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Abstract. We study the Price of Anarchy of mechanisms for the well-
known problem of one-sided matching, or house allocation, with respect
to the social welfare objective. We consider both ordinal mechanisms,
where agents submit preference lists over the items, and cardinal mech-
anisms, where agents may submit numerical values for the items being
allocated. We present a general lower bound of Ω(

√
n) on the Price of

Anarchy, which applies to all mechanisms. We show that two well-known
mechanisms, Probabilistic Serial, and Random Priority, achieve a match-
ing upper bound. We extend our lower bound to the Price of Stability
of a large class of mechanisms that satisfy a common proportionality
property, and show stronger bounds on the Price of Anarchy of all de-
terministic mechanisms.

1 Introduction

One-sided matching (also called the house allocation problem) is the fundamental
problem of assigning items to agents, such that each agent receives exactly one
item. It has numerous applications, such as assigning workers to shifts, students
to courses or patients to doctor appointments. In this setting, agents are often
asked to provide ordinal preferences, i.e. preference lists, or rankings of the items.
We assume that underlying these ordinal preferences, agents have numerical
values specifying how much they value each item [18]. In game-theoretic terms,
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these are the agents’ von Neumann-Morgenstern utility functions [27] and the
associated preferences are often referred to as cardinal preferences.

A mechanism is a function that maps agents’ valuations to matchings. How-
ever, agents are rational strategic entities that might not always report their
valuations truthfully; they may misreport their values if that results in a better
matching (from their own perspective). Assuming the agents report their valua-
tions strategically to maximize their utilities, it is of interest to study the Nash
equilibria of the induced game, i.e. strategy profiles from which no agent wishes
to unilaterally deviate.

A natural objective for the designer is to choose the matching that maxi-
mizes the social welfare, i.e. the sum of agents’ valuations for the items they are
matched with, which is the most prominent measure of aggregate utility in the
literature. Given the strategic nature of the agents, we are interested in mecha-
nisms that maximize the social welfare in the equilibrium. We use the standard
measure of equilibrium inefficiency, the Price of Anarchy [22], that compares the
maximum social welfare attainable in any matching with the worst-case social
welfare that can be achieved in an equilibrium.

We evaluate the efficiency of a mechanism with respect to the Price of An-
archy of the induced game. We study both deterministic and randomized mech-
anisms: in the latter case the output is a probability mixture over matchings,
instead of a single matching. We are interested in the class of cardinal mecha-
nisms, which use cardinal preferences, and generalize the ordinal mechanisms.

Note that our setting involves no monetary transfers and generally falls un-
der the umbrella of approximate mechanism design without money [24]. In gen-
eral settings without money, one has to fix a canonical representation of the
valuations. A common approach in the literature is to consider the unit-sum
normalization, i.e. each agent has a total value of 1 for all the items. We obtain
results for unit-sum valuations, and extend most of these to another common
normalization, unit-range.

1.1 Our results

In Section 3 we bound the inefficiency of the two best-known mechanisms in the
matching literature, Probabilistic Serial and Random Priority. In particular, for
n agents and n items, the Price of Anarchy is O(

√
n). In Section 4 we comple-

ment this with a matching lower bound (i.e. Ω(
√
n)) that applies to all cardinal

(randomized) mechanisms. As a result, we conclude that these two ordinal mech-
anisms (ones that compute matchings that only depend on preference orderings)
are optimal. These results suggest that it does not help a welfare maximizer to
ask agents to report more than the ordinal preferences.

We separately consider deterministic mechanisms and in Section 4 prove that
their Price of Anarchy is Ω(n2), even for cardinal mechanisms. This shows that
randomization is necessary for non-trivial worst-case efficiency guarantees.

In Section 5, we extend our results to more general solutions concepts as well
as the case of incomplete information. Finally, in Section 6, we prove that under
a mild “proportionality” property, our lower bound of Ω(

√
n) extends to the
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Price of Stability, a more optimistic measure of efficiency [3], which strengthens
the negative results even further. Additionally, we discuss how our results extend
to the other common normalization in the literature, unit-range [2, 15,28].

1.2 Discussion and related work

The one-sided matching problem was introduced in [18] and has been studied
extensively ever since (see [1] for a recent overview). Over the years, several dif-
ferent mechanisms have been proposed with various desirable properties related
to truthfulness, fairness and economic efficiency with Probabilistic Serial [1,7–9]
and Random Priority [1, 2, 4, 9, 15,23] being the two prominent examples.

As mentioned earlier, in settings without money, one needs to represent the
valuations in some canonical way. A common approach is the unit-sum nor-
malization, i.e. each agent has a total value of 1 for all the items. Intuitively,
this normalization means that each agent has equal influence within the mecha-
nism and her values can be interpreted as “scrip money” that she uses to acquire
items. The unit-sum representation is standard for social welfare maximization in
many settings without money including fair division, cake cutting and resource
allocation [10, 11, 15, 16] among others. Moreover, without any normalization,
non-trivial Price of Anarchy bounds cannot be achieved by any mechanism.

The objective of social welfare maximization for one-sided matching problems
has been studied before in the literature, but mainly for truthful mechanisms
[2,15]. Our lower bounds are more general, since they apply to all mechanisms,
not just truthful ones. In particular, our lower bound on the Price of Anarchy of
all mechanisms generalizes the corresponding bound for truthful mechanisms in
[15]. Note that Random Priority is truthful (truth-telling is a dominant strategy
equilibrium) but it has other equilibria as well; we observe that the welfare
guarantees of the mechanism hold for all equilibria, not just the truthtelling ones.
Similar approaches have been made for truthful mechanisms like the second price
auction in settings with money.

While given our general lower bound, proving a matching upper bound for
Random Priority is enough to establish tightness, it is still important to know
what the welfare guarantees of Probabilistic Serial are, given that it is arguably
the most popular one-sided matching mechanism. The mechanism was intro-
duced by [9] and since then, it has been in the center of attention of the match-
ing literature, with related work on characterizations [17, 20], extensions [19],
strategic aspects [21] and hardness of manipulation [6]. Somewhat surprisingly,
the Nash equilibria of the mechanism were only recently studied. Aziz et al. [5]
prove that the mechanism has pure Nash equilibria while Ekici and Kesten [14]
study the ordinal equilibria of the mechanism and prove that the desirable prop-
erties of the mechanism are not necessarily satisfied for those profiles.

