of maximum cardinality and let M1 and M2 be
the maximum-weight matchings of minimum and maximum cardinality, respec-
tively, that are used by Weight-and-Match. Consider the symmetric differ-
ence MΔM1 = (M \M1)∪(M1\M). It consists of several connected components
which are either cycles (of even length), or paths with edges alternating between
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edges of M and edges of M1. Let m1 be the number of edges of M that either
belong also to M1 or belong to cycles or paths of MΔM1 with even length.
Let m3 and m5 be the edges of M that belong to paths of MΔM1 with length
exactly 3 and odd length at least 5, respectively. Clearly, |M | = m1 + m3 + m5.

Note that the number of edges of M1 that either belong also to M or belong
to cycles or paths of MΔM1 of even length is exactly m1 as well. Also, since M
has maximum cardinality, the first and the last edge in a path with odd length
in MΔM1 belong to M . So, M1 contains exactly m3/2 edges in paths of MΔM1

of length 3 and at least 2m5/3 edges in paths of MΔM1 of odd length at least
5. Hence, |M1| ≥ m1 + m3/2 + 2m5/3.

We now show that M2 (the maximum-weight matching of maximum cardi-
nality) contains at least m1 + m3 + 2m5/3 edges. Observe that, since M1 is a
maximum-weight matching, in any path with length 3 in MΔM1, the edge of
M1 should have endpoints belonging to the same agent (and, hence, weight 1)
and the two edges of M should have endpoints belonging to different agents
(and, hence, weight 1/2). Consider the edges of M1 that do not belong to paths
of length 3 of MΔM1 and the edges of M that belong to paths of length 3 in
MΔM1. All these edges form a matching that has the same total weight as the
edges of M1, and their cardinality is at least m1 + m3 + 2m5/3. Clearly, this is
also a lower bound on the cardinality of M2, i.e., |M2| ≥ m1 + m3 + 2m5/3.

Hence, the expected cardinality of the mechanism’s matching is

1
2
(|M1|+ |M2|) ≥ m1 +

3m3

4
+

2m5

3
≥ 2

3
(m1 + m3 + m5) =

2
3
|M |. ��

v1 v2 v3 v4 v5 v6

Fig. 2. An instance indicating that the analysis of Lemma 1 is tight. The maximum
matching matches all 6 nodes but mechanism Weight-and-Match returns the match-
ing that consists of edges (v2, v3) and (v4, v5). Note that here the symmetric difference
is a path of length 5.

The bound obtained in Lemma 1 is tight through the example of Figure 2.
We now turn to proving that our mechanism is truthful.

Lemma 2. Weight-and-Match is truthful in expectation.

Proof. We will show that agent 1 never has an incentive to deviate from truth-
telling. The case of agent 2 is identical.

Let G be the input graph and consider the maximum-weight matchings M1

and M2 of minimum and maximum cardinality, respectively, that are used by
Weight-and-Match. Also, assume that agent 1 hides some nodes and matches
them internally. Then, the mechanism is applied to the subgraph G′ of G which
does not contain the hidden white nodes and edges incident to them. Let M3 and
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M4 be the maximum-weight matchings of minimum and maximum cardinality
computed by Weight-and-Match on input G′, augmented by the edges used
by agent 1 to match the hidden white nodes internally. Denote by gain(M) the
gain of agent 1 from matching M and by wgt(M) the weight of matching M .
Our proof will follow from the next two lemmas.

Lemma 3. gain(M3) = gain(M1) − 2(wgt(M1) − wgt(M3)).

Proof. Denote by nww(M), nwg(M), and ngg(M) the number of edges in matching
M connecting two white nodes, two nodes belonging to different agents, and two
gray nodes, respectively. We will first show that ngg(M1) = ngg(M3). Consider
the symmetric difference of the two matchings M1ΔM3 = (M1 \ M3) ∪ (M3 \
M1) and the subgraph of G induced by these edges. This subgraph consists of
several connected components which can be cycles or paths (see Figure 3 for an
example). Consider such a connected component C and let C1 and C3 be the
sets of edges of M1 and M3 it contains, respectively.

v1 v2 v3 v4 v5 v6 v7 v8 v9

v10v11v12v13v14v15v16v17v18

M1 M3 M1 M3 M1 M3 M1 M3

M1

M3M1M3M1M3M1M3M1

Fig. 3. A connected component of M1ΔM3 considered in the proof of Lemma 3. The
sets of gray nodes {v1}, {v5, v6, v7}, {v9, ..., v13}, and {v15} form blocks. The main
argument in the proof is that each block has an odd number of gray nodes.

