Advanced Algorithmic Techniques (COMP523)

Greedy Algorithms

Recap and plan

- Last lecture:
- The Greedy approach
- Interval Scheduling
- This lecture:
- Minimum Spanning Tree
- Kruskal's Algorithm
- Prim's Algorithm

Application

- We have a set of locations.
- We want to build a communication network, joining all of them.
- We want to do it as cheaply as possible.
- Every direct connection between two locations has a cost.
- We want to have everything connected a the minimum cost.

Minimum Spanning Tree

- Consider a connected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, such that for every edge $e=(v, w)$ of E, there is an associated positive cost c_{e}.
- Goal: Find a subset T of E so that the graph $G^{\prime}=(V, T)$ is connected and the total cost $\sum_{e \in T} c_{e}$ is minimised.

Claim: T is a tree

Claim: T is a tree

- By definition, (V, T) is connected.

Claim: T is a tree

- By definition, (V, T) is connected.
- Suppose that it contained a cycle.

Claim: T is a tree

- By definition, (V, T) is connected.
- Suppose that it contained a cycle.
- Let e be an edge on that cycle.

Claim: T is a tree

- By definition, (V, T) is connected.
- Suppose that it contained a cycle.
- Let e be an edge on that cycle.
- Take (V, T-\{e\}).

Claim: T is a tree

- By definition, (V, T) is connected.
- Suppose that it contained a cycle.
- Let e be an edge on that cycle.
- Take (V, T-\{e\}).
- This is still connected.

Claim: T is a tree

- By definition, (V, T) is connected.
- Suppose that it contained a cycle.
- Let e be an edge on that cycle.
- Take (V, T-\{e\}).
- This is still connected.
- All paths that used e can be rerouted through the other direction.

Claim: T is a tree

- By definition, (V, T) is connected.
- Suppose that it contained a cycle.
- Let e be an edge on that cycle.
- Take (V, T-\{e\}).
- This is still connected.
- All paths that used e can be rerouted through the other direction.
- (V, T-\{e\}) is a valid solution, and it is cheaper. Contradiction!

Minimum Spanning Tree

- Consider a connected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, such that for every edge $e=(v, w)$ of E, there is an associated positive cost c_{e}.
- Goal: Find a subset T of E so that the graph $G^{\prime}=(V, T)$ is connected and the total cost $\sum_{e \in T} c_{e}$ is minimised.

Minimum Spanning Tree

T is a spanning tree and the problem is called the Minimum Spanning Tree problem.

- Consider a connected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, such that for every edge $e=(v, w)$ of E, there is an associated positive cost C_{e}.
- Goal: Find a subset T of E so that the graph $G^{\prime}=(V, T)$ is connected and the total cost $\sum_{e \in T} c_{e}$ is minimised.

Greedy Approach \#1

Greedy Approach \#1

- Start with an empty set of edges T.

Greedy Approach \#1

- Start with an empty set of edges T.
- Add one edge to T.

Greedy Approach \#1

- Start with an empty set of edges T.
- Add one edge to T.
- Which one?

Greedy Approach \#1

- Start with an empty set of edges T.
- Add one edge to T.
- Which one?
- The one with the minimum cost C_{e}.

Greedy Approach \#1

- Start with an empty set of edges T.
- Add one edge to T.
- Which one?
- The one with the minimum cost Ce .
- We continue like this.

Greedy Approach \#1

- Start with an empty set of edges T.
- Add one edge to T.
- Which one?
- The one with the minimum cost C_{e}.
- We continue like this.
- Do we always add the new edge e to T?

Greedy Approach \#1

- Start with an empty set of edges T.
- Add one edge to T.
- Which one?
- The one with the minimum cost Ce .
- We continue like this.
- Do we always add the new edge e to T?
- Only if we don't introduce any cycles.

Example

Greedy Approach \#1

- Start with an empty set of edges T.
- Add one edge to T.
- Which one?
- The one with the minimum cost Ce .
- We continue like this.
- Do we always add the new edge e to T?
- Only if we don't introduce any cycles.

Kruskal's Algorithm

- Start with an empty set of edges T.
- Add one edge to T.
- Which one?
- The one with the minimum cost C_{e}.

- We continue like this.
- Do we always add the new edge e to T ?
- Only if we don't introduce any cycles.

Greedy Approach \#2

Greedy Approach \#2

- Start with an empty set of edges T.

Greedy Approach \#2

- Start with an empty set of edges T.
- Start with a node s.

Greedy Approach \#2

- Start with an empty set of edges T.
- Start with a node s.
- Add an edge e=(s,w) to T.

