Advanced Algorithmic Techniques (COMP523)

Introduction to algorithms and basic complexity notions

Algorithm

- A set of instructions for solving a problem or performing a computation.
- Origin of the name: Latinisation of the name given by Persian scholar Muhammad ibn Musa al-Khwarizmi.

10	1	2	4	6	10	14	17	19	21	24	

10	2					

10	1	2		14			
						in a part of the	ļ
		۸					

10	2			17		
	na chéo tha c e					

10	1	2	4	6	10	14	17	19	21	24	
				*							

10	1	2	4	6	10	14	17	19	21	24	

10	1	2	4	6	10	14	17	19	21	24	

• Find if a number **x** exists in an **array** of **sorted numbers**.

10	1	2	4	6	10	14	17	19	21	24	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Ą						Ķ

• Yes, the number was found in the array!

2				

6	2	19	4	10	1	17	14	21	24

	2				

Given a sequence of numbers, put them in increasing order.

	6	2	19	4	10	1	17	14	21	24
-		4								

ls 2 < 6?

	2				

6				

	6					

2	6	19	4	10	1	17	14	21	24
		4							
	ls 19	< 6?							

	6					

2	6	19	4	10	1	17	21	24
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		4					

2	6	19	4	10	1	17	14	21	24
			A						
			ls 4 < 1	9?					

2	6	19	4	10	1	17	21	24
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		4					

2	6	4	19	10	1	17	14	21	24	
		*								

	6	4	19	10	1	17	14	21	24	
		ł								F

ls 4 < 6?

2	6	4	19	10	1	17	14	21	24	
		*								

4				

	2	4	6	19	10	1	17	14	21	
ļ										Ļ

Is 4 < 2?

4				

	2	4			14		
ļ							

Given a sequence of numbers, put them in increasing order.

2	4	6	19	10	1	17	14	21	24	
				A						

continues the same way...

Given a sequence of numbers, put them in increasing order.

2				

A

continues the same way...

2	6	19	4	10	1	17	14	21	24
	261		Ą						

2	6	19	4	10	17	14	21	24
			A					

2	6	4	10	1	17	14	21	
	1	 Ą	j=4					

2			10	1	17	14	24
		A	j=4				

2	6	19	4	10		14	21	24
	3 m		A	j=4				

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

2	4			17		
and the second sec						ļ

still in the while loop

Algorithmic techniques

- Brute force.
- Divide and Conquer.
- Greedy.
- Dynamic Programming.
- Integer linear program relaxation and rounding.
- Competitive analysis.
- Branch and Bound.

Types of algorithms

- Searching algorithms.
- Sorting algorithms.
- Graph algorithms.
- Approximation algorithms.
- Online algorithms.
- Randomised algorithms.
- Exponential-time algorithms.

What should we expect from algorithms?

- **Correctness:** It computes the desired output.
- **Termination:** Eventually terminates (or with high probability).

• Efficiency:

- The algorithm runs *fast* and/or uses *limited memory*.
- The algorithm produces a "good enough" outcome.

Correctness

- Let's look at the InsertionSort algorithm for sorting n numbers.
- Is it correct? Does it always produce a sorted sequence?
- Certainly seems to be the case, *intuitively*.
- How do we prove it *formally*?

• A loop invariant is a property that holds with respect to the loops executed by the algorithm.

- A loop invariant is a property that holds with respect to the loops executed by the algorithm.
- For a loop invariant, we must show:
 - Initialisation: It is true prior to the first iteration of the loop.
 - Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.
 - **Termination:** When the loop terminates, the invariant gives us a useful property for correctness.

- A loop invariant is a property that holds with respect to the loops executed by the algorithm.
- For a loop invariant, we must show:
 - Initialisation: It is true prior to the first iteration of the loop.
 - Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.
 - Termination: When the loop terminates, the invariant gives us a useful property for correctness.
- Quite reminiscent of mathematical induction.