In order to prove that ngg(M1) = ngg(M3), it suffices to prove that ngg(C1) =
ngg(C3). This is clearly true if C is a cycle consisting of gray nodes only, since
such a cycle should have an even number of edges, half of which belong to C1

and half to C3. Assume that C contains a block of t consecutive gray nodes
b1, b2, ..., bt such that the first and the last have either degree 1 or are con-
nected to another white node outside the block. We will show that t cannot
be even. Assume that this was the case; then one of the two matchings (say
M1; the argument for M3 is completely symmetric) would contain the t

2 − 1
edges (b2, b3), (b4, b5), . . . , (bt−2, bt−1) and the other (say M3) would contain the
t
2 edges (b1, b2), (b3, b4), . . . , (bt−1, bt). Then, by replacing the t

2 − 1 edges of
matching M1 in the block as well as the edges of M1 that are incident to nodes
b1 and bt (if any) with the t

2 edges of M3 in the block, we would obtain a match-
ing that either has higher weight than M1 (if some of nodes b1 and bt has degree
1) or the same weight as M1 (recall that the edges connecting nodes b1 and
bt to white nodes outside the block have weight 1/2) but smaller cardinality.
Both cases contradict the fact that the matching M1 is a minimum cardinality
maximum-weight matching. Hence, every block has an odd number of nodes and
an even number of edges between gray nodes that alternate between matchings
M1 and M3. This implies that ngg(C1) = ngg(C3). Consequently, by summing



44 I. Caragiannis, A. Filos-Ratsikas, and A.D. Procaccia

over all connected components of M1ΔM3 and the edges of M1∩M3 connecting
gray nodes, we also have that ngg(M1) = ngg(M3).

Next, observe that gain(M) = 2nww(M) + nwg(M) and wgt(M) = nww(M) +
ngg(M) + nwg(M)/2. Hence, since ngg(M1) = ngg(M3), we have

gain(M3) = 2nww(M3) + nwg(M3)
= 2nww(M3) + nwg(M3) + 2ngg(M3) − 2ngg(M1)
= gain(M1) − 2(wgt(M1) − wgt(M3)),

as desired. ��
Lemma 4. gain(M4) ≤ gain(M2) + 2(wgt(M2) − wgt(M4)).

Proof. First consider each edge in M2 ∩ M4 and observe that its contribution
to gain(M4) equals its contribution to gain(M2) + 2(wgt(M2) − wgt(M4)). We
will now consider the symmetric difference of the two matchings M2ΔM4 =
(M2 \ M4) ∪ (M4 \ M2) and the subgraph of G induced by these edges. Again,
this subgraph consists of several connected components which can be cycles or
paths. Consider such a connected component C and let C2 and C4 be the sets
of edges of M2 and M4 it contains, respectively. We will complete the proof of
the lemma by showing that

gain(C4) ≤ gain(C2) + 2(wgt(C2) − wgt(C4). (1)

First, observe that since M2 is a maximum-weight matching in G, it holds that
wgt(C2) ≥ wgt(C4) (otherwise, we could replace the edges of C2 with the edges
of C4 in M2 and obtain a matching with higher weight). We now use a four-
letter/number notation to classify the connected components of the subgraph
of G induced by M2ΔM4 that are paths into different types: the first and last
letters are w or g and denote whether the left and right endpoint of the connected
component is a white or gray node, respectively. The second and third numbers
are either 2 or 4 and denote whether the first and the last edge of the connected
component belong to matching M2 or M4, respectively. Examples of paths of
type w22w, w44g, and w44w are depicted in Figure 4. We distinguish between
three main cases:

Case 1. If C is a cycle, or a path of type w22w, w24w, w42w, w22g, w24g, g22g,
g24g, g42g, or g44g, we have gain(C4) ≤ gain(C2) and inequality (1) follows
easily since wgt(C2) ≥ wgt(C4).

Case 2. If C is a path of type w42g or w44g, we claim that wgt(C2) + wgt(C4)
is non-integer. Indeed, since the first and the last node in the path belong to
different agents, there is an odd number of external edges (between a white and
a gray node) in C, and each such edge contributes 1/2 to the sum wgt(C2) +
wgt(C4). Recall that wgt(C2) ≥ wgt(C4), and therefore wgt(C2)−wgt(C4) ≥ 1/2.
Inequality (1) follows by observing that gain(C2) = gain(C4) − 1 in this case.

