
Advanced Algorithmic Techniques  
(COMP523)

Introduction to algorithms and basic complexity notions



Algorithm

• A set of instructions for solving a 
problem or performing a 
computation. 

• Origin of the name: Latinisation of the 
name given by Persian scholar 
Muhammad ibn Musa al-Khwarizmi.
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Example: Searching

• Find if a number x exists in an array of sorted numbers. 

10 106421 14 17 19 21 24

• Yes, the number was found in the array!



Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24



Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24



Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24



Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Is 2 < 6?



Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24



Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24



Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24



Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Is 19 < 6?



Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24



Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24



Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Is 4 < 19?



Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24



Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24



Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Is 4 < 6?



Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24



Example: Sorting

• Given a sequence of numbers, put them in increasing order.

10642 1 141719 21 24



Example: Sorting

• Given a sequence of numbers, put them in increasing order.

10642 1 141719 21 24

Is 4 < 2?



Example: Sorting

• Given a sequence of numbers, put them in increasing order.

10642 1 141719 21 24



Example: Sorting

• Given a sequence of numbers, put them in increasing order.

10642 1 141719 21 24



Example: Sorting

• Given a sequence of numbers, put them in increasing order.

10642 1 141719 21 24

continues the same way…
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• Given a sequence of numbers, put them in increasing order.

continues the same way…

106421 14 17 19 21 24
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j=4
key=4still in the while loop

i=2 A[2] = 6 > key = 4
A[3] = 6, i = 1
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Describing algorithms: 
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

10642 1 141719 21 24

still in the while loop j=5



Algorithmic techniques
• Brute force.


• Divide and Conquer.


• Greedy.


• Dynamic Programming.


• Integer linear program relaxation and rounding.


• Competitive analysis.


• Branch and Bound.



Types of algorithms
• Searching algorithms.


• Sorting algorithms.


• Graph algorithms.


• Approximation algorithms.


• Online algorithms.


• Randomised algorithms.


• Exponential-time algorithms.



What should we expect 
from algorithms?

• Correctness: It computes the desired output.


• Termination: Eventually terminates (or with high 
probability).


• Efficiency: 

• The algorithm runs fast and/or uses limited memory.


• The algorithm produces a “good enough” outcome.



Correctness

• Let’s look at the InsertionSort algorithm for sorting n 
numbers.


• Is it correct? Does it always produce a sorted sequence?


• Certainly seems to be the case, intuitively. 

• How do we prove it formally?



Loop invariance
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Loop invariance
• A loop invariant is a property that holds with respect to the loops 

executed by the algorithm.

• For a loop invariant, we must show:


• Initialisation: It is true prior to the first iteration of the loop.


• Maintenance: If it is true before an iteration of the loop, it 
remains true before the next iteration.


• Termination: When the loop terminates, the invariant gives us a 
useful property for correctness.

• Quite reminiscent of mathematical induction.
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Loop invariance for InsertionSort

• Loop invariant: The subarray A[1,…,j-1] consists of the elements originally in A[1,…,j-1] but 
in shorted order.

• Initialisation: Before the first iteration, the subarray is A[1], which contains the first element 
and is trivially sorted.

• Maintenance: We move A[j-1], A[j-2], A[j-3], … by one position to the right, until we find the 
proper position for A[j].  The subarray A[1,…,j] contains the original elements and it is sorted.

• Termination: Termination happens when length[A] is reached, so the counter is j = n+1. The 
loop invariant for j = n+1 is the sorted sequence of the n numbers.



Running Time
• Different computers have different speeds.


• Random Access Machine (RAM) model. 

• Instructions:


• Arithmetic (add, subtract, multiply, etc).


• Data movement (load, store, copy, etc).


• Control (branch, subroutine call, return, etc).


• Each instruction is carried out in constant time.


• We can count the number of instructions, or the number of steps.
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Example: Running Time of LinearSearch

• Find if a number x exists in an array of sorted numbers. 

10 106421 14 17 19 21 24

• We read through the array until we find the number.

• For each element, we make a comparison.

• We need to initialise counters and write a for loop.

• Will certainly finish within c * n steps, where c is some large enough constant.

• Does it require at least n steps in the worst case?
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Memory Usage
• Each memory cell can hold one element of the input.


• Total memory usage = Memory used to hold the input + 
extra memory used by the algorithm (auxiliary memory).


• What is the total and the auxiliary memory usage of 
LinearSearch? 

• What is the total and the auxiliary memory usage of 
InsertionSort?
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Worst vs Best vs Average Case

• Convention: When we say “the running time of Algorithm A”, we mean 
the worst-case running time, over all possible inputs to the algorithm.

