
Advanced Algorithmic Techniques
(COMP523)

Greedy Algorithms

Recap and plan
• Last lecture:

• The Greedy approach

• Interval Scheduling

• This lecture:

• Minimum Spanning Tree

• Kruskal’s Algorithm

• Prim’s Algorithm

Application
• We have a set of locations.

• We want to build a communication network, joining all of
them.

• We want to do it as cheaply as possible.

• Every direct connection between two locations has a
cost.

• We want to have everything connected a the minimum
cost.

Minimum Spanning Tree

• Consider a connected graph G=(V, E), such that for every
edge e=(v,w) of E, there is an associated positive cost ce.

• Goal: Find a subset T of E so that the graph G’=(V, T) is
connected and the total cost is minimised.

X

e2T

ce
<latexit sha1_base64="LdTvh47D4GHeBTUkmbfAViq61Jo=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5JUQY9FLx4r9AuaEDbbabt0swm7GyGE+le8eFDEqz/Em//GbZuDtj4YeLw3w8y8MOFMacf5tkobm1vbO+Xdyt7+weGRfXzSVXEqKXRozGPZD4kCzgR0NNMc+okEEoUceuH0bu73HkEqFou2zhLwIzIWbMQo0UYK7Kqn0ijIAXtM4PYM0wBwYNecurMAXiduQWqoQCuwv7xhTNMIhKacKDVwnUT7OZGaUQ6zipcqSAidkjEMDBUkAuXni+Nn+NwoQzyKpSmh8UL9PZGTSKksCk1nRPRErXpz8T9vkOrRjZ8zkaQaBF0uGqUc6xjPk8BDJoFqnhlCqGTmVkwnRBKqTV4VE4K7+vI66Tbq7mW98XBVa94WcZTRKTpDF8hF16iJ7lELdRBFGXpGr+jNerJerHfrY9lasoqZKvoD6/MHhuqUCA==</latexit>

Claim: T is a tree

Claim: T is a tree
• By definition, (V, T) is connected.

Claim: T is a tree
• By definition, (V, T) is connected.

• Suppose that it contained a cycle.

Claim: T is a tree
• By definition, (V, T) is connected.

• Suppose that it contained a cycle.

• Let e be an edge on that cycle.

Claim: T is a tree
• By definition, (V, T) is connected.

• Suppose that it contained a cycle.

• Let e be an edge on that cycle.

• Take (V, T-{e}).

Claim: T is a tree
• By definition, (V, T) is connected.

• Suppose that it contained a cycle.

• Let e be an edge on that cycle.

• Take (V, T-{e}).

• This is still connected.

Claim: T is a tree
• By definition, (V, T) is connected.

• Suppose that it contained a cycle.

• Let e be an edge on that cycle.

• Take (V, T-{e}).

• This is still connected.

• All paths that used e can be rerouted through the other direction.

Claim: T is a tree
• By definition, (V, T) is connected.

• Suppose that it contained a cycle.

• Let e be an edge on that cycle.

• Take (V, T-{e}).

• This is still connected.

• All paths that used e can be rerouted through the other direction.

• (V, T-{e}) is a valid solution, and it is cheaper. Contradiction!

Minimum Spanning Tree

• Consider a connected graph G=(V, E), such that for every
edge e=(v,w) of E, there is an associated positive cost ce.

• Goal: Find a subset T of E so that the graph G’=(V, T) is
connected and the total cost is minimised.