Case 3. If C is of type w44w, observe that C4 contains one more edge than C2

and, hence, wgt(C2) > wgt(C4) (otherwise, we could replace the edges of C2 with
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v1 v2 v3 v4 v5 v6 v7 v8
M2 M4 M2 M4 M2 M4 M2

v1 v2 v3 v4 v5 v6 v7 v8
M4 M2 M4 M2 M4 M2 M4

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
M4 M2 M4 M2 M4 M2 M4 M2 M4

Fig. 4. Examples of connected components of M2ΔM4 considered in the proof of
Lemma 4 (paths of type w22w, w44g, and w44w)

the edges of C4 in M2 in order to obtain a matching of the same weight but with
higher cardinality). Also, observe that the number of external edges in C is even,
and hence wgt(C2) + wgt(C4) is integer. It follows that wgt(C2) ≥ wgt(C4) + 1.
Inequality (1) follows by further observing that gain(C2) = gain(C4) − 2. ��
Since wgt(M1) = wgt(M2) and wgt(M3) = wgt(M4), by Lemmas 3 and 4 we have
that the expected gain 1

2 (gain(M3)+gain(M4)) of agent 1 when she hides some
white nodes and matches them internally is upper-bounded by the expected gain
1
2 (gain(M1) + gain(M2)) when she acts truthfully. ��

4 Lower Bounds

Ashlagi et al. [2] and Ashlagi and Roth [3] provide a lower bound of 8/7 for
truthful-in-expectation randomized mechanisms.1 The proof of the next lemma
starts with the same initial instance as [2,3] but uses a more detailed reasoning
in order to prove lower bounds for randomized mechanisms that are either uni-
versally truthful or truthful in expectation, distinguishing between mechanisms
that are inclusion-maximal and those that are not.

Theorem 3. Let A be a randomized mechanism for 2-agent kidney exchange.

(a) If A is truthful in expectation, then its approximation ratio is at least 5/4.
(b) If A is truthful in expectation and inclusion-maximal, then its approximation

ratio is at least 4/3.
(c) If A is universally truthful, then its approximation ratio is at least 3/2.
(d) If A is universally truthful and inclusion-maximal, then its approximation

ratio is at least 2.

Proof. Our proof uses the instances depicted in Figure 5. The starting point
is instance I. We denote by I1 the instance obtained by removing the white nodes

1 Ashlagi et al. [2] actually claim a bound of 4/3 but this is inaccurate. In fact it
is not hard to design an artificial mechanism (as a probability distribution over
matchings) that is truthful in expectation and has approximation ratio at most 5/4
for the instances considered in their proof.
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v1 v2 v3 v4 v5 v6 v7

v1 v2 v3 v4 v5 v6 v7

v1 v2 v3 v4 v5 v6 v7

v1 v2 v3 v4 v5 v6 v7

Fig. 5. The instances I , I1, I2, and I3 used in the proof of Theorem 3. The dashed
nodes and edges are not part of the instances I1, I2, and I3 but are shown here in order
to compare with instance I .

v5 and v6 and their incident edges from I, by I2 the instance obtained from I by
removing the nodes v2 and v3 and their incident edges, and by I3 the instance
obtained from I2 by removing the nodes v4 and v5 and their incident edges.

(a) Consider the application of mechanism A to instance I. Observe that the
maximum cardinality matching of this instance has size 3, i.e., the total gain
of both agents from any matching is at most 6. So, assume that the expected
gain of agents 1 and 2 from the matching returned by A is at most 4 − u and
at most 2 + u respectively, for some u ∈ [0, 1]. Then, consider the application of
mechanism A to instance I1. The expected gain of agent 1 from the matching
returned by A should be at most 2 − u (otherwise, in the original instance I,
agent 1 would have an incentive to hide the white nodes v5 and v6 and match
them internally). This means that, on input I1, the probability that A returns a
matching consisting of two edges is at most 1 − u/2. Hence, the approximation
ratio of mechanism A on instance I1 is at least 4

4−u .
Also, consider the application of mechanism A to instance I2. The expected

gain of agent 2 from the matching returned by A should be at most u (otherwise,
in the original instance I, agent 2 would have an incentive to hide the gray
nodes v2 and v3 and match them internally). This means that, on input I2, the
probability that A returns a matching consisting of two edges is at most u. Hence,
the expected gain of agent 1 from instance I2 is at most 2 + u. Now, consider
the application of A to instance I3; A should return a non-empty matching with
probability at most u (otherwise, agent 1 would have an incentive to hide nodes
v4 and v5 from instance I2 and match them internally). Hence, the approximation
ratio of mechanism A on instance I3 would be 1/u.