Another, somewhat different recent branch of study considers ordinal mea-
sures of efficiency instead of social welfare maximization, under the assumption
that agents’ preferences are only expressed through preference orderings over
items. Bhalgat et al. [8] study the approximation ratio of matching mechanisms,
when the objective is maximization of ordinal social welfare, a notion of efficiency
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that they define based solely on ordinal information. Other measures of efficiency
for one-sided matchings were also studied in Krysta et al. [23], where the authors
design truthful mechanisms to approximate the size of a maximum cardinally
(or maximum agent weight) Pareto-optimal matching and in Chakrabarty and
Swamy [12] where the authors consider the rank approximation as the measure
of efficiency. While interesting, these measures of efficiency do not accurately en-
capsulate the socially desired outcome the way that social welfare does, especially
since an underlying cardinal utility structure is part of the setting [9,18,27,28].
Our results actually suggest that in order to achieve the optimal welfare guar-
antees, one does not even need to elicit this utility structure; agents can only be
asked to report preference orderings, which is arguably more appealing.

Finally, we point out that our work is in a sense analogous to the literature
that studies the Price of Anarchy in item-bidding auctions (e.g. see [13, 26] and
references therein) for settings without money. Furthermore, the extension of our
results to very general solution concepts (coarse correlated equilibria) and set-
tings of incomplete information (Bayes-Nash equilibria) is somehow reminiscent
of the smoothness framework [25] for games. While our results are not proven
using the smoothness condition, our extension technique is similar in spirit.

2 Preliminaries

Let N = {1, . . . , n} be a finite set of agents and A = {1, . . . , n} be a finite
set of indivisible items. An allocation is a matching of agents to items, that
is, an assignment of items to agents where each agent gets assigned exactly
one item. We can view an allocation µ as a permutation vector (µ1, µ2 . . . , µn)
where µi is the unique item matched with agent i. Let O be the set of all
allocations. Each agent i has a valuation function ui : A → R mapping items
to real numbers. Valuation functions are considered to be well-defined modulo
positive affine transformations, that is, for item j : j → αui(j) + β is considered
to be an alternative representation of the same valuation function ui. Given this,
we fix the canonical representation of ui to be unit-sum, that is

∑
j ui(j) = 1,

with ui(j) ≥ 0 for all i, j. Equivalently, we can consider valuation functions as
valuation vectors ui = (ui1, ui2, . . . , uin) and let V be the set of all valuation
vectors of an agent. Let u = (u1, u2, . . . , un) denote a typical valuation profile
and let V n be the set of all valuation profiles with n agents.

We consider strategic agents who might have incentives to misreport their
valuations. We define s = (s1, s2, . . . , sn) to be a pure strategy profile, where si
is the reported valuation vector of agent i. We will use s−i to denote the strategy
profile without the ith coordinate and hence s = (si, s−i) is an alternative way
to denote a strategy profile. A direct revelation mechanism without money is a
function M : V n → O mapping reported valuation profiles to matchings. For a
randomized mechanism, we define M to be a random map M : V n → O. Let
Mi(s) denote the restriction of the outcome of the mechanism to the i’th coor-
dinate, which is the item assigned to agent i by the mechanism. For randomized
mechanisms, we let pM,s

ij = Pr[Mi(s) = j] and pM,s
i = (pM,s

i1 , . . . , pM,s
in ). When it
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is clear from the context, we drop one or both of the superscripts from the terms
pM,s
ij . The utility of an agent from the outcome of a deterministic mechanism M

on input strategy profile s is simply ui(Mi(s)). For randomized mechanisms, an

agent’s utility is E[ui(Mi(s))] =
∑n
j=1 p

M,s
ij uij .

A subclass of mechanisms that are of particular interest is that of ordinal
mechanisms. Informally, ordinal mechanisms operate solely based on the order-
ing of items induced by the valuation functions and not the actual numerical
values themselves, while cardinal mechanisms take those numerical values into
account. Formally, a mechanism M is ordinal if for any strategy profiles s, s′

such that for all agents i and for all items j, `, sij < si` ⇔ s′ij < s′i`, it holds that
M(s) = M(s′). A mechanism for which the above does not necessarily hold is
cardinal. Equivalently, the strategy space of ordinal mechanisms is the set of all
permutations of n items instead of the space of valuation functions V n. A strat-
egy si of agent i is a preference ordering of items (a1, a2, . . . , an) where a` � ak
for ` < k. We will write j �i j′ to denote that agent i prefers item j to item j′

according to her true valuation function and j �si j′ to denote that she prefers
item j to item j′ according to her strategy si. When it is clear from the con-
text, we abuse the notation slightly and let ui denote the truthtelling strategy of
agent i, even when the mechanism is ordinal. Note that agents can be indifferent
between items and hence the preference order can be a weak ordering.

Two properties of interest are anonymity and neutrality. A mechanism is
anonymous if the output is invariant under renamings of the agents and neutral
if the output is invariant under relabeling of the objects.

An equilibrium is a strategy profile in which no agent has an incentive to
deviate to a different strategy. First, we will focus on the concept of pure Nash
equilibrium, formally

Definition 1. A strategy profile s is a pure Nash equilibrium if ui(Mi(s)) ≥
ui(Mi(s

′
i, s−i)) for all agents i, and pure deviating strategies s′i.

In Section 5, we extend our results to more general equilibrium notions as well
as the setting of incomplete information, where agents’ values are drawn from
known distributions.

Let SMu denote the set of all pure Nash equilibria of mechanism M under
truthful valuation profile u. The measure of efficiency that we will use is the
pure Price of Anarchy,

PoA(M) = sup
u∈V n

SWOPT (u)

mins∈SM
u
SWM (u, s)

where SWM (u, s) =
∑n
i=1 E[ui(Mi(s))] is the expected social welfare of mecha-

nism M on strategy profile s under true valuation profile u, and SWOPT (u) =
maxµ∈O

∑n
i=1 ui(µi) is the social welfare of the optimal matching. Let OPT (u)

be the optimal matching on profile u and let OPTi(u) be the restriction to the
ith coordinate.
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3 Price of Anarchy Guarantees

In this section, we prove the (pure) Price of Anarchy guarantees of Probabilistic
Serial and Random Priority. Together with our lower bound in the next section,
the results establish that both mechanisms are optimal among all mechanisms
for the problem.

