
Advanced Algorithmic Techniques
(COMP523)

Introduction to algorithms and basic complexity notions

Algorithm

• A set of instructions for solving a
problem or performing a
computation.

• Origin of the name: Latinisation of the
name given by Persian scholar
Muhammad ibn Musa al-Khwarizmi.

Example: Searching

• Find if a number x exists in an array of sorted numbers.

10 106421 14 17 19 21 24

Example: Searching

• Find if a number x exists in an array of sorted numbers.

10 106421 14 17 19 21 24

Example: Searching

• Find if a number x exists in an array of sorted numbers.

10 106421 14 17 19 21 24

Example: Searching

• Find if a number x exists in an array of sorted numbers.

10 106421 14 17 19 21 24

Example: Searching

• Find if a number x exists in an array of sorted numbers.

10 106421 14 17 19 21 24

Example: Searching

• Find if a number x exists in an array of sorted numbers.

10 106421 14 17 19 21 24

Example: Searching

• Find if a number x exists in an array of sorted numbers.

10 106421 14 17 19 21 24

Example: Searching

• Find if a number x exists in an array of sorted numbers.

10 106421 14 17 19 21 24

• Yes, the number was found in the array!

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Is 2 < 6?

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Is 19 < 6?

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Is 4 < 19?

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Is 4 < 6?

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

10642 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

10642 1 141719 21 24

Is 4 < 2?

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

10642 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

10642 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

10642 1 141719 21 24

continues the same way…

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

continues the same way…

106421 14 17 19 21 24

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

i=3

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

i=3

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

i=3

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

i=3 A[3] = 19 > key = 4

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

i=3 A[3] = 19 > key = 4

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

i=3 A[3] = 19 > key = 4

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

i=3 A[3] = 19 > key = 4
A[4] = 19, i = 2

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

i=3 A[3] = 19 > key = 4
A[4] = 19, i = 2

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

i=3 A[3] = 19 > key = 4
A[4] = 19, i = 2

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4still in the while loop

i=2

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4still in the while loop

i=2 A[2] = 6 > key = 4

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4still in the while loop

i=2 A[2] = 6 > key = 4
A[3] = 6, i = 1

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

10642 1 141719 21 24

j=4
key=4still in the while loop

i=2 A[2] = 6 > key = 4
A[3] = 6, i = 1

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

10642 1 141719 21 24

j=4
key=4still in the while loop

i=2

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

10642 1 141719 21 24

j=4
key=4still in the while loop

i=2 A[1] = 2 < key = 4

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

10642 1 141719 21 24

j=4
key=4still in the while loop

i=2

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

10642 1 141719 21 24

still in the while loop

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

10642 1 141719 21 24

still in the while loop j=5

Algorithmic techniques
• Brute force.

• Divide and Conquer.

• Greedy.

• Dynamic Programming.

• Integer linear program relaxation and rounding.

• Competitive analysis.

• Branch and Bound.

Types of algorithms
• Searching algorithms.

• Sorting algorithms.

• Graph algorithms.

• Approximation algorithms.

• Online algorithms.

• Randomised algorithms.

• Exponential-time algorithms.

What should we expect
from algorithms?

• Correctness: It computes the desired output.

• Termination: Eventually terminates (or with high
probability).

• Efficiency:

• The algorithm runs fast and/or uses limited memory.

• The algorithm produces a “good enough” outcome.

Correctness

• Let’s look at the InsertionSort algorithm for sorting n
numbers.

• Is it correct? Does it always produce a sorted sequence?

• Certainly seems to be the case, intuitively.

• How do we prove it formally?

Loop invariance

Loop invariance
• A loop invariant is a property that holds with respect to the loops

executed by the algorithm.

Loop invariance
• A loop invariant is a property that holds with respect to the loops

executed by the algorithm.

• For a loop invariant, we must show:

• Initialisation: It is true prior to the first iteration of the loop.

• Maintenance: If it is true before an iteration of the loop, it
remains true before the next iteration.

• Termination: When the loop terminates, the invariant gives us a
useful property for correctness.

Loop invariance
• A loop invariant is a property that holds with respect to the loops

executed by the algorithm.

• For a loop invariant, we must show:

• Initialisation: It is true prior to the first iteration of the loop.

• Maintenance: If it is true before an iteration of the loop, it
remains true before the next iteration.

• Termination: When the loop terminates, the invariant gives us a
useful property for correctness.

• Quite reminiscent of mathematical induction.

Loop invariance for InsertionSort

Loop invariance for InsertionSort

• Loop invariant: The subarray A[1,…,j-1] consists of the elements originally in A[1,…,j-1] but
in shorted order.

Loop invariance for InsertionSort

• Loop invariant: The subarray A[1,…,j-1] consists of the elements originally in A[1,…,j-1] but
in shorted order.

• Initialisation: Before the first iteration, the subarray is A[1], which contains the first element
and is trivially sorted.

Loop invariance for InsertionSort

• Loop invariant: The subarray A[1,…,j-1] consists of the elements originally in A[1,…,j-1] but
in shorted order.

• Initialisation: Before the first iteration, the subarray is A[1], which contains the first element
and is trivially sorted.

