Advanced Algorithmic Techniques (COMP523)

Introduction to algorithms and basic complexity notions

Algorithm

- A set of instructions for solving a problem or performing a computation.
- Origin of the name: Latinisation of the name given by Persian scholar Muhammad ibn Musa al-Khwarizmi.

Example: Searching

- Find if a number x exists in an array of sorted numbers.

Example: Searching

- Find if a number x exists in an array of sorted numbers.

Example: Searching

- Find if a number x exists in an array of sorted numbers.

Example: Searching

- Find if a number x exists in an array of sorted numbers.

Example: Searching

- Find if a number x exists in an array of sorted numbers.

Example: Searching

- Find if a number x exists in an array of sorted numbers.

Example: Searching

- Find if a number x exists in an array of sorted numbers.

Example: Searching

- Find if a number \mathbf{x} exists in an array of sorted numbers.

- Yes, the number was found in the array!

Example: Sorting

- Given a sequence of numbers, put them in increasing order.

Example: Sorting

- Given a sequence of numbers, put them in increasing order.

Example: Sorting

- Given a sequence of numbers, put them in increasing order.

Example: Sorting

- Given a sequence of numbers, put them in increasing order.

Is $\mathbf{2} \boldsymbol{<} \mathbf{6}$?

Example: Sorting

- Given a sequence of numbers, put them in increasing order.

Example: Sorting

- Given a sequence of numbers, put them in increasing order.

Example: Sorting

- Given a sequence of numbers, put them in increasing order.

Example: Sorting

- Given a sequence of numbers, put them in increasing order.

$$
\text { Is } 19<6 ?
$$

Example: Sorting

- Given a sequence of numbers, put them in increasing order.

Example: Sorting

- Given a sequence of numbers, put them in increasing order.

Example: Sorting

- Given a sequence of numbers, put them in increasing order.

$$
\text { Is } 4<19 ?
$$

Example: Sorting

- Given a sequence of numbers, put them in increasing order.

Example: Sorting

- Given a sequence of numbers, put them in increasing order.

\uparrow

Example: Sorting

- Given a sequence of numbers, put them in increasing order.

\uparrow

Is $\mathbf{4}<\mathbf{6}$?

Example: Sorting

- Given a sequence of numbers, put them in increasing order.

\uparrow

Example: Sorting

- Given a sequence of numbers, put them in increasing order.

Example: Sorting

- Given a sequence of numbers, put them in increasing order.

(4)

Is $4<2$?

Example: Sorting

- Given a sequence of numbers, put them in increasing order.

Example: Sorting

- Given a sequence of numbers, put them in increasing order.

Example: Sorting

- Given a sequence of numbers, put them in increasing order.

continues the same way...

Example: Sorting

- Given a sequence of numbers, put them in increasing order.

continues the same way...

Describing algorithms: Pseudocode

```
INSERTION_SORT (A)
FOR j \leftarrow }2\mathrm{ TO length[A]
        DO key \leftarrowA[j]
    {Put A[j] into the sorted sequence }A[1..j-1]
    i\leftarrowj-1
    WHILE }i>0\mathrm{ and A[i]> key
                                    DO A[i+1]\leftarrowA[i]
                                    i\leftarrowi-1
        A[i+1]\leftarrowkey
```

- The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

\uparrow

Describing algorithms: Pseudocode

```
INSERTION_SORT (A)
1. FOR j\leftarrow2 TO length[A]
2. DO key \leftarrowA[j]
3. {Put }A[j]\mathrm{ into the sorted sequence }A[1\ldotsj-1]
4. }i\leftarrowj-
5. WHILE }i>0\mathrm{ and }A[i]> key
                                    DO }A[i+1]\leftarrowA[i
                                    i\leftarrowi-1
A[i+1]\leftarrowkey
```

- The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

Describing algorithms: Pseudocode

```
INSERTION_SORT (A)
1. FOR j\leftarrow2 TO length[A]
2. DO key \leftarrowA[j]
3. {Put }A[j]\mathrm{ into the sorted sequence }A[1\ldotsj-1]
4. }i\leftarrowj-
5. WHILE }i>0\mathrm{ and }A[i]> key
                                    DO A[i+1]\leftarrowA[i]
                                    i\leftarrowi-1
A[i+1]\leftarrowkey
```

- The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

Describing algorithms: Pseudocode

```
INSERTION_SORT (A)
1. FOR j}\leftarrow2\mathbf{TO}\mathrm{ length [A]
2. DO key \leftarrowA[j]
3. {Put }A[j]\mathrm{ into the sorted sequence }A[1..j-1]
4. }i\leftarrowj-
5. WHILE }i>0\mathrm{ and }A[i]>\mathrm{ key
                                    DO A[i+1]\leftarrowA[i]
                                    i\leftarrowi-1
        A[i+1]\leftarrowkey
```

- The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

Describing algorithms: Pseudocode

```
INSERTION_SORT (A)
1. FOR j}\leftarrow2\mathbf{TO}\mathrm{ length[A]
2. DO key\leftarrowA[j]\
3. {Put }A[j]\mathrm{ into the sorted sequence }A[1..j-1]
4. }i\leftarrowj-
5. WHILE }i>0\mathrm{ and }A[i]>\mathrm{ key
                                    DO A[i+1]\leftarrowA[i]
                                    i\leftarrowi-1
A[i+1]\leftarrowkey
```

- The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

Describing algorithms: Pseudocode

```
INSERTION_SORT (A)
1. FOR j}\leftarrow2\mathbf{TO}\mathrm{ length[A]
2. DO key\leftarrowA[j]\
3. {Put }A[j]\mathrm{ into the sorted sequence }A[1..j-1]
4. }i\leftarrowj-
5. WHILE }i>0\mathrm{ and }A[i]> key
                                    DO }A[i+1]\leftarrowA[i
                                    i\leftarrowi-1
A[i+1]\leftarrowkey
```

- The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

Describing algorithms: Pseudocode

```
INSERTION_SORT (A)
1. FOR j}\leftarrow2\mathbf{TO}\mathrm{ length [A]
2. DO key \leftarrowA[j]
3. {Put }A[j]\mathrm{ into the sorted sequence }A[1..j-1]
4. }i\leftarrowj-
5. WHILE }i>0\mathrm{ and }A[i]>\mathrm{ key
                                    DO }A[i+1]\leftarrowA[i
                                    i\leftarrowi-1
A[i+1]\leftarrowkey
```

- The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

Describing algorithms: Pseudocode

```
INSERTION_SORT (A)
1. FOR j}\leftarrow2\mathbf{TO}\mathrm{ length[}[A
2. DO key \leftarrowA[j]
3. {Put }A[j]\mathrm{ info the sorted sequence }A[1..j-1]
4. }i\leftarrowj-1
5. WHILE }i>0\mathrm{ and }A[i]>\mathrm{ key
                    DO A[i+1]\leftarrowA[i]
                                    i\leftarrowi-1
A[i+1]\leftarrowkey
```