1.	FOR $\mathbf{j} \leftarrow 2$ TO length[A]
2.	DO key $\leftarrow A[j]$
3.	{Put $A[j]$ into the sorted sequence $A[1 j - 1]$ }
4.	$i \leftarrow j - 1$
5.	WHILE $i > 0$ and $A[i] > \text{key}$
6.	DO $A[i+1] \leftarrow A[i]$
7.	$i \leftarrow i - 1$
8.	$A[i+1] \leftarrow \text{key}$

INSERTION_SORT (A)

 Loop invariant: The subarray A[1,...,j-1] consists of the elements originally in A[1,...,j-1] but in shorted order.

- Loop invariant: The subarray A[1,...,j-1] consists of the elements originally in A[1,...,j-1] but in shorted order.
- Initialisation: Before the first iteration, the subarray is A[1], which contains the first element and is trivially sorted.

- Loop invariant: The subarray A[1,...,j-1] consists of the elements originally in A[1,...,j-1] but in shorted order.
- Initialisation: Before the first iteration, the subarray is A[1], which contains the first element and is trivially sorted.
- Maintenance: We move A[j-1], A[j-2], A[j-3], ... by one position to the right, until we find the proper position for A[j]. The subarray A[1,...,j] contains the original elements and it is sorted.

- Loop invariant: The subarray A[1,...,j-1] consists of the elements originally in A[1,...,j-1] but in shorted order.
- Initialisation: Before the first iteration, the subarray is A[1], which contains the first element and is trivially sorted.
- Maintenance: We move A[j-1], A[j-2], A[j-3], ... by one position to the right, until we find the proper position for A[j]. The subarray A[1,...,j] contains the original elements and it is sorted.
- Termination: Termination happens when length[A] is reached, so the counter is j = n+1. The loop invariant for j = n+1 is the sorted sequence of the n numbers.

Running Time

- Different computers have different speeds.
- Random Access Machine (RAM) model.
- Instructions:
 - Arithmetic (add, subtract, multiply, etc).
 - Data movement (load, store, copy, etc).
 - Control (branch, subroutine call, return, etc).
- Each instruction is carried out in constant time.
- We can count the number of instructions, or the number of steps.

Example: Running Time of LinearSearch

• Find if a number **x** exists in an **array** of **sorted numbers**.

10	1	2	4	6	14			

• Find if a number **x** exists in an **array** of **sorted numbers**.

10	2					
		T NORTH RINK CAM				

• We read through the array until we find the number.

1	2		14			

- We read through the array until we find the number.
- For each element, we make a comparison.

	2					

- We read through the array until we find the number.
- For each element, we make a comparison.
- We need to initialise counters and write a for loop.

10 1 2 4 6 10 14 17 19 21 24			2								
--	--	--	---	--	--	--	--	--	--	--	--

- We read through the array until we find the number.
- For each element, we make a comparison.
- We need to initialise counters and write a for loop.
- Will certainly finish within c * n steps, where c is some large enough constant.

10	1	2	4	6	10	14	17	19	21	24

- We read through the array until we find the number.
- For each element, we make a comparison.
- We need to initialise counters and write a for loop.
- Will certainly finish within c * n steps, where c is some large enough constant.
- Does it require at least n steps in the worst case?

INSERTION_SORT (A)

```
FOR j \leftarrow 2 TO length[A]
1.
            DO key \leftarrow A[j]
2.
3.
                  {Put A[j] into the sorted sequence A[1 . . j - 1]}
4.
                 i \leftarrow j = 1
5.
                  WHILE i > 0 and A[i] > key
                              DO A[i+1] \leftarrow A[i]
6.
7.
                                     i \leftarrow i = 1
                   A[i+1] \leftarrow \text{key}
8.
```

INSERTION_SORT (A)

```
FOR j \leftarrow 2 TO length[A] n times
1.
2.
             DO key \leftarrow A[j]
3.
                  {Put A[j] into the sorted sequence A[1 . . j - 1]}
4.
                  i \leftarrow j = 1
5.
                   WHILE i > 0 and A[i] > key
                              DO A[i+1] \leftarrow A[i]
6.
                                     i \leftarrow i - 1
7.
                   A[i+1] \leftarrow \text{key}
8.
```

