Advanced Algorithmic Techniques (COMP523)

Greedy Algorithms

Recap and plan

Last lecture:

- The Greedy approach
- Interval Scheduling
- This lecture:
 - Minimum Spanning Tree
 - Kruskal's Algorithm
 - Prim's Algorithm

Application

- We have a set of locations.
- We want to build a communication network, joining all of them.
- We want to do it as cheaply as possible.
 - Every direct connection between two locations has a cost.
 - We want to have everything connected a the minimum cost.

Minimum Spanning Tree

- Consider a connected graph G=(V, E), such that for every edge e=(v,w) of E, there is an associated positive cost ce.
- Goal: Find a subset T of E so that the graph G'=(V, T) is connected and the total cost $\sum_{e \in T} c_e$ is minimised.

• By definition, (V, T) is connected.

- By definition, (V, T) is connected.
- Suppose that it contained a cycle.

- By definition, (V, T) is connected.
- Suppose that it contained a cycle.
- Let e be an edge on that cycle.

- By definition, (V, T) is connected.
- Suppose that it contained a cycle.
- Let e be an edge on that cycle.
- Take (V, T-{e}).

- By definition, (V, T) is connected.
- Suppose that it contained a cycle.
- Let e be an edge on that cycle.
- Take (V, T-{e}).
- This is still connected.

- By definition, (V, T) is connected.
- Suppose that it contained a cycle.
- Let e be an edge on that cycle.
- Take (V, T-{e}).
- This is still connected.
 - All paths that used e can be rerouted through the other direction.

- By definition, (V, T) is connected.
- Suppose that it contained a cycle.
- Let e be an edge on that cycle.
- Take (V, T-{e}).
- This is still connected.
 - All paths that used e can be rerouted through the other direction.
- (V, T-{e}) is a valid solution, and it is cheaper. Contradiction!

Minimum Spanning Tree

- Consider a connected graph G=(V, E), such that for every edge e=(v,w) of E, there is an associated positive cost ce.
- Goal: Find a subset T of E so that the graph G'=(V, T) is connected and the total cost $\sum_{e \in T} c_e$ is minimised.

Minimum Spanning Tree

T is a spanning tree and the problem is called the Minimum Spanning Tree problem.

- Consider a connected graph G=(V, E), such that for every edge e=(v,w) of E, there is an associated positive cost ce.
- Goal: Find a subset T of E so that the graph G'=(V, T) is connected and the total cost $\sum_{e \in T} c_e$ is minimised.

• Start with an empty set of edges T.

- Start with an empty set of edges T.
- Add one edge to T.

- Start with an empty set of edges T.
- Add one edge to T.
 - Which one?

- Start with an empty set of edges T.
- Add one edge to T.
 - Which one?
 - The one with the minimum cost c_e.

- Start with an empty set of edges T.
- Add one edge to T.
 - Which one?
 - The one with the minimum cost c_e.
- We continue like this.

- Start with an empty set of edges T.
- Add one edge to T.
 - Which one?
 - The one with the minimum cost c_e.
- We continue like this.
- Do we always add the new edge e to T?

- Start with an empty set of edges T.
- Add one edge to T.
 - Which one?
 - The one with the minimum cost c_e.
- We continue like this.
- Do we always add the new edge e to T?
 - Only if we don't introduce any cycles.

- Start with an empty set of edges T.
- Add one edge to T.
 - Which one?
 - The one with the minimum cost c_e.
- We continue like this.
- Do we always add the new edge e to T?
 - Only if we don't introduce any cycles.

Kruskal's Algorithm

- Start with an empty set of edges T.
- Add one edge to T.
 - Which one?
 - The one with the minimum cost c_e.
- We continue like this.
- Do we always add the new edge e to T?
 - Only if we don't introduce any cycles.

• Start with an empty set of edges T.

- Start with an empty set of edges T.
- Start with a node s.

- Start with an empty set of edges T.
- Start with a node s.
 - Add an edge e=(s,w) to T.