- The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

Describing algorithms: Pseudocode

```
INSERTION_SORT (A)
1. FOR j}\leftarrow2 TO length[A
2. DO key \leftarrowA[j]
3. {Put }A[j]\mathrm{ info the sorted sequence }A[1..j-1]
4. }i\leftarrowj-1
5. WHILE }i>0\mathrm{ and }A[i]>\mathrm{ key
                    DO }A[i+1]\leftarrowA[i
                                    i\leftarrowi-1
A[i+1]\leftarrowkey
```

- The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

Describing algorithms: Pseudocode

```
INSERTION_SORT (A)
1. FOR j}\leftarrow2\mathbf{TO}\mathrm{ length[}[A
2. DO key \leftarrowA[j]
3. {Put }A[j]\mathrm{ into the sorted sequence }A[1..j-1]
4. }i\leftarrowj-
5. WHILE }i>0\mathrm{ and }A[i]> key
                                    DO }A[i+1]\leftarrowA[i
                                    i\leftarrowi-1
A[i+1]\leftarrowkey
```

- The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

Describing algorithms: Pseudocode

```
INSERTION_SORT (A)
1. FOR j}\leftarrow2\mathbf{TO}\mathrm{ length[}[A
2. DO key \leftarrowA[j]
3. {Put }A[j]\mathrm{ into the sorted sequence }A[1..j-1]
4. }i\leftarrowj-
5. WHILE }i>0\mathrm{ and }A[i]>\mathrm{ key 
                                    DO A[i+1]\leftarrowA[i]
                                    i\leftarrowi-1
A[i+1]\leftarrowkey
```

- The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

Describing algorithms: Pseudocode

```
INSERTION_SORT (A)
1. FOR j}\leftarrow2\mathbf{TO}\mathrm{ length[}[A
2. DO key \leftarrowA[j]
3. {Put }A[j]\mathrm{ into the sorted sequence }A[1..j-1]
4. }i\leftarrowj-
5. WHILE }i>0\mathrm{ and }A[i]>\mathrm{ key 
                                    DO }A[i+1]\leftarrowA[i
                                    i\leftarrowi-1
A[i+1]\leftarrowkey
```

- The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

$\left\{_{\mathrm{key}=4}^{\mathrm{j}=4} \quad \mathrm{i}=3 \quad \mathrm{~A}[3]=19>\mathrm{key}=4\right.$

Describing algorithms: Pseudocode

```
INSERTION_SORT (A)
1. FOR j}\leftarrow2\mathbf{TO}\mathrm{ length[}[A
2. DO key \leftarrowA[j]
3. {Put }A[j]\mathrm{ into the sorted sequence }A[1..j-1]
4. }i\leftarrowj-
5. WHILE }i>0\mathrm{ and }A[i]> key
                                    DO }A[i+1]\leftarrowA[i
                                    i\leftarrowi-1
        A[i+1]\leftarrowkey
```

- The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

$\left\{_{\mathrm{key}=4}^{\mathrm{j}=4} \quad \mathrm{i}=3 \quad \mathrm{~A}[3]=19>\mathrm{key}=4\right.$

Describing algorithms: Pseudocode

```
INSERTION_SORT (A)
1. FOR j}\leftarrow2\mathbf{TO}\mathrm{ length[}[A
2. DO key \leftarrowA[j]
3. {Put }A[j]\mathrm{ into the sorted sequence }A[1..j-1]
4. }i\leftarrowj-
5. WHILE }i>0\mathrm{ and }A[i]>\mathrm{ key
                    DO A[i+1]\leftarrowA[i]
        A[i+1]\leftarrowkey
```

- The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

$\left\{_{\mathrm{key}=4}^{\mathrm{j}=4} \quad \mathrm{i}=3 \quad \mathrm{~A}[3]=19>\mathrm{key}=4\right.$

Describing algorithms: Pseudocode

```
INSERTION_SORT (A)
1. FOR j}\leftarrow2\mathbf{TO}\mathrm{ length[}[A
2. DO key \leftarrowA[j]
{Put }A[j]\mathrm{ into the sorted sequence }A[1..j-1]
    i\leftarrowj-1
    WHILE }i>0\mathrm{ and A[i]> key
                    DO A[i+1]\leftarrowA[i]
        A[i+1]\leftarrowkey
```

- The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

Describing algorithms: Pseudocode

```
INSERTION_SORT (A)
1. FOR j}\leftarrow2\mathbf{TO}\mathrm{ length[}[A
2. DO key \leftarrowA[j]
    {Put }A[j]\mathrm{ into the sorted sequence }A[1..j-1]
    i\leftarrowj-1
    WHILE }i>0\mathrm{ and A[i]> key
        DO A[i+1]\leftarrowA[i]
                                    i\leftarrowi-1
        A[i+1]\leftarrowkey
```

- The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

Describing algorithms: Pseudocode

```
INSERTION_SORT (A)
1. FOR j}\leftarrow2\mathbf{TO}\mathrm{ length [A]
2. DO key \leftarrowA[j]
    {Put }A[j]\mathrm{ into the sorted sequence }A[1..j-1]
    i\leftarrowj-1
    WHILE }i>0\mathrm{ and A[i]> key
                                    DO A[i+1]\leftarrowA[i]
                                    i\leftarrowi-1
        A[i+1]\leftarrowkey
```

- The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

\uparrow

$$
\begin{array}{ccc}
\mathrm{j}=4 & \mathrm{i}=3 & A[3]=19>k e y=4 \\
k e y=4 & A[4]=19, i=2
\end{array}
$$

Describing algorithms: Pseudocode

```
INSERTION_SORT (A)
1. FOR j}\leftarrow2\mathbf{TO}\mathrm{ length[}[A
2. DO key \leftarrowA[j]
    {Put A[j] into the sorted sequence }A[1..j-1]
    i\leftarrowj-1
    WHILE }i>0\mathrm{ and }A[i]>\mathrm{ key 
                                    DO A[i+1]\leftarrowA[i]
                                    i\leftarrowi-1
        A[i+1]\leftarrowkey
```

- The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

still in the while loop

$$
j=4 \quad i=2
$$

$k e y=4$

Describing algorithms: Pseudocode

```
INSERTION_SORT (A)
1. FOR j}\leftarrow2\mathbf{TO}\mathrm{ length [A]
2. DO key \leftarrowA[j]
    {Put A[j] into the sorted sequence }A[1..j-1]
    i\leftarrowj-1
    WHILE }i>0\mathrm{ and }A[i]>\mathrm{ key 
                                    DO A[i+1]\leftarrowA[i]
                                    i\leftarrowi-1
        A[i+1]\leftarrowkey
```

- The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

still in the while loop
$\mathrm{j}=4 \quad \mathrm{i}=2 \quad \mathrm{~A}[2]=6>\mathrm{key}=4$
$k e y=4$