X

e2T

ce
<latexit sha1_base64="LdTvh47D4GHeBTUkmbfAViq61Jo=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5JUQY9FLx4r9AuaEDbbabt0swm7GyGE+le8eFDEqz/Em//GbZuDtj4YeLw3w8y8MOFMacf5tkobm1vbO+Xdyt7+weGRfXzSVXEqKXRozGPZD4kCzgR0NNMc+okEEoUceuH0bu73HkEqFou2zhLwIzIWbMQo0UYK7Kqn0ijIAXtM4PYM0wBwYNecurMAXiduQWqoQCuwv7xhTNMIhKacKDVwnUT7OZGaUQ6zipcqSAidkjEMDBUkAuXni+Nn+NwoQzyKpSmh8UL9PZGTSKksCk1nRPRErXpz8T9vkOrRjZ8zkaQaBF0uGqUc6xjPk8BDJoFqnhlCqGTmVkwnRBKqTV4VE4K7+vI66Tbq7mW98XBVa94WcZTRKTpDF8hF16iJ7lELdRBFGXpGr+jNerJerHfrY9lasoqZKvoD6/MHhuqUCA==</latexit>

Minimum Spanning Tree

• Consider a connected graph G=(V, E), such that for every
edge e=(v,w) of E, there is an associated positive cost ce.

• Goal: Find a subset T of E so that the graph G’=(V, T) is
connected and the total cost is minimised.

X

e2T

ce
<latexit sha1_base64="LdTvh47D4GHeBTUkmbfAViq61Jo=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5JUQY9FLx4r9AuaEDbbabt0swm7GyGE+le8eFDEqz/Em//GbZuDtj4YeLw3w8y8MOFMacf5tkobm1vbO+Xdyt7+weGRfXzSVXEqKXRozGPZD4kCzgR0NNMc+okEEoUceuH0bu73HkEqFou2zhLwIzIWbMQo0UYK7Kqn0ijIAXtM4PYM0wBwYNecurMAXiduQWqoQCuwv7xhTNMIhKacKDVwnUT7OZGaUQ6zipcqSAidkjEMDBUkAuXni+Nn+NwoQzyKpSmh8UL9PZGTSKksCk1nRPRErXpz8T9vkOrRjZ8zkaQaBF0uGqUc6xjPk8BDJoFqnhlCqGTmVkwnRBKqTV4VE4K7+vI66Tbq7mW98XBVa94WcZTRKTpDF8hF16iJ7lELdRBFGXpGr+jNerJerHfrY9lasoqZKvoD6/MHhuqUCA==</latexit>

T is a spanning tree and the problem is called 
the Minimum Spanning Tree problem.

Greedy Approach #1

Greedy Approach #1
• Start with an empty set of edges T.

Greedy Approach #1
• Start with an empty set of edges T.

• Add one edge to T.

Greedy Approach #1
• Start with an empty set of edges T.

• Add one edge to T.

• Which one?

Greedy Approach #1
• Start with an empty set of edges T.

• Add one edge to T.

• Which one?

• The one with the minimum cost ce.

Greedy Approach #1
• Start with an empty set of edges T.

• Add one edge to T.

• Which one?

• The one with the minimum cost ce.

• We continue like this.

Greedy Approach #1
• Start with an empty set of edges T.

• Add one edge to T.

• Which one?

• The one with the minimum cost ce.

• We continue like this.

• Do we always add the new edge e to T?

Greedy Approach #1
• Start with an empty set of edges T.

• Add one edge to T.

• Which one?

• The one with the minimum cost ce.

• We continue like this.

• Do we always add the new edge e to T?

• Only if we don’t introduce any cycles.

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Greedy Approach #1
• Start with an empty set of edges T.

• Add one edge to T.

• Which one?

• The one with the minimum cost ce.

• We continue like this.

• Do we always add the new edge e to T?

• Only if we don’t introduce any cycles.

Kruskal’s Algorithm
• Start with an empty set of edges T.

• Add one edge to T.

• Which one?

• The one with the minimum cost ce.

• We continue like this.

• Do we always add the new edge e to T?

• Only if we don’t introduce any cycles.

Greedy Approach #2

Greedy Approach #2
• Start with an empty set of edges T.

Greedy Approach #2
• Start with an empty set of edges T.

• Start with a node s.

Greedy Approach #2
• Start with an empty set of edges T.

• Start with a node s.