• Maintenance: We move A[j-1], A[j-2], A[j-3], … by one position to the right, until we find the
proper position for A[j]. The subarray A[1,…,j] contains the original elements and it is sorted.

Loop invariance for InsertionSort

• Loop invariant: The subarray A[1,…,j-1] consists of the elements originally in A[1,…,j-1] but
in shorted order.

• Initialisation: Before the first iteration, the subarray is A[1], which contains the first element
and is trivially sorted.

• Maintenance: We move A[j-1], A[j-2], A[j-3], … by one position to the right, until we find the
proper position for A[j]. The subarray A[1,…,j] contains the original elements and it is sorted.

• Termination: Termination happens when length[A] is reached, so the counter is j = n+1. The
loop invariant for j = n+1 is the sorted sequence of the n numbers.

Running Time
• Different computers have different speeds.

• Random Access Machine (RAM) model.

• Instructions:

• Arithmetic (add, subtract, multiply, etc).

• Data movement (load, store, copy, etc).

• Control (branch, subroutine call, return, etc).

• Each instruction is carried out in constant time.

• We can count the number of instructions, or the number of steps.

Example: Running Time of LinearSearch

• Find if a number x exists in an array of sorted numbers.

10 106421 14 17 19 21 24

Example: Running Time of LinearSearch

• Find if a number x exists in an array of sorted numbers.

10 106421 14 17 19 21 24

• We read through the array until we find the number.

Example: Running Time of LinearSearch

• Find if a number x exists in an array of sorted numbers.

10 106421 14 17 19 21 24

• We read through the array until we find the number.

• For each element, we make a comparison.

Example: Running Time of LinearSearch

• Find if a number x exists in an array of sorted numbers.

10 106421 14 17 19 21 24

• We read through the array until we find the number.

• For each element, we make a comparison.

• We need to initialise counters and write a for loop.

Example: Running Time of LinearSearch

• Find if a number x exists in an array of sorted numbers.

10 106421 14 17 19 21 24

• We read through the array until we find the number.

• For each element, we make a comparison.

• We need to initialise counters and write a for loop.

• Will certainly finish within c * n steps, where c is some large enough constant.

Example: Running Time of LinearSearch

• Find if a number x exists in an array of sorted numbers.

10 106421 14 17 19 21 24

• We read through the array until we find the number.

• For each element, we make a comparison.

• We need to initialise counters and write a for loop.

• Will certainly finish within c * n steps, where c is some large enough constant.

• Does it require at least n steps in the worst case?

Example: Running Time of InsertionSort

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Best case?

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Best case? Sorted array, tj = 1

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Best case? Sorted array, tj = 1

Worst case?

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Best case? Sorted array, tj = 1

Worst case? Reverse sorted array, tj = j

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Best case? Sorted array, tj = 1

Worst case? Reverse sorted array, tj = j

Bounded by some for some constant ccn

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Best case? Sorted array, tj = 1

Worst case? Reverse sorted array, tj = j

Bounded by some for some constant ccn

 Bounded by some for some constant ccn2

Memory Usage
• Each memory cell can hold one element of the input.

• Total memory usage = Memory used to hold the input +
extra memory used by the algorithm (auxiliary memory).

• What is the total and the auxiliary memory usage of
LinearSearch?

• What is the total and the auxiliary memory usage of
InsertionSort?

Worst vs Best vs Average Case

Worst vs Best vs Average Case

• Convention: When we say “the running time of Algorithm A”, we mean
the worst-case running time, over all possible inputs to the algorithm.

Worst vs Best vs Average Case

• Convention: When we say “the running time of Algorithm A”, we mean
the worst-case running time, over all possible inputs to the algorithm.

• We can also measure the best-case running time, over all possible
inputs to the problem.

Worst vs Best vs Average Case

• Convention: When we say “the running time of Algorithm A”, we mean
the worst-case running time, over all possible inputs to the algorithm.

• We can also measure the best-case running time, over all possible
inputs to the problem.

• In between: average-case running time.

• Running time of the algorithm on inputs which are chosen at
random from some distribution.

• The appropriate distribution depends on the application.

• The analysis can be difficult.

Example: Average Running Time of
InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

Example: Average Running Time of
InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

• Select an input uniformly at random from all possible sequences with n numbers.

Example: Average Running Time of
InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

• Select an input uniformly at random from all possible sequences with n numbers.

• On average, key will be smaller than half of the elements in A[1,…,j].

Example: Average Running Time of
InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

• Select an input uniformly at random from all possible sequences with n numbers.

• On average, key will be smaller than half of the elements in A[1,…,j].

• The while loop will look “halfway” through the sorted subarray A[1,…,j].

Example: Average Running Time of
InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

• Select an input uniformly at random from all possible sequences with n numbers.

• On average, key will be smaller than half of the elements in A[1,…,j].

• The while loop will look “halfway” through the sorted subarray A[1,…,j].

• This means that tj =
j

2

Example: Average Running Time of
InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

• Select an input uniformly at random from all possible sequences with n numbers.

• On average, key will be smaller than half of the elements in A[1,…,j].