Greedy Approach \#2

- Start with an empty set of edges T.
- Start with a node s.
- Add an edge e=(s,w) to T.
- Which one?

Greedy Approach \#2

- Start with an empty set of edges T.
- Start with a node s.
- Add an edge e=(s,w) to T.
- Which one?
- The one with the minimum cost Ce .

Greedy Approach \#2

- Start with an empty set of edges T.
- Start with a node s.
- Add an edge e=(s,w) to T.
- Which one?
- The one with the minimum cost Ce .
- We continue like this.

Greedy Approach \#2

- Start with an empty set of edges T.
- Start with a node s.
- Add an edge e=(s,w) to T.
- Which one?
- The one with the minimum cost Ce .
- We continue like this.
- We only consider edges to neighbours that are not in the spanning tree.

Example

Greedy Approach \#2

- Start with an empty set of edges T.
- Start with a node s.
- Add an edge e=(s,w) to T.
- Which one?
- The one with the minimum cost Ce .
- We continue like this.
- We only consider edges to neighbours that are not in the spanning tree.

Prim's Algorithm

- Start with an empty set of edges T.
- Start with a node s.
- Add an edge e=(s,w) to T.
- Which one?
- The one with the minimum cost Ce .
- We continue like this.
- We only consider edges to neighbours that are not in the spanning tree.

Are these algorithms optimal?

Are these algorithms optimal?

- In the example, they both produced the same spanning tree.

Are these algorithms optimal?

- In the example, they both produced the same spanning tree.
- This was actually the minimum spanning tree.

Are these algorithms optimal?

- In the example, they both produced the same spanning tree.
- This was actually the minimum spanning tree.
- Do they always output the minimum spanning tree?

The cut property

The cut property

- Assume that all edge costs are distinct.

The cut property

- Assume that all edge costs are distinct.
- Let S be any subset of V,

The cut property

- Assume that all edge costs are distinct.
- Let S be any subset of V ,
- but not empty.

The cut property

- Assume that all edge costs are distinct.
- Let S be any subset of V ,
- but not empty.
- but not V .

The cut property

- Assume that all edge costs are distinct.
- Let S be any subset of V,
- but not empty.
- but not V .
- Let $e=(w, v)$ be the minimum cost edge between S and V -S.

The cut property

- Assume that all edge costs are distinct.
- Let S be any subset of V ,
- but not empty.
- but not V .
- Let $e=(w, v)$ be the minimum cost edge between S and V -S.
- Then e is contained in every minimum spanning tree.

The cut property

- Assume that all edge costs are distinct.
- Let S be any subset of V ,
- but not empty.
- but not V .
- Let $e=(w, v)$ be the minimum cost edge between S and V -S.
- Then e is contained in every minimum spanning tree.

The cut property

The cut property

- Then e is contained in every minimum spanning tree.

The cut property

- Then e is contained in every minimum spanning tree.
- Assume that some spanning tree T does not contain e.

The cut property

- Then e is contained in every minimum spanning tree.
- Assume that some spanning tree T does not contain e.
- Since it is a spanning tree, it must contain some other edge f that crosses from S to $V-S$.

The cut property

- Then e is contained in every minimum spanning tree.
- Assume that some spanning tree T does not contain e.
- Since it is a spanning tree, it must contain some other edge f that crosses from S to $V-S$.

The cut property

- Then e is contained in every minimum spanning tree.
- Assume that some spanning tree T does not contain e.
- Since it is a spanning tree, it must contain some other edge f that crosses from S to $V-S$.
- But $\mathrm{c}_{\mathrm{e}} \leq \mathrm{C}_{\mathrm{f}}$, so $\mathrm{T}-\{f\} \cup\{\mathrm{e}\}$ is a spanning
 tree of smaller cost.

The cut property

No, $T-\{f\} \cup\{e\}$ might not be a spanning tree!

- Then e is contained in every minimum spanning tree.
- Assume that some spanning tree T does not contain e.
- Since it is a spanning tree, it must contain some other edge f that crosses from S to $V-S$.
- But $\mathrm{C}_{e} \leq \mathrm{Cf}_{\mathrm{f}}$, so $\mathrm{T}-\{f\} \cup\{\mathrm{e}\}$ is a spanning tree of smaller cost.

The cut property

The cut property

- We can't simply select any edge.

The cut property

- We can't simply select any edge.
- We need to select an edge e' which

The cut property

- We can't simply select any edge.
- We need to select an edge e' which
- is more expensive than e.

The cut property

- We can't simply select any edge.
- We need to select an edge e' which
- is more expensive than e.
- still results in a spanning tree, if used instead of e.