Probabilistic Serial

First, we consider Probabilistic Serial, which we abbreviate to PS. Informally,
the mechanism is the following. Each item can be viewed as an infinitely divisible
good that all agents can consume at unit speed during the unit time interval
[0, 1]. Initially each agent consumes her most preferred item (or one of her most
preferred items in case of ties) until the item is entirely consumed. Then, the
agent moves on to consume the item on top of her preference list, among items
that have not yet been entirely consumed. The mechanism terminates when all
items have been entirely consumed. The fraction pij of item j consumed by agent
i is then interpreted as the probability that agent i will be matched with item j
under the mechanism.

We prove that the Price of Anarchy of PS is O(
√
n). Aziz et al. [5] proved

that PS has pure Nash equilibria, so it makes sense to consider the pure Price
of Anarchy; we will extend the result to the coarse correlated Price of Anarchy
and the Bayesian Price of Anarchy in Section 5.

We start with the following two lemmas, which prove that in a pure Nash
equilibrium of the mechanism an agent’s utility cannot be much worse than what
her utility would be if she were consuming the item she is matched with in the
optimal allocation from the beginning of the mechanism until the item is entirely
consumed. Let tj(s) be the time when item j is entirely consumed on profile s
under PS(s).

Lemma 1. Let s be any strategy profile and let s∗i be any strategy such that
j �s∗i ` for all items ` 6= j, i.e. agent i places item j on top of her preference

list. Then it holds that tj(s
∗
i , s−i) ≥ 1

4 · tj(s).

Proof. For ease of notation, let s∗ = (s∗i , s−i). Obviously, if j �si ` for all ` 6= j
and since all other agents’ reports are fixed, tj(s

∗) = tj(s) and the statement of
the lemma holds. Hence, we will assume that there exists some item j′ 6= j such
that j′ �si j.

First, note that if agent i is the only one consuming item j for the duration
of the mechanism, then tj(s

∗) = 1 and we are done. Hence, assume that at least
one other agent consumes item j at some point, and let τ be the time when the
first agent besides agent i starts consuming item j in s∗. Obviously, tj(s

∗) > τ ,
therefore if τ ≥ 1

4 · tj(s) then tj(s
∗) ≥ 1

4 · tj(s) and we are done. So assume that
τ < 1

4 · tj(s). Next observe that in the interval [τ, tj(s
∗)], agent i can consume at

most half of what remains of item i because there exists at least one other agent
consuming the item for the same duration. Overall, agent i’s consumption is at
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most 1
2 + 1

4 tj(s) so at least 1
2 −

1
4 tj(s) of the item will be consumed by the rest

of the agents.
Now consider all agents other than i in profile s and let α be the the amount of

item j that they have consumed by time tj(s). Notice that the total consumption
speed of an item is non-decreasing in time which means in particular that for
any 0 ≤ β ≤ 1, agents other than i need at least βtj(s) time to consume α · β in
profile s. Next, notice that since agent i starts consuming item j at time 0 in s∗

and all other agents use the same strategies in s and s∗, it holds that every agent
k 6= i starts consuming item j in s∗ no sooner than she does in s. This means
that in profile s∗, agents other than i will need more time to consume β · α; in
particular they will need at least βtj(s) time, so tj(s

∗) ≥ βtj(s). However, from
the previous paragraph we know that they will consume at least 1

2 −
1
4 tj(s), so

letting β = 1
α

(
1
2 −

1
4 tj(s)

)
we get

tj(s
∗) ≥ βtj(s) ≥ tj(s)

(
1

2
− 1

4
· tj(s)

)
1

α

≥ tj(s)

(
1

2
− 1

4
· tj(s)

)
≥ 1

4
· tj(s)

�

Now we can lower bound the utility of an agent at any pure Nash equilibrium.

Lemma 2. Let u be the profile of true agent valuations and let s be a pure Nash
equilibrium. For any agent i and any item j it holds that the utility of agent i at
s is at least 1

4 · tj(s) · uij.

Proof. Let s′ = (s′i, s−i) be the strategy profile obtained from s when agent
i deviates to the strategy s′i where s′i is some strategy such that j �s′i ` for
all items ` 6= j. Since s is a pure Nash equilibrium, it holds that ui(PSi(s)) ≥
ui(PSi(s

′)) ≥ tj(s′) ·uij , where the last inequality holds since the utility of agent
i is at least as much as the utility she obtains from the consumption of item j.
By Lemma 1, it holds that tj(s

′) ≥ 1
4 · tj(s) and hence ui(PSi(s)) ≥ 1

4 · tj(s) ·uij .
�

We can now prove the pure Price of Anarchy guarantee of the mechanism.

Theorem 1. The pure Price of Anarchy of Probabilistic Serial is O(
√
n).

Proof. Let u be any profile of true agents’ valuations and let s be any pure Nash
equilibrium. First, note that by reporting truthfully, every agent i can get an
allocation that is at least as good as (1/n, . . . , 1/n), regardless of other agents’
strategies. To see this, first consider time t = 1/n and observe that during
the interval [0, 1/n], agent i is consuming her favorite item (say a1) and hence
pia1 ≥ 1/n. Next, consider time τ = 2/n and observe that during the interval
[0, 2/n], agent i is consuming one or both of her two favorite items (a1 and a2)
and hence pia1 + pia2 ≥ 2/n. By a similar argument, for any k, it holds that
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∑n
j=1 piaj ≥ k/n. This implies that regardless of other agents’ strategies, agent

i can achieve a utility of at least 1
n

∑n
j=1 uij . Since s is a pure Nash equilibrium,

it holds that ui(PSi(s)) ≥ (1/n)
∑n
j=1 uij as well. Summing over all agents, we

get that SWPS(u, s) ≥ (1/n)
∑n
i=1

∑n
j=1 uij = 1. If SWOPT (u) ≤

√
n then we

are done, so assume SWOPT (u) >
√
n.