Describing algorithms: Pseudocode

```
INSERTION_SORT (A)
1. FOR j}\leftarrow2\mathbf{TO}\mathrm{ length [A]
2. DO key \leftarrowA[j]
    {Put }A[j]\mathrm{ into the sorted sequence }A[1..j-1]
    i\leftarrowj-1
    WHILE }i>0\mathrm{ and }A[i]>\mathrm{ key 
                                    DO A[i+1]\leftarrowA[i]
                                    i\leftarrowi-1
        A[i+1]\leftarrowkey
```

- The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

still in the while loop
\uparrow
$\mathrm{j}=4 \quad \mathrm{i}=2 \quad \mathrm{~A}[2]=6>\mathrm{key}=4$
$k e y=4$

Describing algorithms: Pseudocode

```
INSERTION_SORT (A)
1. FOR j}\leftarrow2\mathbf{TO}\mathrm{ length [A]
2. DO key \leftarrowA[j]
    {Put }A[j]\mathrm{ into the sorted sequence }A[1..j-1]
    i\leftarrowj-1
    WHILE }i>0\mathrm{ and }A[i]>\mathrm{ key 
                                    DO A[i+1]\leftarrowA[i]
                                    i\leftarrowi-1
        A[i+1]\leftarrowkey
```

- The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

Describing algorithms: Pseudocode

```
INSERTION_SORT (A)
1. FOR j}\leftarrow2\mathbf{TO}\mathrm{ length [A]
2. DO key \leftarrowA[j]
    {Put A[j] into the sorted sequence }A[1..j-1]
    i\leftarrowj-1
    WHILE }i>0\mathrm{ and }A[i]>\mathrm{ key 
                                    DO A[i+1]\leftarrowA[i]
                                    i\leftarrowi-1
        A[i+1]\leftarrowkey
```

- The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

Describing algorithms: Pseudocode

```
INSERTION_SORT (A)
1. FOR j}\leftarrow2\mathbf{TO}\mathrm{ length [A]
2. DO key \leftarrowA[j]
    {Put A[j] into the sorted sequence }A[1..j-1]
    i\leftarrowj-1
    WHILE }i>0\mathrm{ and A[i]> key\
                                    DO A[i+1]\leftarrowA[i]
                                    i\leftarrowi-1
        A[i+1]\leftarrowkey
```

- The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

Describing algorithms: Pseudocode

```
INSERTION_SORT (A)
1. FOR j}\leftarrow2\mathbf{TO}\mathrm{ length [A]
2. DO key \leftarrowA[j]
    {Put A[j] into the sorted sequence }A[1..j-1]
    i\leftarrowj-1
    WHILE }i>0\mathrm{ and }A[i]>\mathrm{ key 
                                    DO A[i+1]\leftarrowA[i]
                                    i\leftarrowi-1
        A[i+1]\leftarrowkey
```

- The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

Describing algorithms: Pseudocode

```
INSERTION_SORT (A)
1. FOR j}\leftarrow2 TO length[A
2. DO key \leftarrowA[j]
3. {Put }A[j]\mathrm{ into the sorted sequence }A[1..j-1]
4. }i\leftarrowj-
5. WHILE }i>0\mathrm{ and }A[i]>\mathrm{ key 
6. DO }A[i+1]\leftarrowA[i
7. }i\leftarrowi-
8. 
```

- The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

still in the while loop

Describing algorithms: Pseudocode

```
INSERTION_SORT (A)
1. FOR j}\leftarrow2 TO length[A
2. DO key \leftarrowA[j]
3. {Put }A[j]\mathrm{ into the sorted sequence }A[1..j-1]
4. }i\leftarrowj-
5. WHILE }i>0\mathrm{ and }A[i]>\mathrm{ key 
                                    DO }A[i+1]\leftarrowA[i
                                    i\leftarrowi-1
A[i+1]\leftarrowkey
```

- The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

Algorithmic techniques

- Brute force.
- Divide and Conquer.
- Greedy.
- Dynamic Programming.
- Integer linear program relaxation and rounding.
- Competitive analysis.
- Branch and Bound.

Types of algorithms

- Searching algorithms.
- Sorting algorithms.
- Graph algorithms.
- Approximation algorithms.
- Online algorithms.
- Randomised algorithms.
- Exponential-time algorithms.

What should we expect from algorithms?

- Correctness: It computes the desired output.
- Termination: Eventually terminates (or with high probability).
- Efficiency:
- The algorithm runs fast and/or uses limited memory.
- The algorithm produces a "good enough" outcome.

Correctness

- Let's look at the InsertionSort algorithm for sorting n numbers.
- Is it correct? Does it always produce a sorted sequence?
- Certainly seems to be the case, intuitively.
- How do we prove it formally?

Loop invariance

Loop invariance

- A loop invariant is a property that holds with respect to the loops executed by the algorithm.

Loop invariance

- A loop invariant is a property that holds with respect to the loops executed by the algorithm.
- For a loop invariant, we must show:
- Initialisation: It is true prior to the first iteration of the loop.
- Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.
- Termination: When the loop terminates, the invariant gives us a useful property for correctness.

Loop invariance

- A loop invariant is a property that holds with respect to the loops executed by the algorithm.
- For a loop invariant, we must show:
- Initialisation: It is true prior to the first iteration of the loop.
- Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.
- Termination: When the loop terminates, the invariant gives us a useful property for correctness.
- Quite reminiscent of mathematical induction.

Loop invariance for InsertionSort

```
INSERTION_SORT (A)
1. FOR j}\leftarrow2\mathbf{TO}\mathrm{ length[}[A
2. DO key \leftarrowA[j]
3. {Put }A[j]\mathrm{ into the sorted sequence }A[1..j-1]
4. }\quad\leftarrow\leftarrow-
5. WHILE }i>0\mathrm{ and }A[i]>\mathrm{ key
6.
7 .
    DO A[i+1]\leftarrowA[i]
                            i\leftarrowi-1
8. }A[i+1]\leftarrow\mathrm{ key
```


Loop invariance for InsertionSort

```
INSERTION_SORT (A)
1. FOR j}\leftarrow2\mathbf{TO}\mathrm{ length[}[A
2. DO key }\leftarrowA[j
3. {Put }A[j]\mathrm{ into the sorted sequence }A[1\ldotsj-1]
4. }\quad\leftarrow\leftarrow-
5. WHILE }i>0\mathrm{ and }A[i]>\mathrm{ key
6. DO A[i+1]\leftarrowA[i]
i\leftarrowi-1
8. A[i+1]\leftarrowkey
```

- Loop invariant: The subarray $A[1, \ldots, j-1]$ consists of the elements originally in $A[1, \ldots, j-1]$ but in shorted order.