- Start with an empty set of edges T.
- Start with a node s.
 - Add an edge e=(s,w) to T.
 - Which one?

- Start with an empty set of edges T.
- Start with a node s.
 - Add an edge e=(s,w) to T.
 - Which one?
 - The one with the minimum cost c_e.

- Start with an empty set of edges T.
- Start with a node s.
 - Add an edge e=(s,w) to T.
 - Which one?
 - The one with the minimum cost c_e.
- We continue like this.

- Start with an empty set of edges T.
- Start with a node s.
 - Add an edge e=(s,w) to T.
 - Which one?
 - The one with the minimum cost c_e.
- We continue like this.
 - We only consider edges to neighbours that are not in the spanning tree.

- Start with an empty set of edges T.
- Start with a node s.
 - Add an edge e=(s,w) to T.
 - Which one?
 - The one with the minimum cost c_e.
- We continue like this.
 - We only consider edges to neighbours that are not in the spanning tree.

Prim's Algorithm

- Start with an empty set of edges T.
- Start with a node s.
 - Add an edge e=(s,w) to T.
 - Which one?
 - The one with the minimum cost c_e.
- We continue like this.
 - We only consider edges to neighbours that are not in the spanning tree.

In the example, they both produced the same spanning tree.

- In the example, they both produced the same spanning tree.
- This was actually the minimum spanning tree.

- In the example, they both produced the same spanning tree.
- This was actually the minimum spanning tree.
- Do they always output the minimum spanning tree?

• Assume that all edge costs are distinct.

- Assume that all edge costs are distinct.
- Let S be any subset of V,

- Assume that all edge costs are distinct.
- Let S be any subset of V,
 - but not empty.

- Assume that all edge costs are distinct.
- Let S be any subset of V,
 - but not empty.
 - but *not* V.

- Assume that all edge costs are distinct.
- Let S be any subset of V,
 - but not empty.
 - but *not* V.
- Let e=(w,v) be the minimum cost edge between S and V-S.

- Assume that all edge costs are distinct.
- Let S be any subset of V,
 - but not empty.
 - but *not* V.
- Let e=(w,v) be the minimum cost edge between S and V-S.
- Then e is contained in every minimum spanning tree.

- Assume that all edge costs are distinct.
- Let S be any subset of V,
 - but not empty.
 - but *not* V.
- Let e=(w,v) be the minimum cost edge between S and V-S.
- Then e is contained in every minimum spanning tree.

• Then e is contained in every minimum spanning tree.

- Then e is contained in every minimum spanning tree.
- Assume that some spanning tree T does not contain e.

- Then e is contained in every minimum spanning tree.
- Assume that some spanning tree T does not contain e.
- Since it is a spanning tree, it must contain some other edge f that crosses from S to V-S.

- Then e is contained in every minimum spanning tree.
- Assume that some spanning tree T does not contain e.
- Since it is a spanning tree, it must contain some other edge f that crosses from S to V-S.

- Then e is contained in every minimum spanning tree.
- Assume that some spanning tree T does not contain e.
- Since it is a spanning tree, it must contain some other edge f that crosses from S to V-S.
- But c_e ≤ c_f, so T- {f} ∪ {e} is a spanning tree of smaller cost.

No, $T = \{f\} \cup \{e\}$ might not be a spanning tree!

- Then e is contained in every minimum spanning tree.
- Assume that some spanning tree T does not contain e.
- Since it is a spanning tree, it must contain some other edge f that crosses from S to V-S.
- But c_e ≤ c_f, so T- {f} ∪ {e} is a spanning tree of smaller cost.

• We can't simply select any edge.

- We can't simply select any edge.
- We need to select an edge e' which

- We can't simply select any edge.
- We need to select an edge e' which
 - is more expensive than e.

- We can't simply select any edge.
- We need to select an edge e' which
 - is more expensive than e.
 - still results in a spanning tree, if used instead of e.