The cut property

- We can't simply select any edge.
- We need to select an edge e' which
- is more expensive than e.
- still results in a spanning tree, if used instead of e.

The cut property

The cut property

- Let T be a minimum spanning tree which does not contain $e=(v, w)$.

The cut property

- Let T be a minimum spanning tree which does not contain $e=(v, w)$.
- Since T is a spanning tree, there is path from v to w.

The cut property

- Let T be a minimum spanning tree which does not contain $e=(v, w)$.
- Since T is a spanning tree, there is path from v to w.

The cut property

- Let T be a minimum spanning tree which does not contain $e=(v, w)$.
- Since T is a spanning tree, there is path from v to w.
- Let w' be the first node encountered in V -T and let v^{\prime} be the one before it. Let $e^{\prime}=\left(v^{\prime}, w^{\prime}\right)$.

The cut property

- Let T be a minimum spanning tree which does not contain $e=(v, w)$.
- Since T is a spanning tree, there is path from v to w.
- Let w' be the first node encountered in V -T and let v^{\prime} be the one before it. Let $e^{\prime}=\left(v^{\prime}, w^{\prime}\right)$.
- Consider T' = T -\{e’\} $\cup\{e\}$.

Kruskal's algorithm is optimal

Kruskal's algorithm is optimal

- Consider any edge $e=(u, w)$ that Kruskal's algorithm adds to the output on some step.

Kruskal's algorithm is optimal

- Consider any edge $e=(u, w)$ that Kruskal's algorithm adds to the output on some step.
- Let S be the set of nodes reachable from u just before e is added to the output.

Kruskal's algorithm is optimal

- Consider any edge $e=(u, w)$ that Kruskal's algorithm adds to the output on some step.
- Let S be the set of nodes reachable from u just before e is added to the output.
- It holds that v is in S and w is in V-S. (Why?)

Kruskal's algorithm is optimal

- Consider any edge $e=(u, w)$ that Kruskal's algorithm adds to the output on some step.
- Let S be the set of nodes reachable from u just before e is added to the output.
- It holds that v is in S and w is in V-S. (Why?)
- Because otherwise adding e would create a cycle.

Kruskal's algorithm is optimal

- Consider any edge $e=(u, w)$ that Kruskal's algorithm adds to the output on some step.
- Let S be the set of nodes reachable from u just before e is added to the output.
- It holds that v is in S and w is in V-S. (Why?)
- Because otherwise adding e would create a cycle.
- The algorithm has not found any edge crossing S and V-S to the output. (Why?)

Kruskal's algorithm is optimal

- Consider any edge $e=(u, w)$ that Kruskal's algorithm adds to the output on some step.
- Let S be the set of nodes reachable from u just before e is added to the output.
- It holds that v is in S and w is in V-S. (Why?)
- Because otherwise adding e would create a cycle.
- The algorithm has not found any edge crossing S and V-S to the output. (Why?)
- Such an edge would have been added to the output by the algorithm.

Kruskal's algorithm is optimal

- Consider any edge $e=(u, w)$ that Kruskal's algorithm adds to the output on some step.
- Let S be the set of nodes reachable from u just before e is added to the output.
- It holds that v is in S and w is in V-S. (Why?)
- Because otherwise adding e would create a cycle.
- The algorithm has not found any edge crossing S and V-S to the output. (Why?)
- Such an edge would have been added to the output by the algorithm.
- The edge e must be the cheapest edge crossing S and V-S.

Kruskal's algorithm is optimal

- Consider any edge $e=(u, w)$ that Kruskal's algorithm adds to the output on some step.
- Let S be the set of nodes reachable from u just before e is added to the output.
- It holds that v is in S and w is in V-S. (Why?)
- Because otherwise adding e would create a cycle.
- The algorithm has not found any edge crossing S and V-S to the output. (Why?)
- Such an edge would have been added to the output by the algorithm.
- The edge e must be the cheapest edge crossing S and $V-S$.
- By the cut property, it belongs to every minimum spanning tree.

Is it feasible?

Is it feasible?

- i.e., does it always produce a spanning tree?

Is it feasible?

- i.e., does it always produce a spanning tree?
- The algorithm explicitly avoids cycles.

Is it feasible?

- i.e., does it always produce a spanning tree?
- The algorithm explicitly avoids cycles.
- Output T is a forest.

Is it feasible?

- i.e., does it always produce a spanning tree?
- The algorithm explicitly avoids cycles.
- Output T is a forest.
- Is it a tree?

Is it feasible?

- i.e., does it always produce a spanning tree?
- The algorithm explicitly avoids cycles.
- Output T is a forest.
- Is it a tree?
- Is it connected?