Loop invariance for InsertionSort

```
INSERTION_SORT (A)
    FOR j}\leftarrow2 TO length[A
        DO key }\leftarrowA[j
    {Put A[j] into the sorted sequence }A[1\ldotsj-1]
    i\leftarrowj-1
            WHILE }i>0\mathrm{ and }A[i]> ke
                            DO A[i+1]\leftarrowA[i]
                        i\leftarrowi-1
        A[i+1]\leftarrowkey
```

- Loop invariant: The subarray A[1,..,j-1] consists of the elements originally in $\mathrm{A}[1, \ldots, \mathrm{j}-1]$ but in shorted order.
- Initialisation: Before the first iteration, the subarray is A[1], which contains the first element and is trivially sorted.

Loop invariance for InsertionSort

```
INSERTION_SORT (A)
    FOR j}\leftarrow2 TO length[A
        DO key }\leftarrowA[j
            {Put A[j] into the sorted sequence }A[1\ldotsj-1]
            i\leftarrowj-1
            WHILE }i>0\mathrm{ and }A[i]> ke
                    DO }A[i+1]\leftarrowA[i
                        i\leftarrowi-1
        A[i+1]\leftarrowkey
```

- Loop invariant: The subarray $\mathrm{A}[1, \ldots, \mathrm{j}-1]$ consists of the elements originally in $\mathrm{A}[1, \ldots, \mathrm{j}-1]$ but in shorted order.
- Initialisation: Before the first iteration, the subarray is $\mathrm{A}[1]$, which contains the first element and is trivially sorted.
- Maintenance: We move $A[j-1], A[j-2], A[j-3], \ldots$ by one position to the right, until we find the proper position for $A[j]$. The subarray $A[1, \ldots, j]$ contains the original elements and it is sorted.

Loop invariance for InsertionSort

```
INSERTION_SORT (A)
    FOR j}\leftarrow2\mathrm{ TO length[A]
        DO key }\leftarrowA[j
            {Put }A[j]\mathrm{ into the sorted sequence }A[1..j-1]
            i\leftarrowj-1
            WHILE }i>0\mathrm{ and }A[i]> ke
                    DO }A[i+1]\leftarrowA[i
                    i\leftarrowi-1
        A[i+1]\leftarrowkey
```

- Loop invariant: The subarray $\mathrm{A}[1, \ldots, \mathrm{j}-1]$ consists of the elements originally in $\mathrm{A}[1, \ldots, \mathrm{j}-1]$ but in shorted order.
- Initialisation: Before the first iteration, the subarray is $\mathrm{A}[1]$, which contains the first element and is trivially sorted.
- Maintenance: We move $A[j-1], A[j-2], A[j-3], \ldots$ by one position to the right, until we find the proper position for $A[j]$. The subarray $A[1, \ldots, j]$ contains the original elements and it is sorted.
- Termination: Termination happens when length[A] is reached, so the counter is $j=n+1$. The loop invariant for $\mathrm{j}=\mathrm{n}+1$ is the sorted sequence of the n numbers.

Running Time

- Different computers have different speeds.
- Random Access Machine (RAM) model.
- Instructions:
- Arithmetic (add, subtract, multiply, etc).
- Data movement (load, store, copy, etc).
- Control (branch, subroutine call, return, etc).
- Each instruction is carried out in constant time.
- We can count the number of instructions, or the number of steps.

Example: Running Time of LinearSearch

- Find if a number x exists in an array of sorted numbers.

Example: Running Time of LinearSearch

- Find if a number x exists in an array of sorted numbers.

- We read through the array until we find the number.

Example: Running Time of LinearSearch

- Find if a number x exists in an array of sorted numbers.

- We read through the array until we find the number.
- For each element, we make a comparison.

Example: Running Time of LinearSearch

- Find if a number x exists in an array of sorted numbers.

- We read through the array until we find the number.
- For each element, we make a comparison.
- We need to initialise counters and write a for loop.

Example: Running Time of LinearSearch

- Find if a number x exists in an array of sorted numbers.

- We read through the array until we find the number.
- For each element, we make a comparison.
- We need to initialise counters and write a for loop.
- Will certainly finish within c*n steps, where c is some large enough constant.

Example: Running Time of LinearSearch

- Find if a number x exists in an array of sorted numbers.

- We read through the array until we find the number.
- For each element, we make a comparison.
- We need to initialise counters and write a for loop.
- Will certainly finish within c * n steps, where c is some large enough constant.
- Does it require at least n steps in the worst case?

Example: Running Time of InsertionSort

```
INSERTION_SORT ( \(A\) )
1. \(\mathbf{F O R} \mathrm{j} \leftarrow 2 \mathbf{T O}\) length \([A]\)
2. DO key \(\leftarrow A[j]\)
3. \(\{\) Put \(A[j]\) into the sorted sequence \(A[1 \ldots j-1]\}\)
4. \(\quad i \leftarrow j-1\)
5. WHILE \(i>0\) and \(A[i]>\) key
6. \(\quad\) DO \(A[i+1] \leftarrow A[i]\)
7.
8.
    \(A[i+1] \leftarrow\) key
```


Example: Running Time of InsertionSort

```
INSERTION_SORT ( \(A\) )
1. \(\mathbf{F O R} \mathrm{j} \leftarrow 2 \mathbf{T O}\) length \([A] \mathrm{n}\) times
2. DO key \(\leftarrow A[j]\)
3. \(\{\) Put \(A[j]\) into the sorted sequence \(A[1 \ldots j-1]\}\)
4. \(\quad i \leftarrow j-1\)
5. WHILE \(i>0\) and \(A[i]>\) key
6. DO \(A[i+1] \leftarrow A[i]\)
\(i \leftarrow i-1\)
    \(A[i+1] \leftarrow\) key
```

for loops, the tests are executed one more time than the loop body

Example: Running Time of InsertionSort

```
INSERTION_SORT ( \(A\) )
1. \(\mathbf{F O R} \mathrm{j} \leftarrow 2 \mathbf{T O}\) length \([A] \mathrm{n}\) times
2. DO key \(\leftarrow A[j]\) n-1 times
3. \(\{\) Put \(A[j]\) into the sorted sequence \(A[1 \ldots j-1]\}\)
4. \(\quad i \leftarrow j-1\)
5. WHILE \(i>0\) and \(A[i]>\) key
6. DO \(A[i+1] \leftarrow A[i]\)
                \(i \leftarrow i-1\)
    \(A[i+1] \leftarrow\) key
```

for loops, the tests are executed one more time than the loop body

Example: Running Time of InsertionSort

```
INSERTION_SORT ( \(A\) )
1. \(\mathbf{F O R} \mathrm{j} \leftarrow 2 \mathbf{T O}\) length \([A] \mathrm{n}\) times
2. DO key \(\leftarrow A[j]\) n-1 times
3. \(\{\) Put \(A[j]\) into the sorted sequence \(A[1 \ldots j-1]\}\)
4. \(i \leftarrow j-1\) n-1 times
5. WHILE \(i>0\) and \(A[i]>\) key
6. DO \(A[i+1] \leftarrow A[i]\)
        \(i \leftarrow i-1\)
    \(A[i+1] \leftarrow\) key
```

for loops, the tests are executed one more time than the loop body

Example: Running Time of InsertionSort

```
INSERTION_SORT ( \(A\) )
1. \(\mathbf{F O R} \mathrm{j} \leftarrow 2 \mathbf{T O}\) length \([A] \mathrm{n}\) times
```

for loops, the tests are executed one more time than the loop body

Example: Running Time of InsertionSort

```
INSERTION_SORT ( \(A\) )
1. \(\mathbf{F O R} \mathrm{j} \leftarrow 2 \mathbf{T O}\) length \([A] \mathrm{n}\) times
```