- We can't simply select any edge.
- We need to select an edge e' which
 - is more expensive than e.
 - still results in a spanning tree, if used instead of e.

 Let T be a minimum spanning tree which does **not** contain e=(v, w).

- Let T be a minimum spanning tree which does **not** contain e=(v, w).
- Since T is a spanning tree, there is path from v to w.

- Let T be a minimum spanning tree which does **not** contain e=(v, w).
- Since T is a spanning tree, there is path from v to w.

- Let T be a minimum spanning tree which does **not** contain e=(v, w).
- Since T is a spanning tree, there is path from v to w.
- Let w' be the first node encountered in V-T and let v' be the one before it. Let e'=(v', w').

- Let T be a minimum spanning tree which does **not** contain e=(v, w).
- Since T is a spanning tree, there is path from v to w.
- Let w' be the first node encountered in V-T and let v' be the one before it. Let e'=(v', w').
- Consider T' = T -{e'} U {e}.

 Consider any edge e=(u, w) that Kruskal's algorithm adds to the output on some step.

- Consider any edge e=(u, w) that Kruskal's algorithm adds to the output on some step.
- Let S be the set of nodes reachable from u just before e is added to the output.

- Consider any edge e=(u, w) that Kruskal's algorithm adds to the output on some step.
- Let S be the set of nodes reachable from u just before e is added to the output.
- It holds that v is in S and w is in V-S. (Why?)

- Consider any edge e=(u, w) that Kruskal's algorithm adds to the output on some step.
- Let S be the set of nodes reachable from u just before e is added to the output.
- It holds that v is in S and w is in V-S. (Why?)
 - Because otherwise adding e would create a cycle.

- Consider any edge e=(u, w) that Kruskal's algorithm adds to the output on some step.
- Let S be the set of nodes reachable from u just before e is added to the output.
- It holds that v is in S and w is in V-S. (Why?)
 - Because otherwise adding e would create a cycle.
- The algorithm has not found any edge crossing S and V-S to the output. (Why?)

- Consider any edge e=(u, w) that Kruskal's algorithm adds to the output on some step.
- Let S be the set of nodes reachable from u just before e is added to the output.
- It holds that v is in S and w is in V-S. (Why?)
 - Because otherwise adding e would create a cycle.
- The algorithm has not found any edge crossing S and V-S to the output. (Why?)
 - Such an edge would have been added to the output by the algorithm.

- Consider any edge e=(u, w) that Kruskal's algorithm adds to the output on some step.
- Let S be the set of nodes reachable from u just before e is added to the output.
- It holds that v is in S and w is in V-S. (Why?)
 - Because otherwise adding e would create a cycle.
- The algorithm has not found any edge crossing S and V-S to the output. (Why?)
 - Such an edge would have been added to the output by the algorithm.
- The edge e must be the cheapest edge crossing S and V-S.

- Consider any edge e=(u, w) that Kruskal's algorithm adds to the output on some step.
- Let S be the set of nodes reachable from u just before e is added to the output.
- It holds that v is in S and w is in V-S. (Why?)
 - Because otherwise adding e would create a cycle.
- The algorithm has not found any edge crossing S and V-S to the output. (Why?)
 - Such an edge would have been added to the output by the algorithm.
- The edge e must be the cheapest edge crossing S and V-S.
- By the cut property, it belongs to every minimum spanning tree.

• i.e., does it always produce a spanning tree?

- i.e., does it always produce a spanning tree?
- The algorithm explicitly avoids cycles.

- i.e., does it always produce a spanning tree?
- The algorithm explicitly avoids cycles.
 - Output T is a forest.

- i.e., does it always produce a spanning tree?
- The algorithm explicitly avoids cycles.
 - Output T is a forest.
- Is it a tree?

- i.e., does it always produce a spanning tree?
- The algorithm explicitly avoids cycles.
 - Output T is a forest.
- Is it a tree?
 - Is it connected?

- i.e., does it always produce a spanning tree?
- The algorithm explicitly avoids cycles.
 - Output T is a forest.
- Is it a tree?
 - Is it connected?
 - G is connected.

