Advanced Algorithmic Techniques
(COMP523)

Greedy Algorithms



Recap and plan

e Last lecture:
e The Greedy approach
e Interval Scheduling
 This lecture:
e Minimum Spanning Tree
e Kruskal’s Algorithm

* Prim’s Algorithm



Application

e \We have a set of locations.

e We want to build a communication network, joining all of
them.

e We want to do it as cheaply as possible.

e Every direct connection between two locations has a
cost.

e We want to have everything connected a the minimum
cost.



Minimum Spanning Tree

 Consider a connected graph G=(V, E), such that for every
edge e=(v,w) of E, there is an associated positive cost ce.

e Goal: Find a subset T of E so that the graph G’=(V, T) is

connected and the total cost Z c. IS minimised.
ecT
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Claim: T is a tree

By definition, (V, T) is connected.

Suppose that it contained a cycle.

Let e be an edge on that cycle.

Take (V, T-{e}).

This is still connected.

* All paths that used e can be rerouted through the other direction.

(\V, T-{e}) is a valid solution, and it is cheaper. Contradiction!
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Minimum Spanning Tree

T Is a spanning tree and the problem is called
the Minimum Spanning Tree problem.

 Consider a connected graph G=(V, E), such that for every
edge e=(v,w) of E, there is an associated positive cost ce.

e Goal: Find a subset T of E so that the graph G’=(V, T) is

connected and the total cost Z c. IS minimised.
ecT
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 Which one?

 The one with the minimum cost ce.
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Do we always add the new edge e to T7?

e Only if we don’t introduce any cycles.






Example













Example




Example




























Greedy Approach #1

Start with an empty set of edges T.

Add one edge to T.

 Which one?

 The one with the minimum cost ce.
We continue like this.

Do we always add the new edge e to T7?

e Only if we don’t introduce any cycles.



Kruskal’s Algo

Start with an empty set of edges T.

Add one edge to T.

 Which one?

 The one with the minimum cost ce.
We continue like this.

Do we always add the new edge e to T7?

e Only if we don’t introduce any cycles.

rithm
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e Start with an empty set of edges T.
e Start with a node s.

e Add an edge e=(s,w) to T.

* Which one?

* The one with the minimum cost ce.
* We continue like this.

* We only consider edges to neighbours that are not in the
spanning tree.
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Greedy Approach #2

e Start with an empty set of edges T.
e Start with a node s.

e Add an edge e=(s,w) to T.

* Which one?

* The one with the minimum cost ce.
* We continue like this.

* We only consider edges to neighbours that are not in the
spanning tree.



Prim’s Algorithm

e Start with an empty set of edges T.
e Start with a node s.
e Add an edge e=(s,w) to T.

e \Which one?

e The one with the minimum cost ce.
e \We continue like this.

* We only consider edges to neighbours that are not in the
spanning tree.
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Are these algorithms
optimal?

e |n the example, they both produced the same spanning
tree.

e This was actually the minimum spanning tree.

e Do they always output the minimum spanning tree?
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The cut property

No, T- {f} U {e} might not be a spanning tree!

Then e is contained in every minimum
spanning tree.

Assume that some spanning tree T
does not contain e.

Since it is a spanning tree, it must
contain some other edge f that crosses
from S to V-S.

But ce < ¢, so T- {f} U {e} is a spanning
tree of smaller cost.
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which does not contain e=(v, w).

e Since T is a spanning tree, there is path
from v to w.

e Let w’ be the first node encountered in
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The cut property

Let T be a minimum spanning tree
which does not contain e=(v, w).

Since T is a spanning tree, there is path
from v to w.

Let w’ be the first node encountered in
V-T and let v’ be the one before it. Let
e’=(v’, w’).

Consider T’ = T -{e’} U {e}.
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Kruskal’s algorithm is optimal

e Consider any edge e=(u, w) that Kruskal’s algorithm adds to the output on
some step.

e Let S be the set of nodes reachable from u just before e is added to the output.
e [tholdsthatvisinS and wisin V-S. (\Why?)
* Because otherwise adding e would create a cycle.
The algorithm has not found any edge crossing S and V-S to the output. (\Why?)
* Such an edge would have been added to the output by the algorithm.
The edge e must be the cheapest edge crossing S and V-S.

By the cut property, it belongs to every minimum spanning tree.
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Prim’s algorithm is optimal

In each iteration of the algorithm, there is a set S of nodes
which are the nodes of a partial spanning tree.

An edge is added to “expand” the partial spanning tree,
which has the minimum cost.

This edge has one endpoint in S and one in V-S and has
minimum cost.

So it must be part of every minimum spanning tree.
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Reverse-Delete Algorithm

e Start with the full graph G=(V, E).

e Delete an edge from G.
 Which one?

e The one with the maximum cost cCe.

 We continue like this.
Do we always remove the considered edge e from G?

 As long as we don’t disconnect the graph.
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The cycle property

e | et T be a spanning tree that contains e.

e \WWe will show that it does not have
minimum cost.

e \We will substitute e with another edge €’,
resulting in a cheaper spanning tree.

e How to find this edge e’?
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The cycle property

We delete e from T.

This partitions the nodes into
e S (containing u).

e \/ - S (containing w).

We follow the other path the cycle from u to
W.

At some point we cross from StoV - S,
following edge €’.

The resulting graph is a tree with smaller
cost.
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Reverse-Delete Is optimal

e Consider any edge e=(v, w) which is removed by Reverse-
Delete.

e Just before deleting, it lies on some cycle C.

e |t has the maximum cost among edges, so it cannot be
part of any minimum spanning tree.
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Is It feasible?

e i.e., does it always produce a spanning tree?
e |s it connected?

e The algorithm will never disconnect the
graph.

e |sit atree?
e Suppose that it’s not.
* Then it contains some cycle C.

* Consider the most expensive edge e on
that cycle.

The algorithm would have removed that
edge.
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e “Assume that all edge costs are distinct”.

e What if they are not?
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Non-distinct costs

Take the original instance with non-distinct costs.

Make the costs distinct by adding small numbers € to the
costs to break ties.

Obtain a perturbed instance.
Run the algorithm on the perturbed instance.
Output the minimum spanning tree T.

T Is a minimum spanning tree on the original instance.



T In the original instance

e Suppose that there was a cheaper spanning tree T* on
the original instance.

e |f T* contains different edges with the same costs, it is not
cheaper than T on the original instance.

e |f T contains different edges with different costs, we can
make € small enough to make sure the ones we selected
are still cheaper.
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Perturbing the costs

1,2,2,4,4,6,7,7,8,8,9,10, 11, 14

1,2,2+¢,4,4+¢€,6, 7, 7+€, 8, 8+¢,9, 10,11, 14
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e Kruskal’'s Algorithm
e \We will not cover it, Kleinberg and Tardos Chapter 4.6.
e Prim’s Algorithm

e Next lecture.