• Add an edge e=(s,w) to T.

Greedy Approach #2
• Start with an empty set of edges T.

• Start with a node s.

• Add an edge e=(s,w) to T.

• Which one?

Greedy Approach #2
• Start with an empty set of edges T.

• Start with a node s.

• Add an edge e=(s,w) to T.

• Which one?

• The one with the minimum cost ce.

Greedy Approach #2
• Start with an empty set of edges T.

• Start with a node s.

• Add an edge e=(s,w) to T.

• Which one?

• The one with the minimum cost ce.

• We continue like this.

Greedy Approach #2
• Start with an empty set of edges T.

• Start with a node s.

• Add an edge e=(s,w) to T.

• Which one?

• The one with the minimum cost ce.

• We continue like this.

• We only consider edges to neighbours that are not in the
spanning tree.

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

1

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

1

7

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

1

7 6

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

1

7 6 5

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

1

7 6 5

2

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

1

7 6 5

2

8

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

1

7 6 5

2

8

3

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

1

7 6 5

2

8

3

4

Greedy Approach #2
• Start with an empty set of edges T.

• Start with a node s.

• Add an edge e=(s,w) to T.

• Which one?

• The one with the minimum cost ce.

• We continue like this.

• We only consider edges to neighbours that are not in the
spanning tree.

Prim’s Algorithm
• Start with an empty set of edges T.

• Start with a node s.

• Add an edge e=(s,w) to T.

• Which one?

• The one with the minimum cost ce.

• We continue like this.

• We only consider edges to neighbours that are not in the
spanning tree.

Are these algorithms
optimal?

Are these algorithms
optimal?

• In the example, they both produced the same spanning
tree.

Are these algorithms
optimal?

• In the example, they both produced the same spanning
tree.

• This was actually the minimum spanning tree.

Are these algorithms
optimal?

• In the example, they both produced the same spanning
tree.

• This was actually the minimum spanning tree.

• Do they always output the minimum spanning tree?

The cut property

The cut property
• Assume that all edge costs are distinct.

The cut property
• Assume that all edge costs are distinct.

• Let S be any subset of V,

The cut property
• Assume that all edge costs are distinct.

• Let S be any subset of V,

• but not empty.

The cut property
• Assume that all edge costs are distinct.

• Let S be any subset of V,

• but not empty.

• but not V.

The cut property
• Assume that all edge costs are distinct.

• Let S be any subset of V,

• but not empty.

• but not V.

• Let e=(w,v) be the minimum cost edge
between S and V-S.

The cut property
• Assume that all edge costs are distinct.

• Let S be any subset of V,

• but not empty.

• but not V.

• Let e=(w,v) be the minimum cost edge
between S and V-S.

• Then e is contained in every minimum
spanning tree.

The cut property
• Assume that all edge costs are distinct.

• Let S be any subset of V,

• but not empty.

• but not V.

• Let e=(w,v) be the minimum cost edge
between S and V-S.

• Then e is contained in every minimum
spanning tree.

v w

The cut property

v w

The cut property

• Then e is contained in every minimum
spanning tree.

v w

The cut property

• Then e is contained in every minimum
spanning tree.

• Assume that some spanning tree T
does not contain e.

v w

The cut property

• Then e is contained in every minimum
spanning tree.

• Assume that some spanning tree T
does not contain e.

• Since it is a spanning tree, it must
contain some other edge f that crosses
from S to V-S.

v w

The cut property

• Then e is contained in every minimum
spanning tree.

• Assume that some spanning tree T
does not contain e.

• Since it is a spanning tree, it must
contain some other edge f that crosses
from S to V-S.

v w

The cut property

• Then e is contained in every minimum
spanning tree.

• Assume that some spanning tree T
does not contain e.

• Since it is a spanning tree, it must
contain some other edge f that crosses
from S to V-S.

• But ce ≤ cf, so T- {f} U {e} is a spanning
tree of smaller cost.

v w

The cut property

• Then e is contained in every minimum
spanning tree.