- i.e., does it always produce a spanning tree?
- The algorithm explicitly avoids cycles.
 - Output T is a forest.
- Is it a tree?
 - Is it connected?
 - G is connected.
 - Suppose by contradiction that T was not connected.

- i.e., does it always produce a spanning tree?
- The algorithm explicitly avoids cycles.
 - Output T is a forest.
- Is it a tree?
 - Is it connected?
 - G is connected.
 - Suppose by contradiction that T was not connected.
 - The algorithm would have added an edge crossing the two components.

Is it feasible?

- i.e., does it always produce a spanning tree?
- The algorithm explicitly avoids cycles.
 - Output T is a forest.
- Is it a tree?
 - Is it connected?
 - G is connected.
 - Suppose by contradiction that T was not connected.
 - The algorithm would have added an edge crossing the two components.

 In each iteration of the algorithm, there is a set S of nodes which are the nodes of a partial spanning tree.

- In each iteration of the algorithm, there is a set S of nodes which are the nodes of a partial spanning tree.
- An edge is added to "expand" the partial spanning tree, which has the minimum cost.

- In each iteration of the algorithm, there is a set S of nodes which are the nodes of a partial spanning tree.
- An edge is added to "expand" the partial spanning tree, which has the minimum cost.
- This edge has one endpoint in S and one in V-S and has minimum cost.

- In each iteration of the algorithm, there is a set S of nodes which are the nodes of a partial spanning tree.
- An edge is added to "expand" the partial spanning tree, which has the minimum cost.
- This edge has one endpoint in S and one in V-S and has minimum cost.
- So it must be part of every minimum spanning tree.

Greedy Approach #2

Greedy Approach #2

- Start with the full graph G=(V, E).
- Delete an edge from G.
 - Which one?
 - The one with the maximum cost c_e.
- We continue like this.
 - Do we always remove the considered edge e from G?
 - As long as we don't disconnect the graph.

Reverse-Delete Algorithm

- Start with the full graph G=(V, E).
- Delete an edge from G.
 - Which one?
 - The one with the maximum cost ce.
- We continue like this.
 - Do we always remove the considered edge e from G?
 - As long as we don't disconnect the graph.

Reverse-Delete Algorithm

- Start with the full graph G=(V, E).
- Delete an edge from G.
 - Which one?
 - The one with the maximum cost c_e.
- We continue like this.
 - Do we always remove the considered edge e from G?
 - As long as we don't disconnect the graph.

• Assume that all edge costs are distinct.

- Assume that all edge costs are distinct.
- Let C be any cycle of G.

- Assume that all edge costs are distinct.
- Let C be any cycle of G.
- Let e=(w,v) be the maximum cost edge of C.

- Assume that all edge costs are distinct.
- Let C be any cycle of G.
- Let e=(w,v) be the maximum cost edge of C.
- Then e is not contained in any minimum spanning tree of G.

- Assume that all edge costs are distinct.
- Let C be any cycle of G.
- Let e=(w,v) be the maximum cost edge of C.
- Then e is not contained in any minimum spanning tree of G.

• Let T be a spanning tree that contains e.

- Let T be a spanning tree that contains e.
 - We will show that it does not have minimum cost.

- Let T be a spanning tree that contains e.
 - We will show that it does not have minimum cost.
- We will substitute e with another edge e', resulting in a cheaper spanning tree.

- Let T be a spanning tree that contains e.
 - We will show that it does not have minimum cost.
- We will substitute e with another edge e', resulting in a cheaper spanning tree.
- How to find this edge e'?

• We delete e from T.

• We delete e from T.

- We delete e from T.
- This partitions the nodes into

- We delete e from T.
- This partitions the nodes into
 - S (containing u).

- We delete e from T.
- This partitions the nodes into
 - S (containing u).
 - V S (containing w).

- We delete e from T.
- This partitions the nodes into
 - S (containing u).
 - V S (containing w).