Is it feasible?

- i.e., does it always produce a spanning tree?
- The algorithm explicitly avoids cycles.
- Output T is a forest.
- Is it a tree?
- Is it connected?
- G is connected.

Is it feasible?

- i.e., does it always produce a spanning tree?
- The algorithm explicitly avoids cycles.
- Output T is a forest.
- Is it a tree?
- Is it connected?
- G is connected.
- Suppose by contradiction that T was not connected.

Is it feasible?

- i.e., does it always produce a spanning tree?
- The algorithm explicitly avoids cycles.
- Output T is a forest.
- Is it a tree?
- Is it connected?
- G is connected.
- Suppose by contradiction that T was not connected.

- The algorithm would have added an edge crossing the two components.

Is it feasible?

- i.e., does it always produce a spanning tree?
- The algorithm explicitly avoids cycles.
- Output T is a forest.
- Is it a tree?
- Is it connected?
- G is connected.
- Suppose by contradiction that T was not connected.
- The algorithm would have added an edge crossing the two components.

Prim's algorithm is optimal

Prim's algorithm is optimal

- In each iteration of the algorithm, there is a set S of nodes which are the nodes of a partial spanning tree.

Prim's algorithm is optimal

- In each iteration of the algorithm, there is a set S of nodes which are the nodes of a partial spanning tree.
- An edge is added to "expand" the partial spanning tree, which has the minimum cost.

Prim's algorithm is optimal

- In each iteration of the algorithm, there is a set S of nodes which are the nodes of a partial spanning tree.
- An edge is added to "expand" the partial spanning tree, which has the minimum cost.
- This edge has one endpoint in S and one in $V-S$ and has minimum cost.

Prim's algorithm is optimal

- In each iteration of the algorithm, there is a set S of nodes which are the nodes of a partial spanning tree.
- An edge is added to "expand" the partial spanning tree, which has the minimum cost.
- This edge has one endpoint in S and one in $V-S$ and has minimum cost.
- So it must be part of every minimum spanning tree.

Greedy Approach \#2

Greedy Approach \#2

- Start with the full graph $G=(V, E)$.
- Delete an edge from G.
- Which one?
- The one with the maximum cost Ce_{e}.
- We continue like this.
- Do we always remove the considered edge e from G ?
- As long as we don't disconnect the graph.

Reverse-Delete Algorithm

- Start with the full graph $G=(V, E)$.
- Delete an edge from G.
- Which one?
- The one with the maximum cost Ce_{e}.

- We continue like this.
- Do we always remove the considered edge e from G ?
- As long as we don't disconnect the graph.

Reverse-Delete Algorithm

- Start with the full graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
- Delete an edge from G.
- Which one?
- The one with the maximum cost Ce_{e}.

- We continue like this.
- Do we always remove the considered edge e from G ?
- As long as we don't disconnect the graph.

Example

The cycle property

The cycle property

- Assume that all edge costs are distinct.

The cycle property

- Assume that all edge costs are distinct.
- Let C be any cycle of G .

The cycle property

- Assume that all edge costs are distinct.
- Let C be any cycle of G .
- Let $\mathrm{e}=(\mathrm{w}, \mathrm{v})$ be the maximum cost edge of C .

The cycle property

- Assume that all edge costs are distinct.
- Let C be any cycle of G .
- Let $\mathrm{e}=(\mathrm{w}, \mathrm{v})$ be the maximum cost edge of C .
- Then e is not contained in any minimum spanning tree of G.

The cycle property

- Assume that all edge costs are distinct.
- Let C be any cycle of G .
- Let $\mathrm{e}=(\mathrm{w}, \mathrm{v})$ be the maximum cost edge of C .
- Then e is not contained in any minimum spanning tree of G.

The cycle property

The cycle property

- Let T be a spanning tree that contains e.

The cycle property

- Let T be a spanning tree that contains e.
- We will show that it does not have minimum cost.

The cycle property

- Let T be a spanning tree that contains e.
- We will show that it does not have minimum cost.
- We will substitute e with another edge e', resulting in a cheaper spanning tree.

The cycle property

- Let T be a spanning tree that contains e.
- We will show that it does not have minimum cost.
- We will substitute e with another edge e', resulting in a cheaper spanning tree.
- How to find this edge e'?

The cycle property

The cycle property

- We delete e from T.

The cycle property

- We delete e from T.

The cycle property

- We delete e from T.
- This partitions the nodes into

The cycle property

- We delete e from T.
- This partitions the nodes into
- S (containing u).