• Assume that some spanning tree T
does not contain e.

• Since it is a spanning tree, it must
contain some other edge f that crosses
from S to V-S.

• But ce ≤ cf, so T- {f} U {e} is a spanning
tree of smaller cost.

v w

No, T- {f} U {e} might not be a spanning tree!

The cut property

v w

The cut property

• We can’t simply select any edge.

v w

The cut property

• We can’t simply select any edge.

• We need to select an edge e’ which

v w

The cut property

• We can’t simply select any edge.

• We need to select an edge e’ which

• is more expensive than e. v w

The cut property

• We can’t simply select any edge.

• We need to select an edge e’ which

• is more expensive than e.

• still results in a spanning tree, if used
instead of e.

v w

The cut property

• We can’t simply select any edge.

• We need to select an edge e’ which

• is more expensive than e.

• still results in a spanning tree, if used
instead of e.

v w

The cut property

v’

v w

w’

The cut property

• Let T be a minimum spanning tree
which does not contain e=(v, w). v’

v w

w’

The cut property

• Let T be a minimum spanning tree
which does not contain e=(v, w).

• Since T is a spanning tree, there is path
from v to w.

v’

v w

w’

The cut property

• Let T be a minimum spanning tree
which does not contain e=(v, w).

• Since T is a spanning tree, there is path
from v to w.

v’

v w

w’

The cut property

• Let T be a minimum spanning tree
which does not contain e=(v, w).

• Since T is a spanning tree, there is path
from v to w.

• Let w’ be the first node encountered in
V-T and let v’ be the one before it. Let
e’=(v’, w’).

v’

v w

w’

The cut property

• Let T be a minimum spanning tree
which does not contain e=(v, w).

• Since T is a spanning tree, there is path
from v to w.

• Let w’ be the first node encountered in
V-T and let v’ be the one before it. Let
e’=(v’, w’).

• Consider T’ = T -{e’} U {e}.

v’

v w

w’

Kruskal’s algorithm is optimal

Kruskal’s algorithm is optimal
• Consider any edge e=(u, w) that Kruskal’s algorithm adds to the output on

some step.

Kruskal’s algorithm is optimal
• Consider any edge e=(u, w) that Kruskal’s algorithm adds to the output on

some step.

• Let S be the set of nodes reachable from u just before e is added to the output.

Kruskal’s algorithm is optimal
• Consider any edge e=(u, w) that Kruskal’s algorithm adds to the output on

some step.

• Let S be the set of nodes reachable from u just before e is added to the output.

• It holds that v is in S and w is in V-S. (Why?)

Kruskal’s algorithm is optimal
• Consider any edge e=(u, w) that Kruskal’s algorithm adds to the output on

some step.

• Let S be the set of nodes reachable from u just before e is added to the output.

• It holds that v is in S and w is in V-S. (Why?)

• Because otherwise adding e would create a cycle.

Kruskal’s algorithm is optimal
• Consider any edge e=(u, w) that Kruskal’s algorithm adds to the output on

some step.

• Let S be the set of nodes reachable from u just before e is added to the output.

• It holds that v is in S and w is in V-S. (Why?)

• Because otherwise adding e would create a cycle.

• The algorithm has not found any edge crossing S and V-S to the output. (Why?)

Kruskal’s algorithm is optimal
• Consider any edge e=(u, w) that Kruskal’s algorithm adds to the output on

some step.

• Let S be the set of nodes reachable from u just before e is added to the output.

• It holds that v is in S and w is in V-S. (Why?)

• Because otherwise adding e would create a cycle.

• The algorithm has not found any edge crossing S and V-S to the output. (Why?)

• Such an edge would have been added to the output by the algorithm.

Kruskal’s algorithm is optimal
• Consider any edge e=(u, w) that Kruskal’s algorithm adds to the output on

some step.