- We delete e from T.
- This partitions the nodes into
 - S (containing u).
 - V S (containing w).
- We follow the other path the cycle from u to w.

- We delete e from T.
- This partitions the nodes into
 - S (containing u).
 - V S (containing w).
- We follow the other path the cycle from u to w.
- At some point we cross from S to V S, following edge e'.

- We delete e from T.
- This partitions the nodes into
 - S (containing u).
 - V S (containing w).
- We follow the other path the cycle from u to w.
- At some point we cross from S to V S, following edge e'.

- We delete e from T.
- This partitions the nodes into
 - S (containing u).
 - V S (containing w).
- We follow the other path the cycle from u to w.
- At some point we cross from S to V S, following edge e'.
- The resulting graph is a tree with smaller cost.

 Consider any edge e=(v, w) which is removed by Reverse-Delete.

- Consider any edge e=(v, w) which is removed by Reverse-Delete.
- Just before deleting, it lies on some cycle C.

- Consider any edge e=(v, w) which is removed by Reverse-Delete.
- Just before deleting, it lies on some cycle C.
- It has the maximum cost among edges, so it cannot be part of any minimum spanning tree.

• i.e., does it always produce a spanning tree?

- i.e., does it always produce a spanning tree?
- Is it connected?

- i.e., does it always produce a spanning tree?
- Is it connected?
 - The algorithm will never disconnect the graph.

- i.e., does it always produce a spanning tree?
- Is it connected?
 - The algorithm will never disconnect the graph.
- Is it a tree?

- i.e., does it always produce a spanning tree?
- Is it connected?
 - The algorithm will never disconnect the graph.
- Is it a tree?
 - Suppose that it's not.

- i.e., does it always produce a spanning tree?
- Is it connected?
 - The algorithm will never disconnect the graph.
- Is it a tree?
 - Suppose that it's not.
 - Then it contains some cycle C.

- i.e., does it always produce a spanning tree?
- Is it connected?
 - The algorithm will never disconnect the graph.
- Is it a tree?
 - Suppose that it's not.
 - Then it contains some cycle C.
 - Consider the most expensive edge e on that cycle.

- i.e., does it always produce a spanning tree?
- Is it connected?
 - The algorithm will never disconnect the graph.
- Is it a tree?
 - Suppose that it's not.
 - Then it contains some cycle C.
 - Consider the most expensive edge e on that cycle.
 - The algorithm would have removed that edge.

- "Assume that all edge costs are distinct".
- What if they are not?

- "Assume that all edge costs are distinct".
- What if they are not?

- "Assume that all edge costs are distinct".
- What if they are not?

Non-distinct costs

Non-distinct costs

- Take the original instance with non-distinct costs.
- Make the costs distinct by adding small numbers ε to the costs to break ties.
- Obtain a perturbed instance.
- Run the algorithm on the perturbed instance.
- Output the minimum spanning tree T.
- T is a minimum spanning tree on the original instance.

T in the original instance

- Suppose that there was a cheaper spanning tree T* on the original instance.
- If T* contains different edges with the same costs, it is not cheaper than T on the original instance.
- If T contains different edges with different costs, we can make ε small enough to make sure the ones we selected are still cheaper.

Perturbing the costs

Perturbing the costs

1, 2, 2, 4, 4, 6, 7, 7, 8, 8, 9, 10, 11, 14

1, 2, 2+ε, 4, 4+ε, 6, 7, 7+ε, 8, 8+ε, 9, 10, 11, 14

Running time?

Running time?

• Kruskal's Algorithm
Running time?

- Kruskal's Algorithm
 - We will not cover it, Kleinberg and Tardos Chapter 4.6.

Running time?

- Kruskal's Algorithm
 - We will not cover it, Kleinberg and Tardos Chapter 4.6.
- Prim's Algorithm

Running time?

- Kruskal's Algorithm
 - We will not cover it, Kleinberg and Tardos Chapter 4.6.
- Prim's Algorithm
 - Next lecture.