Because PS is neutral we can assume tj(s) ≤ tj′(s) for j < j′ without loss
of generality. Observe that for all j = 1, . . . , n, it holds that tj(s) ≥ j/n. This
is true because for any t ∈ [0, 1], by time t, exactly tn mass of items must have
been consumed by the agents. Since j is the jth item that is entirely consumed,
by time tj(s), the mass of items that must have been consumed is at least j. By
this, we get that tj(s) · n ≥ j, which implies tj(s) ≥ j/n.

For each j let ij be the agent that gets item j in the optimal allocation and
for ease of notation, let wij be her valuation for the item. Now by Lemma 2, it
holds that

uij (PS(s)) ≥ 1

4

j

n
wij and SWPS(u, s) ≥ 1

4

n∑
j=1

j

n
wij .

The Price of Anarchy is then at most

4
∑n
j=1 wij∑n

j=1 j · wij/n
.

Consider the case when the above ratio is maximized and let k be an integer such
that k ≤

∑n
j=1 wij ≤ k + 1. Then it must be that wij = 1 for j = 1, . . . , k and

wij = 0, for k+2 ≤ ij ≤ n. Hence the maximum ratio is (k+wik+1
)/(awik+1

+b),
for some a, b > 0, which is monotone for wik+1

in [0, 1]. Therefore, the maximum
value of (k+wik+1

)/(awik+1
+ b) is achieved when either wik+1

= 0 or wik+1
= 1.

As a result, the maximum value of the ratio is obtained when
∑
i=1n wik+1

= k
for some k. By simple calculations, the Price of Anarchy should be at most:

4k∑k
j=1

j
n

≤ 4k
k(k−1)

2n

=
8n

k − 1
,

so the Price of Anarchy is maximized when k is minimized. By the argument
earlier, k >

√
n and hence the ratio is O(

√
n). �

In Section 5, we extend Theorem 1 to broader solution concepts and the incom-
plete information setting.

Random Priority

We also consider another very well-known mechanism, Random Priority, often
referred to as Random Serial Dictatorship. The mechanism first fixes an order-
ing of the agents uniformly at random and then according to that ordering, it
sequentially matches them with their most preferred item that is still available.
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Filos-Ratsikas et al. [15] proved that the welfare in any truthtelling equilibrium
is an Ω(1/

√
n)-fraction of the maximum social welfare. While Random Priority

has other equilibria as well, to establish the Price of Anarchy bound, it suffices to
observe that at least for distinct valuations, any strategy other than truthtelling
does not affect the allocation and hence it does not affect the social welfare. In-
tuitively, since agents pick their most preferred items, any equilibrium strategy
would place the most preferred available items on top of the preference list, while
the ordering of the items that are not picked does not affect the allocation of
other agents. For valuations that are not distinct, the argument can be adapted
using small perturbations of the values, losing only a small fraction of welfare.

We first we prove the following lemma.

Lemma 3. If valuations are distinct, the social welfare is the same in all mixed
Nash equilibria of Random Priority.

Proof. Let i be an agent, and let B be a subset of the items. Let s be a mixed
Nash equilibrium with the property that with positive probability, i will be
chosen to select an item at a point when B is the set of remaining items. In that
case (by distinctness of i’s values), i’s strategy should place agent i’s favourite
item in B on the top of the preference list among items in B. Suppose that for
items j and j′, there is no set of items B that may be offered to i with positive
probability, in which either j or j′ is optimal. Then i may rank them either way,
i.e. can announce j �i j′ or j′ �i j. However, that choice has no effect on the
other agents, in particular it cannot affect their social welfare. �

Given the main theorem in [15], Lemma 3 implies the following.

Corollary 1. If valuations are distinct, the Price of Anarchy of Random Pri-
ority is Θ(

√
n).

The same guarantee on the Price of Anarchy holds even when the true valu-
ations of agents are not necessarily distinct.

Theorem 2. The Price of Anarchy of Random Priority is O(
√
n).

Proof. We know from [15] that the social welfare of Random Priority given
truthful reports, is within O(

√
n) of the social optimum. The social welfare of a

(mixed) Nash equilibrium q cannot be worse than the worst pure profile from q
that occurs with positive probability, so let s be such a pure profile. We will say
that agent i misranks items j and j′ if j �i j′, but j′ �si j.

If an agent misranks two items for which she has distinct values, it is because
she has 0 probability in s to receive either item. So we can change s so that no
items are misranked, without affecting the social welfare or the allocation. For
items that the agent values equally (which are then not misranked) we can apply
arbitrarily small perturbations to make them distinct. Profile s is thus consistent
with rankings of items according to perturbed values and is truthful with respect
to these values, which, being arbitrarily close to the true ones, have optimum
social welfare arbitrarily close to the true optimal social welfare. �

Theorem 2 can be extended to solution concepts more general than the mixed
Nash equilibrium. Again, the details are included in Section 5.

9



4 Lower Bounds

In this section, we prove our main lower bound. Note that the result holds for
any mechanism, including randomized and cardinal mechanisms. Since we are
interested in mechanisms with good properties, it is natural to consider those
mechanisms that have pure Nash equilibria.

Theorem 3. The pure Price of Anarchy of any mechanism is Ω(
√
n).

Proof. Let n = k2 for some k ∈ N. Let M be a mechanism and consider the
following valuation profile u. There are

√
n sets of agents and let Gj denote the

j-th set. For every j ∈ {1, . . . ,
√
n} and every agent i ∈ Gj , let uij = 1/n + α

and uik = 1/n − α/(n − 1), for k 6= j, where α is sufficiently small. Let s be

a pure Nash equilibrium and for every set Gj , let ij = arg mini∈Gj
pM,s
ij (break

ties arbitrarily). Observe that for all j = 1, . . . ,
√
n, it holds that pM,s

ijj
≤ 1/

√
n

and let I = {i1, i2, . . . , i√n}. Now consider the valuation profile u′ where:

– For every agent i /∈ I, u′i = ui.
– For every agent ij ∈ I, let u′ijj = 1 and u′ijk = 0 for all k 6= j.

We claim that s is a pure Nash equilibrium under u′ as well. For agents not in
I, the valuations have not changed and hence they have no incentive to deviate.
Assume now for contradiction that some agent i ∈ I whose most preferred item
is item j could deviate to some beneficial strategy s′i. Since agent i only values

item j, this would imply that p
M,(s′i,s−i)
ij > pM,s

ij . However, since agent i values
all items other than j equally under ui and her most preferred item is item j,
such a deviation would also be beneficial under profile u, contradicting the fact
that s is a pure Nash equilibrium.

