
Advanced Algorithmic Techniques  
(COMP523)

Greedy Algorithms



Recap and plan
• Last lecture: 

• The Greedy approach


• Interval Scheduling


• This lecture: 

• Minimum Spanning Tree


• Kruskal’s Algorithm


• Prim’s Algorithm



Application
• We have a set of locations.


• We want to build a communication network, joining all of 
them.


• We want to do it as cheaply as possible.


• Every direct connection between two locations has a 
cost.


• We want to have everything connected a the minimum 
cost.



Minimum Spanning Tree

• Consider a connected graph G=(V, E), such that for every 
edge e=(v,w) of E, there is an associated positive cost ce.  


• Goal: Find a subset T of E so that the graph G’=(V, T) is 
connected and the total cost           is minimised.
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Claim: T is a tree
• By definition, (V, T) is connected.

• Suppose that it contained a cycle.

• Let e be an edge on that cycle.

• Take (V, T-{e}).

• This is still connected.

• All paths that used e can be rerouted through the other direction.

• (V, T-{e}) is a valid solution, and it is cheaper. Contradiction!



Minimum Spanning Tree

• Consider a connected graph G=(V, E), such that for every 
edge e=(v,w) of E, there is an associated positive cost ce.  


• Goal: Find a subset T of E so that the graph G’=(V, T) is 
connected and the total cost           is minimised.

X

e2T

ce
<latexit sha1_base64="LdTvh47D4GHeBTUkmbfAViq61Jo=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5JUQY9FLx4r9AuaEDbbabt0swm7GyGE+le8eFDEqz/Em//GbZuDtj4YeLw3w8y8MOFMacf5tkobm1vbO+Xdyt7+weGRfXzSVXEqKXRozGPZD4kCzgR0NNMc+okEEoUceuH0bu73HkEqFou2zhLwIzIWbMQo0UYK7Kqn0ijIAXtM4PYM0wBwYNecurMAXiduQWqoQCuwv7xhTNMIhKacKDVwnUT7OZGaUQ6zipcqSAidkjEMDBUkAuXni+Nn+NwoQzyKpSmh8UL9PZGTSKksCk1nRPRErXpz8T9vkOrRjZ8zkaQaBF0uGqUc6xjPk8BDJoFqnhlCqGTmVkwnRBKqTV4VE4K7+vI66Tbq7mW98XBVa94WcZTRKTpDF8hF16iJ7lELdRBFGXpGr+jNerJerHfrY9lasoqZKvoD6/MHhuqUCA==</latexit>



Minimum Spanning Tree

• Consider a connected graph G=(V, E), such that for every 
edge e=(v,w) of E, there is an associated positive cost ce.  


• Goal: Find a subset T of E so that the graph G’=(V, T) is 
connected and the total cost           is minimised.

X

e2T

ce
<latexit sha1_base64="LdTvh47D4GHeBTUkmbfAViq61Jo=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5JUQY9FLx4r9AuaEDbbabt0swm7GyGE+le8eFDEqz/Em//GbZuDtj4YeLw3w8y8MOFMacf5tkobm1vbO+Xdyt7+weGRfXzSVXEqKXRozGPZD4kCzgR0NNMc+okEEoUceuH0bu73HkEqFou2zhLwIzIWbMQo0UYK7Kqn0ijIAXtM4PYM0wBwYNecurMAXiduQWqoQCuwv7xhTNMIhKacKDVwnUT7OZGaUQ6zipcqSAidkjEMDBUkAuXni+Nn+NwoQzyKpSmh8UL9PZGTSKksCk1nRPRErXpz8T9vkOrRjZ8zkaQaBF0uGqUc6xjPk8BDJoFqnhlCqGTmVkwnRBKqTV4VE4K7+vI66Tbq7mW98XBVa94WcZTRKTpDF8hF16iJ7lELdRBFGXpGr+jNerJerHfrY9lasoqZKvoD6/MHhuqUCA==</latexit>

T is a spanning tree and the problem is called 
the Minimum Spanning Tree problem.
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Greedy Approach #1
• Start with an empty set of edges T.

• Add one edge to T.

• Which one?

• The one with the minimum cost ce.

• We continue like this.

• Do we always add the new edge e to T?

• Only if we don’t introduce any cycles.
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Greedy Approach #1
• Start with an empty set of edges T.


• Add one edge to T.


• Which one?


• The one with the minimum cost ce.
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Kruskal’s Algorithm
• Start with an empty set of edges T.


• Add one edge to T.


• Which one?


• The one with the minimum cost ce.


• We continue like this.


• Do we always add the new edge e to T?


• Only if we don’t introduce any cycles.
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• Start with a node s.
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• Which one?
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Greedy Approach #2
• Start with an empty set of edges T.

• Start with a node s.

• Add an edge e=(s,w) to T.

• Which one?

• The one with the minimum cost ce.

• We continue like this.

• We only consider edges to neighbours that are not in the 
spanning tree.
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Greedy Approach #2
• Start with an empty set of edges T.


• Start with a node s.


• Add an edge e=(s,w) to T.


• Which one?


• The one with the minimum cost ce.


• We continue like this.


• We only consider edges to neighbours that are not in the 
spanning tree.



Prim’s Algorithm
• Start with an empty set of edges T.


• Start with a node s.


• Add an edge e=(s,w) to T.


• Which one?


• The one with the minimum cost ce.


• We continue like this.


• We only consider edges to neighbours that are not in the 
spanning tree.
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Are these algorithms 
optimal?

• In the example, they both produced the same spanning 
tree.

• This was actually the minimum spanning tree.

• Do they always output the minimum spanning tree?
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The cut property

• Then e is contained in every minimum 
spanning tree.