INSERTION_SORT (A)

```
FOR j \leftarrow 2 TO length[A] n times
1.
             DO key \leftarrow A[j] n-1 times
2.
                  {Put A[j] into the sorted sequence A[1 . . j - 1]}
3.
4.
                  i \leftarrow j = 1
5.
                   WHILE i > 0 and A[i] > key
                              DO A[i+1] \leftarrow A[i]
6.
7.
                                    i \leftarrow i - 1
                   A[i+1] \leftarrow \text{key}
8.
```

INSERTION_SORT (A)

FOR $j \leftarrow 2$ **TO** length[A] n times 1. **DO** key $\leftarrow A[j]$ n-1 times 2. {Put A[j] into the sorted sequence A[1 . . j - 1]} 3. $i \leftarrow j - 1$ n-1 times 4. **WHILE** i > 0 and A[i] > key5. **DO** $A[i+1] \leftarrow A[i]$ 6. 7. $i \leftarrow i = 1$ $A[i+1] \leftarrow \text{key}$ 8.

INSERTION_SORT (A)

```
1. FOR j \leftarrow 2 TO length[A] n times

2. DO key \leftarrow A[j] n-1 times

3. {Put A[j] into the sorted sequence A[1 . . j - 1]}

4. i \leftarrow j - 1 n-1 times

5. WHILE i > 0 and A[i] > key \sum_{j=2}^{n} t_j times

6. DO A[i+1] \leftarrow A[i]

7. i \leftarrow i - 1

8. A[i+1] \leftarrow key
```

INSERTION_SORT (A)

INSERTION_SORT (A)

INSERTION_SORT (A)

1. FOR
$$j \leftarrow 2$$
 TO length[A] n times
2. DO key $\leftarrow A[j]$ n-1 times
3. {Put $A[j]$ into the sorted sequence $A[1 . . j - 1]$ }
4. $i \leftarrow j - 1$ n-1 times
5. WHILE $i > 0$ and $A[i] > key \sum_{j=2}^{n} t_j$ times
6. DO $A[i+1] \leftarrow A[i] \qquad \sum_{j=2}^{n} (t_j - 1)$ times
7. $i \leftarrow i - 1 \qquad \sum_{j=2}^{n} (t_j - 1)$ times
8. $A[i+1] \leftarrow key$ n-1 times

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7 (n-1)$$

INSERTION_SORT (A)

1. FOR
$$j \leftarrow 2$$
 TO length[A] n times
2. DO key $\leftarrow A[j]$ n-1 times
3. {Put $A[j]$ into the sorted sequence $A[1 . . j - 1]$ }
4. $i \leftarrow j - 1$ n-1 times
5. WHILE $i > 0$ and $A[i] > key \sum_{j=2}^{n} t_j$ times
6. DO $A[i+1] \leftarrow A[i] \qquad \sum_{j=2}^{n} (t_j - 1)$ times
7. $i \leftarrow i - 1 \qquad \sum_{j=2}^{n} (t_j - 1)$ times
8. $A[i+1] \leftarrow key$ n-1 times

for loops, the tests are executed one more time than the loop body

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7 (n-1)$$

Best case?

INSERTION_SORT (A)

1. FOR
$$j \leftarrow 2$$
 TO length[A] n times
2. DO key $\leftarrow A[j]$ n-1 times
3. {Put $A[j]$ into the sorted sequence $A[1 . . j - 1]$ }
4. $i \leftarrow j - 1$ n-1 times
5. WHILE $i > 0$ and $A[i] > key \sum_{j=2}^{n} t_j$ times
6. DO $A[i+1] \leftarrow A[i] = \sum_{j=2}^{n} (t_j - 1)$ times
7. $i \leftarrow i - 1 = \sum_{j=2}^{n} (t_j - 1)$ times
8. $A[i+1] \leftarrow key$ n-1 times

for loops, the tests are executed one more time than the loop body

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7 (n-1)$$

Best case? Sorted array, $t_j = 1$

INSERTION_SORT (A)

1. FOR
$$j \leftarrow 2$$
 TO length[A] n times
2. DO key $\leftarrow A[j]$ n-1 times
3. {Put $A[j]$ into the sorted sequence $A[1 . . j - 1]$ }
4. $i \leftarrow j - 1$ n-1 times
5. WHILE $i > 0$ and $A[i] > key \sum_{j=2}^{n} t_j$ times
6. DO $A[i+1] \leftarrow A[i] \qquad \sum_{j=2}^{n} (t_j - 1)$ times
7. $i \leftarrow i - 1 \qquad \sum_{j=2}^{n} (t_j - 1)$ times
8. $A[i+1] \leftarrow key$ n-1 times

for loops, the tests are executed one more time than the loop body

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7 (n-1)$$

Best case? Sorted array, $t_j = 1$

Worst case?