Now consider the expected social welfare of M under valuation profile u′ at
the pure Nash equilibrium s. For agents not in I and taking α to be less than
1/n3, the contribution to the social welfare is at most 1. For agents in I, the
contribution to the welfare is then at most (1/

√
n)
√
n+1 and hence the expected

social welfare of M is at most 3. As the optimal social welfare is at least
√
n,

the bound follows. �

Interestingly, if we restrict our attention to deterministic mechanisms, then we
can prove that only trivial pure Price of Anarchy guarantees are achievable.

Theorem 4. The pure Price of Anarchy of any deterministic mechanism is
Ω(n2).

Proof. Let M be a deterministic mechanism that always has a pure Nash equi-
librium. Let u be a valuation profile such that for for all agents i and i′, it holds
that ui = ui′ , ui1 = 1/n + 1/n3 and uij > uik for j < k. Let s be a pure Nash
equilibrium for this profile and assume without loss of generality that Mi(s) = i.

Now fix another true valuation profile u′ such that u′1 = u1 and for agents
i = 2, . . . , n, u′i,i−1 = 1− ε′i,i−1 and uij = ε′ij for j 6= i− 1, where 0 ≤ ε′ij ≤ 1/n3,

10



∑
j 6=i−1 ε

′
ij = ε′i,i−1 and ε′ij > ε′ik if j < k when j, k 6= i− 1. Intuitively, in profile

u′, each agent i ∈ {2, . . . , n} has valuation close to 1 for item i − 1 and small
valuations for all other items. Futhermore, she prefers items with smaller indices,
except for item i− 1.

We claim that s is a pure Nash equilibrium under true valuation profile u
as well. Assume for contradiction that some agent i has a benefiting deviation,
which matches her with an item that she prefers more than i. But then, since
the set of items that she prefers more than i in both u and u′ is {1, . . . , i},
the same deviation would match her with a more preferred item under u as
well, contradicting the fact that s is a pure Nash equilibrium. It holds that
SWOPT (u′) ≥ n − 2 whereas the social welfare of M is at most 2/n and the
theorem follows. �

The mechanism that naively maximizes the sum of the reported valuations with
no regard to incentives, when equipped with a lexicographic tie-breaking rule
has pure Nash equilibria and also achieves the above ratio in the worst-case,
which means that the bounds are tight.

5 General Solution Concepts

In the previous sections, we employed the pure Nash equilibrium as the solu-
tion concept for bounding the inefficiency of mechanisms, mainly because of its
simplicity. Here, we describe how to extend our results to broader well-known
equilibrium concepts in the literature. Due to lack of space, we will only dis-
cuss the two most general solution concepts, the coarse correlated equilibrium
for complete information and the Bayes-Nash equilibrium for incomplete infor-
mation. Since other concepts (like the mixed-Nash equilibrium for instance) are
special cases of those two, it suffices to use those for our extensions.

Definition 2. Given a mechanism M , let q be a distribution over strategies.
Also, for any distribution ∆ let ∆−i denote the marginal distribution without
the ith index. Then a strategy profile q is called a

1. coarse correlated equilibrium if

E
s∼q

[ui(Mi(s))] ≥ E
s∼q

[ui(Mi((s
′
i, s−i)))],

2. Bayes-Nash equilibrium for a distribution ∆u where each (∆u)i is indepen-
dent, if when u ∼ ∆u then q(u) = ×iqi(ui) and for all ui in the support of
(∆u)i,

E
u−i,s∼q(u)

[ui(Mi(s))] ≥ E
u−i,s−i∼q−i(u−i)

[ui(Mi(s
′
i, s−i))]

where the given inequalities hold for all agents i, and (pure) deviating strategies
s′i. Also notice that for randomized mechanisms definitions are with respect to
an expectation over the random choices of the mechanism.

11



The coarse correlated and the Bayesian Price of Anarchy are defined similarly
to the pure Price of Anarchy.

Again, first we mention that we can obtain the extensions to Random Priority
rather straightforwardly, based on the fact that even when using probability
mixtures over strategies, an agent will always (in every realization) pick her
most preferred item among the set of available items when she is chosen. In
other words, any pure strategy in the support of the distribution will rank the
most preferred available item first, and the ordering of the remaining items does
not affect the distribution.

Theorem 5. The coarse correlated Price of Anarchy of Random Priority is
O(
√
n). The Bayesian Price of Anarchy of Random Priority is O(

√
n).

Proof. For the correlated Price of Anarchy, the argument is very similar to the
one used in the proof of Theorem 2. Again, if any strategy in the support of a
correlated equilibrium q misranks two items j and j′ for any agent i, it can only
be because agent i has 0 probability of receiving those items, otherwise agent i
would deviate to truthtelling, violating the equilibrium condition. The remaining
steps are exactly the same as in the proof of Theorem 2.

For the incomplete information case, consider any Bayes-Nash equilibrium
q(u) and let u be a any sampled valuation profile. The expected social welfare
of the Random Priority can be written as Eu

[
Es∼q(u) [ui(s)]

]
. Using the same

argument as the one in the proof of Theorem 2, we can lower bound the quantity

Es∼q(u) [ui(s)] by Ω
(
SWOPT (u)√

n

)
and the bound follows. �

Next, we turn to Probabilistic Serial and prove the Price of Anarchy guar-
antees, with respect to coarse correlated equilibria and Bayes-Nash equilibria.
Before we state our theorems however, we will briefly discuss the connection of
those extensions with the smoothness framework of Roughgarden [25]. Accord-
ing to the definition in [25], a game is (λ, µ)-smooth if it satisfies the following
condition

n∑
i=1

ui(s
∗
i , s−i) ≥ λSW (s∗)− µSW (s), (1)

where s∗ is a pure strategy profile that corresponds to the optimal allocation and
s is any pure strategy profile. It is not hard to see that a (λ, µ)-smooth game
has a Price of Anarchy bounded by (µ+ 1)/λ.