2. DO key $\leftarrow A[j]$ n-1 times
3. $\{$ Put $A[j]$ into the sorted sequence $A[1 \ldots j-1]\}$
4. $i \leftarrow j-1 \mathrm{n}$-1 times
5.
6.
7.
8.

WHILE $i>0$ and $A[i]>$ key $\sum_{i=2}^{n} t_{j}$ times
DO $A[i+1] \leftarrow A[i]$
$i \leftarrow i-1 \quad \sum \sum_{j=2}\left(t_{j}-1\right)$ times
$A[i+1] \leftarrow$ key
for loops, the tests are executed one more time than the loop body

Example: Running Time of InsertionSort

```
INSERTION_SORT ( \(A\) )
1. \(\mathbf{F O R} \mathrm{j} \leftarrow 2 \mathbf{T O}\) length \([A] \mathrm{n}\) times
```

2. DO key $\leftarrow A[j]$ n-1 times
3. $\{$ Put $A[j]$ into the sorted sequence $A[1 \ldots j-1]\}$
4. $i \leftarrow j-1 \mathrm{n}$-1 times
5.
6.
7.
8.

WHILE $i>0$ and $A[i]>$ key $\sum_{i=2}^{n} t_{j}$ times
DO $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1 \quad \sum \sum_{j=2}\left(t_{j}-1\right)$ times
$A[i+1] \leftarrow$ key $\mathrm{n}-1$ times
for loops, the tests are executed one more time than the loop body

Example: Running Time of InsertionSort

INSERTION_SORT (A)

1. FOR $\mathbf{j} \leftarrow 2$ TO length $[A] \mathrm{n}$ times
for loops, the tests are executed one more time than the loop body
2. DO key $\leftarrow A[j]$ n-1 times
3. $\{$ Put $A[j]$ into the sorted sequence $A[1 \ldots j-1]\}$
4. $i \leftarrow j-1 \mathrm{n}$ - 1 times
5. WHILE $i>0$ and $A[i]>$ key $\sum_{j=2}^{n} t_{j}$ times
6.
7.
8. $A[i+1] \leftarrow$ key n-1 times

$$
\text { DO } A[i+1] \leftarrow A[i]
$$

$$
i \leftarrow i-1 \quad \sum \sum_{j=2}^{n}\left(t_{j}-1\right) \text { times }
$$

$T(n)=c_{1} n+c_{2}(n-1)+c_{3}(n-1)+c_{4} \sum_{j=2}^{n} t_{j}+c_{5} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{6} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{7}(n-1)$

Example: Running Time of InsertionSort

INSERTION_SORT (A)

1. FOR $\mathbf{j} \leftarrow 2$ TO length $[A] \mathrm{n}$ times
for loops, the tests are executed one more time than the loop body
2. DO key $\leftarrow A[j]$ n-1 times
3. $\{$ Put $A[j]$ into the sorted sequence $A[1 \ldots j-1]\}$
4. $i \leftarrow j-1 \mathrm{n}$ - 1 times
5. WHILE $i>0$ and $A[i]>$ key $\sum_{j=2}^{n} t_{j}$ times
6.
7.
8. $A[i+1] \leftarrow$ key $\mathrm{n}-1$ times

$$
\text { DO } A[i+1] \leftarrow A[i]
$$

$$
i \leftarrow i-1>\sum_{j=2}^{n}\left(t_{j}-1\right) \text { times }
$$

$T(n)=c_{1} n+c_{2}(n-1)+c_{3}(n-1)+c_{4} \sum_{j=2}^{n} t_{j}+c_{5} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{6} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{7}(n-1)$
Best case?

Example: Running Time of InsertionSort

INSERTION_SORT (A)

1. $\mathbf{F O R} \mathrm{j} \leftarrow 2$ TO length $[A] \mathrm{n}$ times
for loops, the tests are executed one more time than the loop body
2. DO key $\leftarrow A[j]$ n-1 times
3. $\{$ Put $A[j]$ into the sorted sequence $A[1 \ldots j-1]\}$
4. $i \leftarrow j-1 \mathrm{n}$ - 1 times
5. WHILE $i>0$ and $A[i]>$ key $\sum_{j=2}^{n} t_{j}$ times
6.
7.
8. $A[i+1] \leftarrow$ key n-1 times

$$
\text { DO } A[i+1] \leftarrow A[i]
$$

$$
i \leftarrow i-1>\sum_{j=2}^{n}\left(t_{j}-1\right) \text { times }
$$

$T(n)=c_{1} n+c_{2}(n-1)+c_{3}(n-1)+c_{4} \sum_{j=2}^{n} t_{j}+c_{5} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{6} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{7}(n-1)$
Best case? \quad Sorted array, $\quad t_{j}=1$

Example: Running Time of InsertionSort

INSERTION_SORT (A)

1. $\mathbf{F O R} \mathrm{j} \leftarrow 2$ TO length $[A] \mathrm{n}$ times
for loops, the tests are executed one more time than the loop body
2. DO key $\leftarrow A[j]$ n-1 times
3. $\{$ Put $A[j]$ into the sorted sequence $A[1 \ldots j-1]\}$
4. $i \leftarrow j-1 \mathrm{n}$ - 1 times
5. WHILE $i>0$ and $A[i]>$ key $\sum_{j=2}^{n} t_{j}$ times
6.
7.
8. DO $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1 \quad \sum \sum_{j=2}\left(t_{j}-1\right)$ times

$$
A[i+1] \leftarrow \text { key } \mathrm{n}-1 \text { times }
$$

$T(n)=c_{1} n+c_{2}(n-1)+c_{3}(n-1)+c_{4} \sum_{j=2}^{n} t_{j}+c_{5} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{6} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{7}(n-1)$
Best case? \quad Sorted array, $\quad t_{j}=1$
Worst case?