INSERTION_SORT (A)

1. FOR
$$j \leftarrow 2$$
 TO length[A] n times
2. DO key $\leftarrow A[j]$ n-1 times
3. {Put $A[j]$ into the sorted sequence $A[1 . . j - 1]$ }
4. $i \leftarrow j - 1$ n-1 times
5. WHILE $i > 0$ and $A[i] > key \sum_{j=2}^{n} t_j$ times
6. DO $A[i+1] \leftarrow A[i] \sum_{j=2}^{n} (t_j - 1)$ times
7. $i \leftarrow i - 1 \sum_{j=2}^{n} (t_j - 1)$ times
8. $A[i+1] \leftarrow key$ n-1 times

for loops, the tests are executed one more time than the loop body

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7 (n-1)$$

Best case? Sorted array, $t_j = 1$

Worst case? Reverse sorted array, $t_j = j$

INSERTION_SORT (A)

1. FOR
$$j \leftarrow 2$$
 TO length[A] n times
2. DO key $\leftarrow A[j]$ n-1 times
3. {Put $A[j]$ into the sorted sequence $A[1 . . j - 1]$ }
4. $i \leftarrow j - 1$ n-1 times
5. WHILE $i > 0$ and $A[i] > key \sum_{j=2}^{n} t_j$ times
6. DO $A[i+1] \leftarrow A[i] \sum_{j=2}^{n} (t_j - 1)$ times
7. $i \leftarrow i - 1 \sum_{j=2}^{n} (t_j - 1)$ times
8. $A[i+1] \leftarrow key$ n-1 times

for loops, the tests are executed one more time than the loop body

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7 (n-1)$$

Best case?

Sorted array,
$$t_j=1$$

Bounded by some CN for some constant c

Worst case? Reverse sorted array, $t_j = j$

INSERTION_SORT (A)

1. FOR
$$j \leftarrow 2$$
 TO length[A] n times
2. DO key $\leftarrow A[j]$ n-1 times
3. {Put $A[j]$ into the sorted sequence $A[1 . . j - 1]$ }
4. $i \leftarrow j - 1$ n-1 times
5. WHILE $i > 0$ and $A[i] > key \sum_{j=2}^{n} t_j$ times
6. DO $A[i+1] \leftarrow A[i] \qquad \sum_{j=2}^{n} (t_j - 1)$ times
7. $i \leftarrow i - 1 \qquad \sum_{j=2}^{n} (t_j - 1)$ times
8. $A[i+1] \leftarrow key$ n-1 times

for loops, the tests are executed one more time than the loop body

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7 (n-1)$$

Best case?

Sorted array,
$$t_j = 1$$

Worst case? Reverse sorted array, $t_j = j$

Bounded by some CN for some constant c

Bounded by some cn^2 for some constant c

Memory Usage

- Each memory cell can hold one element of the input.
- Total memory usage = Memory used to hold the input + extra memory used by the algorithm (auxiliary memory).
- What is the total and the auxiliary memory usage of LinearSearch?
- What is the total and the auxiliary memory usage of InsertionSort?

• **Convention:** When we say "the running time of Algorithm A", we mean the worst-case running time, over all possible inputs to the algorithm.

- **Convention:** When we say "the running time of Algorithm A", we mean the worst-case running time, over all possible inputs to the algorithm.
- We can also measure the best-case running time, over all possible inputs to the problem.

- **Convention:** When we say "the running time of Algorithm A", we mean the worst-case running time, over all possible inputs to the algorithm.
- We can also measure the best-case running time, over all possible inputs to the problem.
- In between: average-case running time.
 - Running time of the algorithm on inputs which are chosen at random from some distribution.
 - The appropriate distribution depends on the application.
 - The analysis can be difficult.