Since establishing that a game is smooth also implies a pure Price of Anarchy
bound, an alternative way of attempting to prove Theorem 1 would be to try
to show smoothness of the game induced by PS, for µ/λ =

√
n. However, this

seems to be a harder task than what we actually do, since in such a proof, one
would have to argue about the utilities of agents and possibly reason about the
relative preferences for other items, other than the item they are matched with
in the optimal allocation. Our approach only needs to consider those items, and
hence it seems to be simpler.

An added benefit to the smoothness framework is the existence of the ex-
tension theorem in [25], which states that for a (λ, µ)-smooth game, the Price

12



of Anarchy guarantee extends to broader solution concepts verbatim, without
any extra work. At first glance, one might think that proving smoothness for the
game induced by PS might be worth the extra effort, since we would get the ex-
tensions “for free”. A closer look at our proofs however shows that our approach
is very similar to the proof of the extension theorem but using an alternative,
simpler condition.

Specifically, the analysis in [25] uses Inequality 1 as a building block and
substitutes the inequality into the expectations that naturally appear when con-
sidering randomized strategies. This can be done because the condition applies to
all strategy profiles s, when s∗ is an optimal strategy profile. This is exactly what
we do as well, but we use the inequality tj(s

∗
i , s−i) ≥ 1

4 · tj(s) instead, which is
simpler but sufficient since it only applies to the game at hand. If OPTi(u) = j,
which is what we use in the proof of Theorem 1, then (s∗i , s−i) can be thought
of as a profile where an agent deviates to her strategy in the optimal profile and
hence the left-hand side of the inequality is analogous to the left-hand side of
Inequality 1. In a sense, the inequality tj(s

∗
i , s−i) ≥ 1

4 · tj(s), can be viewed as
a “smoothness equivalent” for the game induced by PS, which then allows us to
extend the results to broader solution concepts.

First, we extend Theorem 1 to the case where the solution concept is the
coarse correlated equilibrium.

Theorem 6. The coarse correlated Price of Anarchy of Probabilistic Serial is
O(
√
n).

Proof. Let u be any valuation profile and let i be any agent. Furthermore, let
j = OPTi(u) and let s′i be the pure strategy that places item j on top of agent i’s
preference list. By Lemma 1, the inequality tj(s

′
i, s−i) ≥ 1

4 tj(s) holds for every
strategy profile s. In particular, it holds for any pure strategy profile s where si
is in the support of the distribution of the mixed strategy qi of agent i, for any
coarse correlated equilibrium q.This implies that

E
s∼q

[ui(PSi(s))] ≥ E
s∼q

[ui(PSi(s
′
i, s−i))]

≥ E
s∼q

[uijtj(s
′
i, s−i))] ≥

1

4
uijtj(s).

where the last inequality holds by Lemma 1. Using this, we can use very similar
arguments to the arguments of the proof of Theorem 1 and obtain the bound.�

For the incomplete information setting, when valuations are drawn from some
publically known distributions, we can prove the same upper bound on the
Bayesian Price of Anarchy of the mechanism.

Theorem 7. The Bayesian Price of Anarchy of Probabilistic Serial is O(
√
n).

Proof. The proof is again similar to the proof of Theorem 1. Let u be a valuation
profile drawn from some distribution satisfying the unit-sum constraint. Let i
be any agent and let ju = OPTi(u), i ∈ [n]. Note that by a similar argument
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as the one used in the proof of Theorem 1, the expected social welfare of PS is
at least 1 and hence we can assume that Eu[SWOPT (u)] ≥ 2

√
2n + 1. Observe

that in any Bayes-Nash equilibrium q(u) it holds that

E
u

s∼q(u)
[ui(s)] = E

ui

 E
u−i

s∼q(u)

[ui(s)]


≥ E
ui

 E
u−i

s−i∼q−i(u−i)

[ui(s
′
i, s−i)]


≥ E
ui

 E
u−i

s−i∼q−i(u−i)

[uijutju(s′i, s−i)]


≥ E
ui

 E
u−i

s∼q(u)

[
1

4
uijutju(s)

]
=

1

4
E
u

s∼q(u)
[uijutju(s)]

where the last inequality holds by Lemma 1 since s′i denotes the strategy that
puts item ju on top of agent i’s preference list. Note that this can be a different
strategy for every different u that we sample. For notational convenience, we use
s′i to denote every such strategy. The expected social welfare at the Bayes-Nash
equilibrium is then at least

n∑
i=1

E
u,s∼q(u)

[ui(s)] ≥
1

4

∑
i∈[n]

E
u

s∼q(u)

[uijutju(s)]

≥ E
u

s∼q(u)

∑
i∈[n]

i

4n
uiju


≥ E

u
s∼q(u)

[
SWOPT (u)(SWOPT (u)− 1)

8n

]
= E

u

[
SWOPT (u)(SWOPT (u)− 1)

8n

]
≥

Eu

[
(SWOPT (u))2

]
− Eu [SWOPT (u)]

8n

≥ Eu[SWOPT (u)]

2
√

2n
,

and the bound follows. �
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6 Extensions

6.1 Price of Stability

Theorem 3 bounds the Price of Anarchy of all mechanisms. A more optimistic
(and hence stronger when proving lower bounds) measure of efficiency is the
Price of Stability, i.e. the worst-case ratio over all valuation profiles of the optimal
social welfare over the welfare attained at the best equilibrium.

We extend Theorem 3 to the Price of Stability of all mechanisms that satisfy
a “proportionality” property.

Let a1 �i a2 �i · · · �i an be the (possibly weak) preference ordering of agent
i. A random assignment vector pi for agent i stochastically dominates another
random assignment vector qi if

∑k
j=1 piaj ≥

∑k
j=1 qiaj , for all k = 1, 2, · · · , n.

The notation that we will use for this relation is pi �sdi qi.

Definition 3 (Safe strategy). Let M be a mechanism. A strategy si is a
safe strategy if for any strategy profile s−i of the other players, it holds that
Mi(si, s−i) �sdi

(
1
n ,

1
n , . . . ,

1
n

)
.

We will say that a mechanism M has a safe strategy if every agent i has a safe
strategy si in M . We now state our lower bound.

Theorem 8. The pure Price of Stability of any mechanism that has a safe strat-
egy is Ω(

√
n).