We conclude that the approximation ratio of A is at least max
{

4
4−u , 1

u

}
which

is minimized to 5/4 for u = 4/5.

(b) From the analysis of (a), we have that A is inclusion-maximal only when
u = 1 (otherwise, it would return an empty matching for instance I3 with non-
zero probability). In this case, the approximation ratio of A is at least 4/3.

(c) Since A is universally truthful, it uses a probability distribution over de-
terministic truthful mechanisms. We partition the set of truthful deterministic
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mechanisms into two sets Aw and Ag: the set Aw (respectively, Ag) consists of
mechanisms which, on input instance I, return a matching that leaves at least
one white node (respectively, at least one gray node) unmatched. Any other
truthful deterministic mechanism is arbitrarily put in one of the two sets.

Let Aw be a deterministic mechanism that belongs to Aw. On input instance
I1, Aw should return a matching with just one edge. Otherwise, a matching with
two edges would match the two white nodes v1 and v4 which means that agent
1 would have an incentive to hide nodes v5 and v6 from instance I and match
them internally; this would violate the truthfulness of mechanism Aw. Hence,
mechanism Aw returns matchings of size at most 1 on input instances I1 and I3.

Also, let Ag be a deterministic mechanism that belongs to Ag. Consider the
application of Ag to instance I2. The matching it returns should not match node
v7 since otherwise agent 2 would have an incentive to hide nodes v2 and v3 in the
original instance I and match them internally. Hence, only two white nodes are
matched by mechanism Ag on input instance I2. Now consider the application
of Ag to the instance I3. It should return an empty matching otherwise agent
1 would have an incentive to hide the white nodes v4 and v5 from instance I2

and match them internally. Hence, the matchings returned by mechanism Ag on
input instances I2 and I3 have size at most 2 and 0, respectively.

Next, let p be the probability that mechanism A runs a deterministic truthful
mechanism from Aw. Then, the expected size of the matching returned by A on
input instances I1 and I3 is at most 2 − p and p, respectively, and its approxi-
mation ratio is at least max

{
2

2−p , 1
p

}
which is minimized to 3/2 for p = 2/3.

(d) In the proof of (c), the mechanisms in Ag are not inclusion-maximal. Hence, if
A is universally truthful and inclusion-maximal, it should use only deterministic
mechanisms from Aw, i.e., p = 1. Following the analysis in the previous case for
instance I1, we obtain that A has approximation ratio at least 2. ��

Theorems 2 and 3(d) establish a separation between truthfulness in expectation
and universal truthfulness with respect to inclusion-maximal mechanisms.

5 Discussion and Open Problems

Our work has shed some light on the efficiency of randomized truthful mecha-
nisms for the 2-agent pairwise kidney exchange problem. Although the number
of agents is restricted, we believe that this case is of special interest because
2-agent mechanisms can enable ad-hoc arrangements between hospitals in coun-
tries where national exchanges are not in place.

Clearly, the question of whether the upper bound of 2 of Ashlagi et al. [2]
can be improved for instances with arbitrarily many agents remains wide open.
Unfortunately, several extensions of Weight-and-Match that we have consid-
ered for this case have failed, and in fact it seems likely that this upper bound
is tight for more than two agents. Still, the 2-agent case deserves some fur-
ther investigation because there are gaps between our upper and lower bounds.



48 I. Caragiannis, A. Filos-Ratsikas, and A.D. Procaccia

In this context, it is especially interesting to know whether a truthful in expec-
tation, inclusion-maximal, 4/3-approximation mechanism exists. For the 2-agent
case, we also believe that characterizations of truthful mechanisms would be very
useful in order to complete the picture. Finally, Ashlagi et al. [2] were unable to
provide a truthful deterministic mechanism for the case of more than two agents
that gives any nontrivial approximation ratio. Providing such a mechanism, or
proving a lower bound, remains an enigmatic open problem.
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11. Saidman, S., Roth, A.E., Sönmez, T., Ünver, M.U., Delmonico, F.: Increasing the
opportunity of live kidney donation by matching for two- and three-way exchanges.
Transplantation 81(5), 773 (2006)
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