INSERTION_SORT (A)

INSERTION_SORT (A)

for loops, the tests are executed one more time than the loop body

• Select an input uniformly at random from all possible sequences with n numbers.

INSERTION_SORT (A)

- Select an input uniformly at random from all possible sequences with n numbers.
- On average, key will be smaller than half of the elements in A[1,...,j].

INSERTION_SORT (A)

- Select an input uniformly at random from all possible sequences with n numbers.
- On average, key will be smaller than half of the elements in A[1,...,j].
- The while loop will look "halfway" through the sorted subarray A[1,...,j].

INSERTION_SORT (A)

- Select an input uniformly at random from all possible sequences with n numbers.
- On average, key will be smaller than half of the elements in A[1,...,j].
- The while loop will look "halfway" through the sorted subarray A[1,...,j].
- This means that $\ t_j = rac{\jmath}{2}$

INSERTION_SORT (A)

- Select an input uniformly at random from all possible sequences with n numbers.
- On average, key will be smaller than half of the elements in A[1,...,j].
- The while loop will look "halfway" through the sorted subarray A[1,...,j].
- This means that $t_j=rac{\jmath}{2}$ Bounded by some cn^2 for some constant c

- When n becomes large, it makes less of a difference if an algorithm takes 2n or 3n steps to finish.
- In particular, **3logn** steps are fewer than **2n** steps.
- We would like to avoid having to calculate the precise constants.
- We use asymptotic notation.

 $\mathbf{O}(\mathbf{g}(\mathbf{n})) = \mathbf{f}(\mathbf{n})$: there exist positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

 $\Omega(\mathbf{g}(\mathbf{n})) = \mathbf{f}(\mathbf{n})$: there exist positive constants c and n_0 such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$.

 $\Theta(\mathbf{g}(\mathbf{n})) = \mathbf{f}(\mathbf{n})$: there exist positive constants c_1, c_2 and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$.

 $\mathbf{o}(\mathbf{g}(\mathbf{n})) = \mathbf{f}(\mathbf{n})$: for any constant c > 0, there exists a constant $n_0 > 0$ such that $0 \le f(n) < cg(n)$ for all $n \ge n_0$.

 $\mathbf{o}(\mathbf{g}(\mathbf{n})) = \mathbf{f}(\mathbf{n})$: for any constant c > 0, there exists a constant $n_0 > 0$ such that $0 \le cg(n) < f(n)$ for all $n \ge n_0$.

 $\mathbf{O}(\mathbf{g}(\mathbf{n})) = \mathbf{f}(\mathbf{n})$: there exist positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

- For sufficiently large inputs, there is a constant such that c g(n) is not smaller than f(n).
- For example, for sufficiently large inputs, 2n is larger than 3logn. Therefore, 3log n = O(n).
- Intuitively, g(n) grows "not slower" than f(n).
- Use: If we can upper bound the running time of an algorithm by c*g(n), where c is some constant and g(•) is a function of the input, then we can say that the running time is O(g(n)).

 $\Omega(\mathbf{g}(\mathbf{n})) = \mathbf{f}(\mathbf{n})$: there exist positive constants c and n_0 such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$.

- For sufficiently large inputs, there is a constant such that c g(n) is not larger than f(n).
- For example, for sufficiently large inputs, 3logn is smaller than 2n. Therefore, $2n = \Omega(\log n)$.
- Intuitively, g(n) grows "not faster" than f(n).
- Use: If we can lower bound the running time of an algorithm by c*g(n), where c is some constant and g(•) is a function of the input, then we can say that the running time is Ω(g(n)).

 $\Theta(\mathbf{g}(\mathbf{n})) = \mathbf{f}(\mathbf{n})$: there exist positive constants c_1, c_2 and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$.

- If a function is both O(g(n)) and $\Omega(g(n))$.
- Use: If we can show that the running time of an algorithm is lower bounded by c1*g(n) and upper bounded by c2*g(n) for some constants c1 and c2 and some function g(•) of n, then we can say that the running time is O(g(n)).