Proof. Let M be a mechanism and let I = {k + 1, . . . , n} be a subset of agents.
Let u be the following valuation profile.

– For all agents i ∈ I, let uij = 1
k for j = 1, · · · , k and uij = 0 otherwise.

– For all agents i /∈ I, let uii = 1 and uij = 0, j 6= i.

Now let s be a pure Nash equilibrium on profile u and let s′i be a safe strategy
of agent i. The expected utility of each agent i ∈ I in the pure Nash equilibrium
s is

E[ui(s)] =
∑
j∈[n]

pij(si, s−i)vij ≥
∑
j∈[n]

pij(s
′
i, s−i)vij

≥ 1

n

∑
j∈[n]

vij =
1

n
,

due to the fact that s is pure Nash equilibrium and s′i is a safe strategy of agent
i. On the other hand, the utility of agent i ∈ I can be calculated by E[ui(s)] =∑
j∈[n] pij(si, s−i)vij = (

∑k
j=1 pij)/k. Because s is a pure Nash equilibrium, it

holds that E[ui] ≥ 1/n, so we get that
∑k
j=1 pij ≥ k/n for all i ∈ I. As for the

rest of the agents,

∑
i∈N\I

k∑
j=1

pij = k −
∑
i∈I

k∑
j=1

pij ≤ k − (n− k)
k

n
=
k2

n
.
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This implies that the contribution to the social welfare from agents not in I is
at most k2/n and the expected social welfare of M will be at most 1 + (k2/n).
It holds that SWOPT (u) ≥ k and the bound follows by letting k =

√
n. �

Due to Theorem 8, in order to obtain an Ω(
√
n) bound for a mechanism M , it

suffices to prove that M has a safe strategy. In fact, most reasonable mechanisms,
including Random Priority and Probabilistic Serial, as well as all ordinal envy-
free mechanisms satisfy this property.

Definition 4 (Envy-freeness). A mechanism M is (ex-ante) envy-free if for
all agents i and r and all profiles s, it holds that

∑n
j=1 pijsij ≥

∑n
j=1 prjsrj.

Furthermore, if M is ordinal, then this implies pM,s
i �sdsi p

M,s
r .

Given the interpretation of a truth-telling safe strategy as a “proportionality”
property, the next lemma is not surprising.

Lemma 4. Let M be an ordinal, envy-free mechanism. Then for any agent i,
the truth-telling strategy ui is a safe strategy.

Proof. Let s = (ui, s−i) be the strategy profile in which agent i is truth-telling
and the rest of the agents are playing some strategies s−i. Since M is envy-free

and ordinal, it holds that
∑`
j=1 p

s
ij ≥

∑`
j=1 p

s
rj for all agents r ∈ {1, . . . , n} and

all ` ∈ {1, . . . , n}. Summing up these inequalities for agents r = 1, 2, . . . , n we
obtain

n
∑̀
j=1

psij ≥
∑̀
j=1

n∑
r=1

psrj = `,

which implies that
∑`
j=1 p

s
ij ≥ `

n , for all i ∈ {1, . . . , n}, and for all ` ∈ {1, . . . , n}.
�

Note that since Probabilistic Serial is ordinal and envy-free [9], by Lemma 4,
it has a safe strategy and hence Theorem 8 applies. It is not hard to see that
Random Priority has a safe strategy too.

Lemma 5. Random Priority has a safe strategy.

Proof. Since Random Priority first fixes an ordering of agents uniformly at ran-
dom, every agent i has a probability of 1/n to be selected first to choose an item,
a probability of 2/n to be selected first or second and so on. If the agent ranks

her items truthfully, then for every ` = 1, . . . , n, it holds that
∑`
i=1 pij ≥ `/n.�

In a sense, the safe strategy property is essential for the bound to hold; one
can show that the randomly dictatorial mechanism, that matches a uniformly
chosen agent with her most preferred item and the rest of the agents with items
based solely on that agent’s reports achieves a constant Price of Stability. On
the other hand, the Price of Anarchy of the mechanism is Ω(n). It would be
interesting to show whether Price of Anarchy guarantees imply Price of Stability
lower bounds in general.
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6.2 Unit-range representation

Our second extension is concerned with the other normalization that is also com-
mon in the literature [2,15,28], the unit-range representation, that is, maxj ui(j) =
1 and minj ui(j) = 0. First, the Price of Anarchy guarantees from Section 3 ex-
tend directly to the unit-range case. For Random Priority, since the results in [15]
hold for this normalization as well, we can apply the same techniques to prove
the bounds. For Probabilistic Serial, first, observe that Lemma 2 holds indepen-
dently of the representation. Secondly, in the proof of Theorem 1, it now holds
that

SWPS(u, s) ≥ 1

n

n∑
i=1

n∑
j=1

uij ≥ 1,

which is sufficient for bounding the Price of Anarchy when SWOPT (u) ≤
√
n.

Finally, the arguments for the case when SWOPT (u) ≤
√
n hold for both repre-

sentations.
Next, we present a Price of Anarchy lower bound for deterministic mech-

anisms. First, we prove the following lemma about the structure of equilibria
of deterministic mechanisms. Note that the lemma holds independently of the
choice of representation.

Lemma 6. The set of pure Nash equilibria of any deterministic mechanism is
the same for all valuation profiles that induce the same preference orderings of
valuations.

Proof. Let u and u′ be two different valuation profiles that induce the same
preference ordering. Let s be a pure Nash equilibrium under true valuation profile
u and assume for contradiction that it is not a pure Nash equilibrium under u′.
Then, there exists an agent i who by deviating from s is matched to a more
preferred item according to u′i. But that item would also be more preferred
according to ui and hence she would have an incentive to deviate from s under
true valuation profile u, contradicting the fact that s is a pure Nash equilibrium.
�

Using Lemma 6, we can then prove the following theorem.

Theorem 9. The Price of Anarchy of any deterministic mechanism that always
has pure Nash equilibria is Ω(n) for the unit-range representation.