• We can also measure the best-case running time, over all possible 
inputs to the problem.

• In between: average-case running time. 


• Running time of the algorithm on inputs which are chosen at 
random from some distribution.


• The appropriate distribution depends on the application.


• The analysis can be difficult.



Example: Average Running Time of 
InsertionSort

n times
for loops, the tests are executed


one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times



Example: Average Running Time of 
InsertionSort

n times
for loops, the tests are executed


one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

• Select an input uniformly at random from all possible sequences with n numbers.



Example: Average Running Time of 
InsertionSort

n times
for loops, the tests are executed


one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

• Select an input uniformly at random from all possible sequences with n numbers.

• On average, key will be smaller than half of the elements in A[1,…,j].



Example: Average Running Time of 
InsertionSort

n times
for loops, the tests are executed


one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

• Select an input uniformly at random from all possible sequences with n numbers.

• On average, key will be smaller than half of the elements in A[1,…,j].

• The while loop will look “halfway” through the sorted subarray A[1,…,j].



Example: Average Running Time of 
InsertionSort

n times
for loops, the tests are executed


one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

• Select an input uniformly at random from all possible sequences with n numbers.

• On average, key will be smaller than half of the elements in A[1,…,j].

• The while loop will look “halfway” through the sorted subarray A[1,…,j].

• This means that tj =
j

2



Example: Average Running Time of 
InsertionSort

n times
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one more time than the loop body

n-1 times
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Asymptotic Notation

• When n becomes large, it makes less of a difference if an 
algorithm takes 2n or 3n steps to finish.


• In particular, 3logn steps are fewer than 2n steps.


• We would like to avoid having to calculate the precise 
constants.


• We use asymptotic notation.
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not larger than f(n). 


• For example, for sufficiently large inputs, 3logn is smaller than 
2n. Therefore, 2n = Ω(logn).


• Intuitively, g(n) grows “not faster” than f(n).
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Asymptotic Notation

• If a function is both O(g(n)) and Ω(g(n)). 

• Use: If we can show that the running time of an algorithm 
is lower bounded by c1*g(n) and upper bounded by 
c2*g(n) for some constants c1 and c2 and some function 
g(•) of n, then we can say that the running time is Θ(g(n)).

⇥(g(n)) = f(n) : there exist positive constants c1, c2 and n0 such that

0  c1g(n)  f(n)  c2g(n) for all n � n0.
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Example: Running Time of InsertionSort

n times
n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Best case? Sorted array,  tj = 1

Worst case? Reverse sorted array,  tj = j

Bounded by some         for some constant ccn

   Bounded by some           for some constant ccn2

What is the asymptotic 
complexity of InsertionSort?



Asymptotic Notation

• The bound holds for sufficiently large inputs and for any 
constant c.


• Equivalent interpretation: 


• As n approaches infinity, f(n) becomes insignificant 
compared to g(n).


• For example: 

lim
n!1

f(n)

g(n)
= 0.

2n = o(n2)

o(g(n)) = f(n) : for any constant c > 0, there exists a constant

n0 > 0 such that 0  f(n) < cg(n) for all n � n0.



Asymptotic Notation

• The bound holds for sufficiently large inputs and for any 
constant c.


• Equivalent interpretation: 


• As n approaches infinity, g(n) becomes insignificant 
compared to f(n).


• For example: 

lim
n!1

f(n)

g(n)
= 1.

4n2 = !(n)

o(g(n)) = f(n) : for any constant c > 0, there exists a constant

n0 > 0 such that 0  cg(n) < f(n) for all n � n0.



Examples
5n3

+ 100 = O(n3
)

5n3
+ 100 = ⌦(n3

)

log n = o(n5
)

n5
= o(2n)

log(4n) = log n+ log 4 = O(log n)

log(n4
) = 4 log n = O(log n)

(4n)3 = 64n4
= O(n3

)

(n4
)

3
= n1

2 = !(n3
)

3

(4n)
= 81

n
= !(3n)



Running time hierarchy

O(log n) O(n) O(n log n) O(n2) O(n↵) O(cn)

logarithmic linear quadratic polynomial exponential

The algorithm 

does not even 


read the

whole input.

The algorithm

accesses the


input only

a constant

number of 


times.

The algorithm

splits the inputs

into two pieces

of similar size,


solves each part

and merges the


solutions.

The algorithm

considers pairs


of elements.

The algorithm

performs many

nested loops.

The algorithm

considers many

subsets of the

input elements.

constant O(1)

superconstant !(1)

sublinear o(n)

superlinear !(n)

!(n↵)superpolynomial

o(cn)subexponential