INSERTION_SORT (A)

1. FOR
$$j \leftarrow 2$$
 TO length[A] n times
2. DO key $\leftarrow A[j]$ n-1 times
3. {Put $A[j]$ into the sorted sequence $A[1 . . j - 1]$ }
4. $i \leftarrow j - 1$ n-1 times
5. WHILE $i > 0$ and $A[i] > key \sum_{j=2}^{n} t_j$ times
6. DO $A[i+1] \leftarrow A[i] = \sum_{j=2}^{n} (t_j - 1)$ times
7. $i \leftarrow i - 1 = \sum_{j=2}^{n} (t_j - 1)$ times
8. $A[i+1] \leftarrow key$ n-1 times

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7 (n-1)$$

Best case?

Sorted array,
$$t_j = 1$$

Worst case? Reverse sorted array, $t_j = j$

Bounded by some CN for some constant c

Bounded by some cn^2 for some constant c

INSERTION_SORT (A)

1. FOR
$$j \leftarrow 2$$
 TO length[A] n times
2. DO key $\leftarrow A[j]$ n-1 times
3. {Put $A[j]$ into the sorted sequence $A[1 . . j - 1]$ }
4. $i \leftarrow j - 1$ n-1 times
5. WHILE $i > 0$ and $A[i] > key \sum_{j=2}^{n} t_j$ times
6. DO $A[i+1] \leftarrow A[i] = \sum_{j=2}^{n} (t_j - 1)$ times
7. $i \leftarrow i - 1 = \sum_{j=2}^{n} (t_j - 1)$ times
8. $A[i+1] \leftarrow key$ n-1 times

What is the asymptotic complexity of InsertionSort?

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7 (n-1)$$

Best case?

Sorted array,
$$t_j = 1$$

Worst case? Reverse sorted array, $t_j = j$

Bounded by some CN for some constant c

Bounded by some cn^2 for some constant c

 $\mathbf{o}(\mathbf{g}(\mathbf{n})) = \mathbf{f}(\mathbf{n})$: for any constant c > 0, there exists a constant $n_0 > 0$ such that $0 \le f(n) < cg(n)$ for all $n \ge n_0$.

- The bound holds for sufficiently large inputs and for any constant c.
- Equivalent interpretation: $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$
- As n approaches infinity, *f(n)* becomes insignificant compared to *g(n)*.
- For example: $2n = o(n^2)$

 $\mathbf{o}(\mathbf{g}(\mathbf{n})) = \mathbf{f}(\mathbf{n})$: for any constant c > 0, there exists a constant $n_0 > 0$ such that $0 \le cg(n) < f(n)$ for all $n \ge n_0$.

- The bound holds for sufficiently large inputs and for any constant c.
- Equivalent interpretation: $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty.$
- As n approaches infinity, g(n) becomes insignificant compared to f(n).
- For example: $4n^2 = \omega(n)$

Examples

 $5n^3 + 100 = O(n^3)$ $5n^3 + 100 = \Omega(n^3)$ $\log n = o(n^5)$ $n^5 = o(2^n)$ $\log(4n) = \log n + \log 4 = O(\log n)$ $\log(n^4) = 4\log n = O(\log n)$ $(4n)^3 = 64n^4 = O(n^3)$ $(n^4)^3 = n^1 2 = \omega(n^3)$ $3^{(4n)} = 81^n = \omega(3^n)$

Running time hierarchy

$O(\log n)$	O(n)	$O(n\log n)$	$O(n^2)$	$O(n^{lpha})$	$O(c^n)$
logarithmic	linear		quadratic	polynomial	exponential
The algorithm does not even read the whole input.	The algorithm accesses the input only a constant number of times.	The algorithm splits the inputs into two pieces of similar size, solves each part and merges the solutions.	The algorithm considers pairs of elements.	The algorithm performs many nested loops.	The algorithm considers many subsets of the input elements.
constant	O(1)	superlinear	$\omega(n)$		
superconstant	$\omega(1)$	superpolynomial	$\omega(n^{lpha})$		
sublinear	o(n)	subexponential	$o(c^n)$		