Example: Running Time of InsertionSort

INSERTION_SORT (A)

1. $\mathbf{F O R} \mathrm{j} \leftarrow 2 \mathbf{T O}$ length $[A] \mathrm{n}$ times
for loops, the tests are executed one more time than the loop body
2. DO key $\leftarrow A[j]$ n-1 times
3. $\{$ Put $A[j]$ into the sorted sequence $A[1 \ldots j-1]\}$
4. $\quad i \leftarrow j-1 \mathrm{n}-1$ times
5. WHILE $i>0$ and $A[i]>$ key $\sum_{j=2}^{n} t_{j}$ times
6.
7.
8. DO $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1 \quad \sum \sum_{j=2}^{m}\left(t_{j}-1\right)$ times

$$
A[i+1] \leftarrow \text { key } \mathrm{n}-1 \text { times }
$$

$T(n)=c_{1} n+c_{2}(n-1)+c_{3}(n-1)+c_{4} \sum_{j=2}^{n} t_{j}+c_{5} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{6} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{7}(n-1)$
Best case? Sorted array, $\quad t_{j}=1$
Worst case? Reverse sorted array, $\quad t_{j}=j$

Example: Running Time of InsertionSort

INSERTION_SORT (A)

for loops, the tests are executed one more time than the loop body

1. $\mathbf{F O R} \mathrm{j} \leftarrow 2$ TO length $[A] \mathrm{n}$ times
2. DO key $\leftarrow A[j]$ n-1 times
3. $\{$ Put $A[j]$ into the sorted sequence $A[1 \ldots j-1]\}$
4. $\quad i \leftarrow j-1 \mathrm{n}-1$ times
5. WHILE $i>0$ and $A[i]>$ key $\sum_{j=2}^{n} t_{j}$ times
6.
7.
8. $A[i+1] \leftarrow$ key n-1 times

$$
\text { DO } A[i+1] \leftarrow A[i]
$$

$$
i \leftarrow i-1>\sum_{j=2}^{n}\left(t_{j}-1\right) \text { times }
$$

$$
T(n)=c_{1} n+c_{2}(n-1)+c_{3}(n-1)+c_{4} \sum_{j=2}^{n} t_{j}+c_{5} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{6} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{7}(n-1)
$$

Best case? Sorted array, $\quad t_{j}=1$
Worst case? Reverse sorted array, $\quad t_{j}=j$

Example: Running Time of InsertionSort

INSERTION_SORT (A)

for loops, the tests are executed one more time than the loop body

1. $\mathbf{F O R} \mathrm{j} \leftarrow 2$ TO length $[A] \mathrm{n}$ times
2. DO key $\leftarrow A[j]$ n-1 times
3. $\{$ Put $A[j]$ into the sorted sequence $A[1 \ldots j-1]\}$
4. $\quad i \leftarrow j-1 \mathrm{n}-1$ times
5. WHILE $i>0$ and $A[i]>$ key $\sum_{j=2}^{n} t_{j}$ times
6.
7.
8. DO $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1 \quad \sum \sum_{j=2}^{n}\left(t_{j}-1\right)$ times $A[i+1] \leftarrow$ key $\mathrm{n}-1$ times
$T(n)=c_{1} n+c_{2}(n-1)+c_{3}(n-1)+c_{4} \sum_{j=2}^{n} t_{j}+c_{5} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{6} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{7}(n-1)$

Best case? Sorted array, $\quad t_{j}=1$ Bounded by some $C n$ for some constant c

Worst case?
Reverse sorted array, $\quad t_{j}=j$ Bounded by some Cn^{2} for some constant c

Memory Usage

- Each memory cell can hold one element of the input.
- Total memory usage = Memory used to hold the input + extra memory used by the algorithm (auxiliary memory).
- What is the total and the auxiliary memory usage of LinearSearch?
- What is the total and the auxiliary memory usage of InsertionSort?

Worst vs Best vs Average Case

Worst vs Best vs Average Case

- Convention: When we say "the running time of Algorithm A", we mean the worst-case running time, over all possible inputs to the algorithm.

Worst vs Best vs Average Case

- Convention: When we say "the running time of Algorithm A", we mean the worst-case running time, over all possible inputs to the algorithm.
- We can also measure the best-case running time, over all possible inputs to the problem.

Worst vs Best vs Average Case

- Convention: When we say "the running time of Algorithm A", we mean the worst-case running time, over all possible inputs to the algorithm.
- We can also measure the best-case running time, over all possible inputs to the problem.
- In between: average-case running time.
- Running time of the algorithm on inputs which are chosen at random from some distribution.
- The appropriate distribution depends on the application.
- The analysis can be difficult.

Example: Average Running Time of InsertionSort

```
INSERTION_SORT ( \(A\) )
1. \(\mathbf{F O R} \mathrm{j} \leftarrow 2 \mathbf{T O}\) length \([A] \mathrm{n}\) times
    DO key \(\leftarrow A[j]\) n-1 times
        \{Put \(A[j]\) into the sorted sequence \(A[1 \ldots j-1]\}\)
        \(i \leftarrow j-1 \mathrm{n}-1\) times
        WHILE \(i>0\) and \(A[i]>\) key \(\sum_{j=2}^{n} t_{j}\) times
        DO \(A[i+1] \leftarrow A[i]\)
        \(i \leftarrow i-1 \quad \sum \sum_{j=2}\left(t_{j}-1\right)\) times
    \(A[i+1] \leftarrow\) key \(\mathrm{n}-1\) times
2. DO key \(\leftarrow A[j]\) n-1 times
3. \(\{\) Put \(A[j]\) into the sorted sequence \(A[1 \ldots j-1]\}\)
4. \(i \leftarrow j-1 \mathrm{n}\) - 1 times
5.
6.
7.
8.
\[
A[i+1] \leftarrow \text { key } n-1 \text { times }
\]
```

for loops, the tests are executed one more time than the loop body

Example: Average Running Time of InsertionSort

```
INSERTION_SORT ( \(A\) )
1. \(\mathbf{F O R} \mathrm{j} \leftarrow 2 \mathbf{T O}\) length \([A] \mathrm{n}\) times
2. DO key \(\leftarrow A[j]\) n-1 times
3. \(\{\) Put \(A[j]\) into the sorted sequence \(A[1 \ldots j-1]\}\)
4. \(i \leftarrow j-1 \mathrm{n}\) - 1 times
5.
6.
7.
8.
WHILE \(i>0\) and \(A[i]>\) key \(\sum_{j=2}^{n} t_{j}\) times DO \(A[i+1] \leftarrow A[i]\) \(i \leftarrow i-1 \quad \sum \sum_{j=2}\left(t_{j}-1\right)\) times \(A[i+1] \leftarrow\) key \(\mathrm{n}-1\) times
```

for loops, the tests are executed one more time than the loop body

- Select an input uniformly at random from all possible sequences with n numbers.