• The while loop will look “halfway” through the sorted subarray A[1,…,j].

• This means that tj =
j

2 Bounded by some for some constant ccn2

Asymptotic Notation

• When n becomes large, it makes less of a difference if an
algorithm takes 2n or 3n steps to finish.

• In particular, 3logn steps are fewer than 2n steps.

• We would like to avoid having to calculate the precise
constants.

• We use asymptotic notation.

Asymptotic Notation
O(g(n)) = f(n) : there exist positive constants c and n0 such that

0 f(n) cg(n) for all n � n0.

⌦(g(n)) = f(n) : there exist positive constants c and n0 such that

0 cg(n) f(n) for all n � n0.

⇥(g(n)) = f(n) : there exist positive constants c1, c2 and n0 such that

0 c1g(n) f(n) c2g(n) for all n � n0.

o(g(n)) = f(n) : for any constant c > 0, there exists a constant

n0 > 0 such that 0 f(n) < cg(n) for all n � n0.

o(g(n)) = f(n) : for any constant c > 0, there exists a constant

n0 > 0 such that 0 cg(n) < f(n) for all n � n0.

Asymptotic Notation
O(g(n)) = f(n) : there exist positive constants c and n0 such that

0 f(n) cg(n) for all n � n0.

• For sufficiently large inputs, there is a constant such that c g(n) is
not smaller than f(n).

• For example, for sufficiently large inputs, 2n is larger than 3logn.
Therefore, 3log n = O(n).

• Intuitively, g(n) grows “not slower” than f(n).

• Use: If we can upper bound the running time of an algorithm by
c*g(n), where c is some constant and g(•) is a function of the
input, then we can say that the running time is O(g(n)).

Asymptotic Notation

• For sufficiently large inputs, there is a constant such that c g(n) is
not larger than f(n).

• For example, for sufficiently large inputs, 3logn is smaller than
2n. Therefore, 2n = Ω(logn).

• Intuitively, g(n) grows “not faster” than f(n).

• Use: If we can lower bound the running time of an algorithm by
c*g(n), where c is some constant and g(•) is a function of the
input, then we can say that the running time is Ω(g(n)).

⌦(g(n)) = f(n) : there exist positive constants c and n0 such that

0 cg(n) f(n) for all n � n0.

Asymptotic Notation

• If a function is both O(g(n)) and Ω(g(n)).

• Use: If we can show that the running time of an algorithm
is lower bounded by c1*g(n) and upper bounded by
c2*g(n) for some constants c1 and c2 and some function
g(•) of n, then we can say that the running time is Θ(g(n)).

⇥(g(n)) = f(n) : there exist positive constants c1, c2 and n0 such that

0 c1g(n) f(n) c2g(n) for all n � n0.

Example: Running Time of InsertionSort

n times
n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Best case? Sorted array, tj = 1

Worst case? Reverse sorted array, tj = j

Bounded by some for some constant ccn

 Bounded by some for some constant ccn2

Example: Running Time of InsertionSort

n times
n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Best case? Sorted array, tj = 1

Worst case? Reverse sorted array, tj = j

Bounded by some for some constant ccn

 Bounded by some for some constant ccn2

What is the asymptotic
complexity of InsertionSort?

Asymptotic Notation

• The bound holds for sufficiently large inputs and for any
constant c.

• Equivalent interpretation:

• As n approaches infinity, f(n) becomes insignificant
compared to g(n).

• For example:

lim
n!1

f(n)

g(n)
= 0.

2n = o(n2)

o(g(n)) = f(n) : for any constant c > 0, there exists a constant

n0 > 0 such that 0 f(n) < cg(n) for all n � n0.

Asymptotic Notation

• The bound holds for sufficiently large inputs and for any
constant c.

• Equivalent interpretation:

• As n approaches infinity, g(n) becomes insignificant
compared to f(n).

• For example:

lim
n!1

f(n)

g(n)
= 1.

4n2 = !(n)

o(g(n)) = f(n) : for any constant c > 0, there exists a constant

n0 > 0 such that 0 cg(n) < f(n) for all n � n0.

Examples
5n3

+ 100 = O(n3
)

5n3
+ 100 = ⌦(n3

)

log n = o(n5
)

n5
= o(2n)

log(4n) = log n+ log 4 = O(log n)

log(n4
) = 4 log n = O(log n)

(4n)3 = 64n4
= O(n3

)

(n4
)

3
= n1

2 = !(n3
)

3

(4n)
= 81

n
= !(3n)

Running time hierarchy

O(log n) O(n) O(n log n) O(n2) O(n↵) O(cn)

logarithmic linear quadratic polynomial exponential

The algorithm

does not even

read the

whole input.

The algorithm

accesses the

input only

a constant

number of

times.

The algorithm

splits the inputs

into two pieces

of similar size,

solves each part

and merges the

solutions.

The algorithm

considers pairs

of elements.

The algorithm

performs many

nested loops.

The algorithm

considers many

subsets of the

input elements.

constant O(1)

superconstant !(1)

sublinear o(n)

superlinear !(n)

!(n↵)superpolynomial

o(cn)subexponential