The cycle property

- We delete e from T.
- This partitions the nodes into
- S (containing u).
- V - S (containing w).

The cycle property

- We delete e from T.
- This partitions the nodes into
- S (containing u).
- V - S (containing w).

The cycle property

- We delete e from T.
- This partitions the nodes into
- S (containing u).
- V - S (containing w).
- We follow the other path the cycle from u to w.

The cycle property

- We delete e from T.
- This partitions the nodes into
- S (containing u).
- V - S (containing w).
- We follow the other path the cycle from u to W.
- At some point we cross from S to V - S, following edge e^{\prime}.

The cycle property

- We delete e from T.
- This partitions the nodes into
- S (containing u).
- V - S (containing w).
- We follow the other path the cycle from u to W.
- At some point we cross from S to V - S, following edge e^{\prime}.

The cycle property

- We delete e from T.
- This partitions the nodes into
- S (containing u).
- V - S (containing w).
- We follow the other path the cycle from u to W.
- At some point we cross from S to V-S, following edge e^{\prime}.

- The resulting graph is a tree with smaller cost.

Reverse-Delete is optimal

Reverse-Delete is optimal

- Consider any edge e=(v, w) which is removed by ReverseDelete.

Reverse-Delete is optimal

- Consider any edge e=(v, w) which is removed by ReverseDelete.
- Just before deleting, it lies on some cycle C.

Reverse-Delete is optimal

- Consider any edge e=(v, w) which is removed by ReverseDelete.
- Just before deleting, it lies on some cycle C.
- It has the maximum cost among edges, so it cannot be part of any minimum spanning tree.

Is it feasible?

Is it feasible?

- i.e., does it always produce a spanning tree?

Is it feasible?

- i.e., does it always produce a spanning tree?
- Is it connected?

Is it feasible?

- i.e., does it always produce a spanning tree?
- Is it connected?
- The algorithm will never disconnect the graph.

Is it feasible?

- i.e., does it always produce a spanning tree?
- Is it connected?
- The algorithm will never disconnect the graph.
- Is it a tree?

Is it feasible?

- i.e., does it always produce a spanning tree?
- Is it connected?
- The algorithm will never disconnect the graph.
- Is it a tree?
- Suppose that it's not.

Is it feasible?

- i.e., does it always produce a spanning tree?
- Is it connected?
- The algorithm will never disconnect the graph.
- Is it a tree?
- Suppose that it's not.
- Then it contains some cycle C.

Is it feasible?

- i.e., does it always produce a spanning tree?
- Is it connected?
- The algorithm will never disconnect the graph.
- Is it a tree?
- Suppose that it's not.
- Then it contains some cycle C.
- Consider the most expensive edge e on that cycle.

Is it feasible?

- i.e., does it always produce a spanning tree?
- Is it connected?
- The algorithm will never disconnect the graph.
- Is it a tree?
- Suppose that it's not.
- Then it contains some cycle C.
- Consider the most expensive edge e on that cycle.

- The algorithm would have removed that edge.

Are we done?

Are we done?

- "Assume that all edge costs are distinct".
- What if they are not?

Are we done?

- "Assume that all edge costs are distinct".
- What if they are not?

Are we done?

- "Assume that all edge costs are distinct".
- What if they are not?

Non-distinct costs

Non-distinct costs

- Take the original instance with non-distinct costs.
- Make the costs distinct by adding small numbers ε to the costs to break ties.
- Obtain a perturbed instance.
- Run the algorithm on the perturbed instance.
- Output the minimum spanning tree T.
- T is a minimum spanning tree on the original instance.

T in the original instance

- Suppose that there was a cheaper spanning tree T^{*} on the original instance.
- If T^{*} contains different edges with the same costs, it is not cheaper than T on the original instance.
- If T contains different edges with different costs, we can make ε small enough to make sure the ones we selected are still cheaper.

Perturbing the costs

Perturbing the costs

$$
1,2,2,4,4,6,7,7,8,8,9,10,11,14
$$

$1,2,2+\varepsilon, 4,4+\varepsilon, 6,7,7+\varepsilon, 8,8+\varepsilon, 9,10,11,14$

Running time?

Running time?

- Kruskal's Algorithm

Running time?

- Kruskal's Algorithm
- We will not cover it, Kleinberg and Tardos Chapter 4.6.

Running time?

- Kruskal's Algorithm
- We will not cover it, Kleinberg and Tardos Chapter 4.6.
- Prim's Algorithm

Running time?

- Kruskal's Algorithm
- We will not cover it, Kleinberg and Tardos Chapter 4.6.
- Prim's Algorithm
- Next lecture.