Example: Average Running Time of InsertionSort

```
INSERTION_SORT ( \(A\) )
1. \(\mathbf{F O R} \mathrm{j} \leftarrow 2 \mathbf{T O}\) length \([A] \mathrm{n}\) times
    DO key \(\leftarrow A[j]\) n-1 times
        \{Put \(A[j]\) into the sorted sequence \(A[1 \ldots j-1]\}\)
        \(i \leftarrow j-1 \mathrm{n}-1\) times
        WHILE \(i>0\) and \(A[i]>\) key \(\sum_{j=2}^{n} t_{j}\) times
        DO \(A[i+1] \leftarrow A[i]\)
        \(i \leftarrow i-1 \quad \sum \sum_{j=2}^{n}\left(t_{j}-1\right)\) times
    \(A[i+1] \leftarrow\) key \(\mathrm{n}-1\) times
2. DO key \(\leftarrow A[j]\) n-1 times
3. \(\{\) Put \(A[j]\) into the sorted sequence \(A[1 \ldots j-1]\}\)
4. \(i \leftarrow j-1\) n-1 times
5.
6.
7.
8.
INSERTION_SORT ( \(A\) )
1. \(\mathbf{F O R} \mathrm{j} \leftarrow 2\) TO length \([A] \mathrm{n}\) times
```

for loops, the tests are executed one more time than the loop body

- Select an input uniformly at random from all possible sequences with n numbers.
- On average, key will be smaller than half of the elements in $\mathrm{A}[1, \ldots, \mathrm{j}]$.

Example: Average Running Time of InsertionSort

```
INSERTION_SORT ( \(A\) )
1. \(\mathbf{F O R} \mathrm{j} \leftarrow 2 \mathbf{T O}\) length \([A] \mathrm{n}\) times
2. DO key \(\leftarrow A[j]\) n-1 times
3. \(\{\) Put \(A[j]\) into the sorted sequence \(A[1 \ldots j-1]\}\)
4. \(\quad i \leftarrow j-1 \mathrm{n}-1\) times
5. WHILE \(i>0\) and \(A[i]>\) key \(\sum_{j=2}^{n} t_{j}\) times
6. \(\quad\) DO \(A[i+1] \leftarrow A[i]\)
7.
8.
    \(A[i+1] \leftarrow\) key \(\mathrm{n}-1\) times
```

for loops, the tests are executed one more time than the loop body

- Select an input uniformly at random from all possible sequences with n numbers.
- On average, key will be smaller than half of the elements in $A[1, \ldots, j]$.
- The while loop will look "halfway" through the sorted subarray A[1, .., j].

Example: Average Running Time of InsertionSort

INSERTION_SORT (A)

1. $\mathbf{F O R} \mathrm{j} \leftarrow 2$ TO length $[A] \mathrm{n}$ times
for loops, the tests are executed one more time than the loop body
2. DO key $\leftarrow A[j]$ n-1 times
3.
4.
5.
6.
7.
8.

$\{$ Put $A[j]$ into the sorted sequence $A[1 \ldots j-1]\}$
$i \leftarrow j-1$ n-1 times
WHILE $i>0$ and $A[i]>$ key $\sum_{j=2}^{n} t_{j}$ times
DO $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1 \quad \sum \sum_{j=2}^{n}\left(t_{j}-1\right)$ times $A[i+1] \leftarrow$ key $\mathrm{n}-1$ times

- Select an input uniformly at random from all possible sequences with n numbers.
- On average, key will be smaller than half of the elements in $A[1, \ldots, j]$.
- The while loop will look "halfway" through the sorted subarray $\mathrm{A}[1, \ldots, \mathrm{j}]$.
- This means that $t_{j}=\frac{j}{2}$

Example: Average Running Time of InsertionSort

INSERTION_SORT (A)
for loops, the tests are executed one more time than the loop body

1. $\mathbf{F O R} \mathrm{j} \leftarrow 2$ TO length $[A] \mathrm{n}$ times

DO key $\leftarrow A[j]$ n-1 times
\{Put $A[j]$ into the sorted sequence $A[1 \ldots j-1]\}$
$i \leftarrow j-1 \mathrm{n}-1$ times
WHILE $i>0$ and $A[i]>$ key $\sum_{j=2}^{n} t_{j}$ times
DO $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1 \quad \sum \sum_{j=2}^{n}\left(t_{j}-1\right)$ times $A[i+1] \leftarrow$ key $\mathrm{n}-1$ times

- Select an input uniformly at random from all possible sequences with n numbers.
- On average, key will be smaller than half of the elements in $A[1, \ldots, j]$.
- The while loop will look "halfway" through the sorted subarray A[1,.., j].
- This means that $t_{j}=\frac{j}{2}$ Bounded by some $\mathrm{Cn}{ }^{2}$ for some constant c

Asymptotic Notation

- When n becomes large, it makes less of a difference if an algorithm takes 2 n or 3 n steps to finish.
- In particular, 3logn steps are fewer than $2 n$ steps.
- We would like to avoid having to calculate the precise constants.
- We use asymptotic notation.

Asymptotic Notation

$\mathbf{O}(\mathbf{g}(\mathbf{n}))=\mathbf{f}(\mathbf{n}):$ there exist positive constants c and n_{0} such that

$$
0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}
$$

$\boldsymbol{\Omega}(\mathbf{g}(\mathbf{n}))=\mathbf{f}(\mathbf{n}):$ there exist positive constants c and n_{0} such that $0 \leq c g(n) \leq f(n)$ for all $n \geq n_{0}$.
$\Theta(\mathbf{g}(\mathbf{n}))=\mathbf{f}(\mathbf{n})$: there exist positive constants c_{1}, c_{2} and n_{0} such that

$$
0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n) \text { for all } n \geq n_{0}
$$

$\mathbf{o}(\mathbf{g}(\mathbf{n}))=\mathbf{f}(\mathbf{n}):$ for any constant $c>0$, there exists a constant $n_{0}>0$ such that $0 \leq f(n)<c g(n)$ for all $n \geq n_{0}$.
$\mathbf{o}(\mathbf{g}(\mathbf{n}))=\mathbf{f}(\mathbf{n}):$ for any constant $c>0$, there exists a constant $n_{0}>0$ such that $0 \leq c g(n)<f(n)$ for all $n \geq n_{0}$.

Asymptotic Notation

$$
\begin{aligned}
& \mathbf{O}(\mathbf{g}(\mathbf{n}))=\mathbf{f}(\mathbf{n}): \text { there exist positive constants } c \text { and } n_{0} \text { such that } \\
& \qquad 0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0} .
\end{aligned}
$$

- For sufficiently large inputs, there is a constant such that $\mathrm{c} g(\mathrm{n})$ is not smaller than $f(n)$.
- For example, for sufficiently large inputs, 2 n is larger than 3logn. Therefore, $3 \log \mathrm{n}=\mathrm{O}(\mathrm{n})$.
- Intuitively, $\mathrm{g}(\mathrm{n})$ grows "not slower" than $\mathrm{f}(\mathrm{n})$.
- Use: If we can upper bound the running time of an algorithm by $c^{*} g(n)$, where c is some constant and $g(\cdot)$ is a function of the input, then we can say that the running time is $O(g(n))$.