• Assume that some spanning tree T 
does not contain e.

• Since it is a spanning tree, it must 
contain some other edge f that crosses 
from S to V-S.

• But ce ≤ cf, so T- {f} U {e} is a spanning 
tree of smaller cost. 

v w

No, T- {f} U {e} might not be a  spanning tree! 
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The cut property

• Let T be a minimum spanning tree 
which does not contain e=(v, w).

• Since T is a spanning tree, there is path 
from v to w.

• Let w’ be the first node encountered in 
V-T and let v’ be the one before it. Let 
e’=(v’, w’).

• Consider T’ = T -{e’} U {e}.

v’

v w

w’
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Kruskal’s algorithm is optimal
• Consider any edge e=(u, w) that Kruskal’s algorithm adds to the output on 

some step.

• Let S be the set of nodes reachable from u just before e is added to the output.

• It holds that v is in S and w is in V-S. (Why?)

• Because otherwise adding e would create a cycle.

• The algorithm has not found any edge crossing S and V-S to the output. (Why?)

• Such an edge would have been added to the output by the algorithm.

• The edge e must be the cheapest edge crossing S and V-S.

• By the cut property, it belongs to every minimum spanning tree.
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• The algorithm explicitly avoids cycles.

• Output T is a forest.

• Is it a tree?

• Is it connected?

• G is connected.

• Suppose by contradiction that T was not 
connected. 

• The algorithm would have added an edge 
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Prim’s algorithm is optimal

• In each iteration of the algorithm, there is a set S of nodes 
which are the nodes of a partial spanning tree.

• An edge is added to “expand” the partial spanning tree, 
which has the minimum cost. 

• This edge has one endpoint in S and one in V-S and has 
minimum cost.

• So it must be part of every minimum spanning tree.
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• The one with the maximum cost ce.


• We continue like this.
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• As long as we don’t disconnect the graph.



Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14



Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14



Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10



Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10



Example

0

1 2 3

4

567

8

4

8

8

2

6
7

1 2

7

9

4

10



Example

0

1 2 3

4

567

8

4

8

8

2

6
7

1 2

7

9

4

10



Example

0

1 2 3

4

567

8

4

8

8

2

6
7

1 2

7

9

4



Example

0

1 2 3

4

567

8

4

8

8

2

6
7

1 2

7

9

4



Example

0

1 2 3

4

567

8

4

8

8

2

6
7

1 2

7

9

4



Example

0

1 2 3

4

567

8

4

8

2

6
7

1 2

7

9

4



Example

0

1 2 3

4

567

8

4

8

2

6
7

1 2

7

9

4



Example

0

1 2 3

4

567

8

4

8

2

6
7

1 2

7

9

4



Example

0

1 2 3

4

567

8

4

8

2

6

1 2

7

9

4



Example

0

1 2 3

4

567

8

4

8

2

6

1 2

7

9

4



Example

0

1 2 3

4

567

8

4

8

2

6

1 2

7

9

4



Example

0

1 2 3

4

567

8

4

8

2

1 2

7

9

4



The cycle property



The cycle property

• Assume that all edge costs are distinct.



The cycle property

• Assume that all edge costs are distinct.

• Let C be any cycle of G.



The cycle property

• Assume that all edge costs are distinct.

• Let C be any cycle of G.

• Let e=(w,v) be the maximum cost edge 
of C. 



The cycle property

• Assume that all edge costs are distinct.

• Let C be any cycle of G.

• Let e=(w,v) be the maximum cost edge 
of C. 

• Then e is not contained in any 
minimum spanning tree of G.



The cycle property
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of C. 

• Then e is not contained in any 
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The cycle property

• Let T be a spanning tree that contains e.

• We will show that it does not have 
minimum cost.

• We will substitute e with another edge e’, 
resulting in a cheaper spanning tree.

• How to find this edge e’?

e
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The cycle property
• We delete e from T.

• This partitions the nodes into 

• S (containing u).

• V - S (containing w).

• We follow the other path the cycle from u to 
w.

• At some point we cross from S to V - S, 
following edge e’.

• The resulting graph is a tree with smaller 
cost.

u w

e’
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Reverse-Delete is optimal

• Consider any edge e=(v, w) which is removed by Reverse-
Delete.

• Just before deleting, it lies on some cycle C.

• It has the maximum cost among edges, so it cannot be 
part of any minimum spanning tree.
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Is it feasible?
• i.e., does it always produce a spanning tree?

• Is it connected?

• The algorithm will never disconnect the 
graph.

• Is it a tree?

• Suppose that it’s not. 

• Then it contains some cycle C.

• Consider the most expensive edge e on 
that cycle.

• The algorithm would have removed that 
edge.

e
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Non-distinct costs
• Take the original instance with non-distinct costs.


• Make the costs distinct by adding small numbers ε to the 
costs to break ties.


• Obtain a perturbed instance.


• Run the algorithm on the perturbed instance.


• Output the minimum spanning tree T.


• T is a minimum spanning tree on the original instance.



T in the original instance

• Suppose that there was a cheaper spanning tree T* on 
the original instance.


• If T* contains different edges with the same costs, it is not 
cheaper than T on the original instance.


• If T contains different edges with different costs, we can 
make ε small enough to make sure the ones we selected 
are still cheaper.
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Perturbing the costs

1, 2, 2, 4, 4, 6, 7, 7, 8, 8, 9, 10, 11, 14  

1, 2, 2+ε, 4, 4+ε, 6, 7, 7+ε, 8, 8+ε, 9, 10, 11, 14  
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Running time?

• Kruskal’s Algorithm

• We will not cover it, Kleinberg and Tardos Chapter 4.6.

• Prim’s Algorithm

• Next lecture.