Proof. Let M be a deterministic mechanism that always has a pure Nash equil-
brium and let u be a valuation profile such that for all agents i and i′, it holds
that ui = ui′ and uij > uik, for all items i < k. Let s be a pure Nash equilibrium
for this profile and assume without loss of generality that Mi(s) = i. By Lemma
6, s is a pure Nash equilibrium for any profile u that induces the above ordering
of valuations. In particular, it is a pure Nash equilibrium for a valuation profile
satisfying

– For agents i = 1, . . . , n2 , ui1 = 1 and uij <
1
n3 , for j > 1.
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– For agents i = n
2 + 1, . . . , n, uij > 1− 1

n3 for j = 1, . . . , n/2 and uij <
1
n3 for

j = n
2 + 1, . . . , n.

It holds that OPT (u) ≥ n
2 , whereas the social welfare of M is at most 2 and the

theorem follows. �

Again, similarly to the corresponding bound in Section 4, the mechanism that
naively maximizes the sum of the reported valuations has pure Nash equilibria
and achieves the above bound.

More importantly, it is not clear whether the general lower bound on the
Price of Anarchy of all mechanisms that we proved in Theorem 3 extends to
the unit-range representation as well. In fact, we do not know of any bound
for the unit-range case and proving one seems to be a quite complicated task.
As a first step in that direction, the following theorem obtains a lower bound
for ε-approximate (pure) Nash equilibria. A strategy profile is an ε-approximate
pure Nash equilibrium if no agent can deviate to another strategy and improve
her utility by more than ε. While the following result applies for any positive ε,
it is weaker than a corresponding result for exact equilibria.

Theorem 10. Let M be a mechanism and let ε ∈ (0, 1). The ε−approximate
Price of Anarchy of M is Ω(n1/4) for the unit-range representation.

Proof. Assume n = k2, where k ∈ N will be the size of a subset I of “important”
agents. We consider valuation profiles where, for some parameter δ ∈ (0, 1),

– all agents have value 1 for item 1,
– there is a subset I of agents with |I| = k for which any agent i ∈ I has value
δ2 for any item j ∈ {2, . . . , k + 1} and 0 for all other items,

– for agent i 6∈ I, i has value δ3 for items j ∈ {2, . . . , k+ 1} and 0 for all other
items.

Let u be such a valuation profile and let s be a Nash equilibrium. In the optimal
allocation members of I receive items {2, . . . , k + 1} and such an allocation has
social welfare kδ2 + 1.

First, we claim that there are k(1− 2δ) members of I whose payoffs in s are
at most δ; call this set X. If that were false, then there would be more than
2kδ members of I whose payoffs in s were more than δ. That would imply that
the social welfare of s was more than 2kδ2, which would contradict the optimal
social welfare attainable, for large enough n (specifically, n > 1/δ4).

Next, we claim that there are at least k(1 − 2δ) non-members of I whose
probability (in s) to receive any item in {1, . . . , k+ 1} is at most 4(k+ 1)/n; call
this set Y . To see this, observe that there are at least 3

4n agents who all have
probability ≤ 4/n to receive item 1. Furthermore, there are at least 3n/4 agents
who all have probability ≤ 4k/n to receive an item from the set 2, . . . , k + 1.
Hence there are at least n/2 agents whose probabilities to obtain these items
satisfy both properties.

We now consider the operation of swapping the valuations of the agents in
sets X and Y so that the members of I from X become non-members, and vice
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versa. We will argue that given that they were best-responding beforehand, they
are δ-best-responding afterwards. Consequently s is an δ-NE of the modified set
of agents. The optimum social welfare is unchanged by this operation since it
only involves exchanging the payoff functions of pairs of agents. We show that
the social welfare of s is some fraction of the optimal social welfare, that goes to
0 as n increases and δ decreases.

Let I ′ be the set of agents who, after the swap, have the higher utility of
δ2 for getting items from {2, . . . , k + 1}. That is, I ′ is the set of agents in Y ,
together with I minus the agents in X.

Following the above valuation swap, the agents in X are δ-best responding.
To see this, note that these agents have had a reduction to their utilities for
the outcome of receiving items from {2, . . . , k+ 1}. This means that a profitable
deviation for such agents should result in them being more likely to obtain item
1, in return for them being less likely to obtain an item from {2, . . . , k + 1}.
However they cannot have probability more than δ to receive item 1, since that
would contradict the property that their expected payoff was at most δ.

After the swap, the agents in Y are also δ-best responding. Again, these
agents have had their utilities increased from δ3 to δ2 for the outcome of receiving
an item from {2, . . . , k + 1}. Hence any profitable deviation for such an agent
would involve a reduction in the probability to get item 1 in return for an
increased probability to get an item from {2, . . . , k + 1}. However, since the
payoff for any item from {2, . . . , k+1} is only δ2, such a deviation pays less than
δ.

Finally, observe that the social welfare of s under the new profile (after the
swap) is at most 1+3kδ3. To see this, note that (by an earlier argument and the
definition of I ′) k(1− 2δ) members of I ′ have probability at most 4(k+ 1)/n to
receive any item from {1, . . . , k+1}. To upper bound the expected social welfare,
note that item 1 contributes 1 to the social welfare. Items in {2, . . . , k + 1}
contribute in total, δ2 times the expected number of members of I ′ who get
them, plus δ3 times the expected number of non-members of I ′ who get them,
which is at most δ2k2δ + δ3k(1− 2δ) which is less than 3kδ3.

Overall, the price of anarchy is at least (kδ2 + 1)/3kδ3, which is more than
1/δ. The statement of the theorem is obtained by choosing δ to be less than ε,
n large enough for the arguments to hold for the chosen δ, i.e. n > 1/δ4. �

7 Conclusion and Future Work

Our results are rather negative: we identify a non-constant lower bound on the
Price of Anarchy for one-sided matching, and find a matching upper bound
achieved by well-known ordinal mechanisms. However, such negative results are
important to understand the challenge faced by a social-welfare maximizer: for
example, we establish that it is not enough to elicit cardinal valuations, in order
to obtain good social welfare. It may be that better welfare guarantees should
use some assumption of truth-bias, or some assumption of additional structure
in agents’ preferences.
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An interesting direction of research would be to identify conditions on the
valuation space that allow for constant values of the Price of Anarchy or impose
some distributional assumption on the inputs and quantify the average loss in
welfare due to selfish behavior. For the general, worst-case setting, one question
raised is whether one can obtain Price of Anarchy or Price of Stability bounds
that match our upper bounds for the unit-range representation as well.
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