Asymptotic Notation

$$
\begin{gathered}
\boldsymbol{\Omega}(\mathbf{g}(\mathbf{n}))=\mathbf{f}(\mathbf{n}): \text { there exist positive constants } c \text { and } n_{0} \text { such that } \\
0 \leq c g(n) \leq f(n) \text { for all } n \geq n_{0} .
\end{gathered}
$$

- For sufficiently large inputs, there is a constant such that $\mathrm{c} g(\mathrm{n})$ is not larger than $f(n)$.
- For example, for sufficiently large inputs, 3logn is smaller than 2 n . Therefore, $2 \mathrm{n}=\Omega(\operatorname{logn})$.
- Intuitively, $g(n)$ grows "not faster" than $f(n)$.
- Use: If we can lower bound the running time of an algorithm by $c^{*} g(n)$, where c is some constant and $g(\cdot)$ is a function of the input, then we can say that the running time is $\Omega(g(n))$.

Asymptotic Notation

$$
\begin{aligned}
& \boldsymbol{\Theta}(\mathbf{g}(\mathbf{n}))=\mathbf{f}(\mathbf{n}): \text { there exist positive constants } c_{1}, c_{2} \text { and } n_{0} \text { such that } \\
& 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n) \text { for all } n \geq n_{0} .
\end{aligned}
$$

- If a function is both $O(g(n))$ and $\Omega(g(n))$.
- Use: If we can show that the running time of an algorithm is lower bounded by $c 1^{*} g(n)$ and upper bounded by $c 2^{*} g(n)$ for some constants c1 and c2 and some function $g(\cdot)$ of n, then we can say that the running time is $\Theta(g(n))$.

Example: Running Time of InsertionSort

```
INSERTION_SORT ( \(A\) )
1. \(\mathbf{F O R} \mathrm{j} \leftarrow 2 \mathbf{T O}\) length \([A] \mathrm{n}\) times
2. DO key \(\leftarrow A[j]\) n-1 times
3. \(\{\) Put \(A[j]\) into the sorted sequence \(A[1 \ldots j-1]\}\)
4. \(i \leftarrow j-1 \mathrm{n}\) - 1 times
5. WHILE \(i>0\) and \(A[i]>\) key \(\sum_{j=2}^{n} t_{j}\) times
6.
7.
8. \(A[i+1] \leftarrow\) key n-1 times
```

$T(n)=c_{1} n+c_{2}(n-1)+c_{3}(n-1)+c_{4} \sum_{j=2}^{n} t_{j}+c_{5} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{6} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{7}(n-1)$

Best case? Sorted array, $\quad t_{j}=1$
Worst case? Reverse sorted array, $\quad t_{j}=j \quad$ Bounded by some $c n^{2}$ for some constant c

Example: Running Time of InsertionSort

INSERTION_SORT (A)

1. $\mathbf{F O R} \mathrm{j} \leftarrow 2 \mathbf{T O}$ length $[A] \mathrm{n}$ times
2. DO key $\leftarrow A[j]$ n-1 times
3. $\{$ Put $A[j]$ into the sorted sequence $A[1 \ldots j-1]\}$

What is the asymptotic complexity of InsertionSort?
4. $i \leftarrow j-1 \mathrm{n}-1$ times
5. WHILE $i>0$ and $A[i]>$ key $\sum_{j=2}^{n} t_{j}$ times
6.
7.
8. $A[i+1] \leftarrow$ key n-1 times

$$
\text { DO } A[i+1] \leftarrow A[i]
$$

$$
i \leftarrow i-1<\sum_{j=2}^{n}\left(t_{j}-1\right) \text { times }
$$

$$
T(n)=c_{1} n+c_{2}(n-1)+c_{3}(n-1)+c_{4} \sum_{j=2}^{n} t_{j}+c_{5} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{6} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{7}(n-1)
$$

Best case? Sorted array, $\quad t_{j}=1$
Worst case? Reverse sorted array, $\quad t_{j}=j \quad$ Bounded by some $c n^{2}$ for some constant c

Asymptotic Notation

$$
\begin{aligned}
& \mathbf{o}(\mathbf{g}(\mathbf{n}))=\mathbf{f}(\mathbf{n}): \text { for any constant } c>0, \text { there exists a constant } \\
& n_{0}>0 \text { such that } 0 \leq f(n)<c g(n) \text { for all } n \geq n_{0}
\end{aligned}
$$

- The bound holds for sufficiently large inputs and for any constant c.
- Equivalent interpretation: $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$.
- As n approaches infinity, $f(n)$ becomes insignificant compared to $g(n)$.
- For example: $2 n=o\left(n^{2}\right)$

Asymptotic Notation

$$
\begin{aligned}
& \mathbf{o}(\mathbf{g}(\mathbf{n}))=\mathbf{f}(\mathbf{n}): \text { for any constant } c>0, \text { there exists a constant } \\
& n_{0}>0 \text { such that } 0 \leq c g(n)<f(n) \text { for all } n \geq n_{0}
\end{aligned}
$$

- The bound holds for sufficiently large inputs and for any constant c.
- Equivalent interpretation: $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$.
- As n approaches infinity, $g(n)$ becomes insignificant compared to $f(n)$.
- For example: $4 n^{2}=\omega(n)$

Examples

$$
\begin{aligned}
& 5 n^{3}+100=O\left(n^{3}\right) \\
& 5 n^{3}+100=\Omega\left(n^{3}\right) \\
& \log n=o\left(n^{5}\right) \\
& n^{5}=o\left(2^{n}\right) \\
& \log (4 n)=\log n+\log 4=O(\log n) \\
& \log \left(n^{4}\right)=4 \log n=O(\log n) \\
& (4 n)^{3}=64 n^{4}=O\left(n^{3}\right) \\
& \left(n^{4}\right)^{3}=n^{1} 2=\omega\left(n^{3}\right) \\
& 3^{(4 n)}=81^{n}=\omega\left(3^{n}\right)
\end{aligned}
$$

Running time hierarchy

$$
O(\log n) \quad O(n) \quad O(n \log n) \quad O\left(n^{2}\right) \quad O\left(n^{\alpha}\right) \quad O\left(c^{n}\right)
$$

logarithmic	linear	quadratic	polynomial	exponential	
The algorithm does not even read the whole input.	The algorithm accesses the input only a constant number of times.	The algorithm splits the inputs into two pieces of similar size, solves each part and merges the solutions.	The algorithm considers pairs of elements.	The algorithm performs many nested loops.	The algorithm considers many subsets of the input elements.

constant	$O(1)$	superlinear	$\omega(n)$
superconstant	$\omega(1)$	superpolynomial	$\omega\left(n^{\alpha}\right)$
sublinear	$o(n)$	subexponential	$o\left(c^{n}\right)$