• Let S be the set of nodes reachable from u just before e is added to the output.

• It holds that v is in S and w is in V-S. (Why?)

• Because otherwise adding e would create a cycle.

• The algorithm has not found any edge crossing S and V-S to the output. (Why?)

• Such an edge would have been added to the output by the algorithm.

• The edge e must be the cheapest edge crossing S and V-S.

Kruskal’s algorithm is optimal
• Consider any edge e=(u, w) that Kruskal’s algorithm adds to the output on

some step.

• Let S be the set of nodes reachable from u just before e is added to the output.

• It holds that v is in S and w is in V-S. (Why?)

• Because otherwise adding e would create a cycle.

• The algorithm has not found any edge crossing S and V-S to the output. (Why?)

• Such an edge would have been added to the output by the algorithm.

• The edge e must be the cheapest edge crossing S and V-S.

• By the cut property, it belongs to every minimum spanning tree.

Is it feasible?

v w

Is it feasible?
• i.e., does it always produce a spanning tree?

v w

Is it feasible?
• i.e., does it always produce a spanning tree?

• The algorithm explicitly avoids cycles.

v w

Is it feasible?
• i.e., does it always produce a spanning tree?

• The algorithm explicitly avoids cycles.

• Output T is a forest.

v w

Is it feasible?
• i.e., does it always produce a spanning tree?

• The algorithm explicitly avoids cycles.

• Output T is a forest.

• Is it a tree?

v w

Is it feasible?
• i.e., does it always produce a spanning tree?

• The algorithm explicitly avoids cycles.

• Output T is a forest.

• Is it a tree?

• Is it connected? v w

Is it feasible?
• i.e., does it always produce a spanning tree?

• The algorithm explicitly avoids cycles.

• Output T is a forest.

• Is it a tree?

• Is it connected?

• G is connected.

v w

Is it feasible?
• i.e., does it always produce a spanning tree?

• The algorithm explicitly avoids cycles.

• Output T is a forest.

• Is it a tree?

• Is it connected?

• G is connected.

• Suppose by contradiction that T was not
connected.

v w

Is it feasible?
• i.e., does it always produce a spanning tree?

• The algorithm explicitly avoids cycles.

• Output T is a forest.

• Is it a tree?

• Is it connected?

• G is connected.

• Suppose by contradiction that T was not
connected.

• The algorithm would have added an edge
crossing the two components.

v w

Is it feasible?
• i.e., does it always produce a spanning tree?

• The algorithm explicitly avoids cycles.

• Output T is a forest.

• Is it a tree?

• Is it connected?

• G is connected.

• Suppose by contradiction that T was not
connected.

• The algorithm would have added an edge
crossing the two components.

v w

Prim’s algorithm is optimal

Prim’s algorithm is optimal

• In each iteration of the algorithm, there is a set S of nodes
which are the nodes of a partial spanning tree.

Prim’s algorithm is optimal

• In each iteration of the algorithm, there is a set S of nodes
which are the nodes of a partial spanning tree.

• An edge is added to “expand” the partial spanning tree,
which has the minimum cost.

Prim’s algorithm is optimal

• In each iteration of the algorithm, there is a set S of nodes
which are the nodes of a partial spanning tree.

• An edge is added to “expand” the partial spanning tree,
which has the minimum cost.

• This edge has one endpoint in S and one in V-S and has
minimum cost.

Prim’s algorithm is optimal

• In each iteration of the algorithm, there is a set S of nodes
which are the nodes of a partial spanning tree.

• An edge is added to “expand” the partial spanning tree,
which has the minimum cost.

• This edge has one endpoint in S and one in V-S and has
minimum cost.

• So it must be part of every minimum spanning tree.

Greedy Approach #2

Greedy Approach #2
• Start with the full graph G=(V, E).

• Delete an edge from G.

• Which one?

• The one with the maximum cost ce.

• We continue like this.

• Do we always remove the considered edge e from G?

• As long as we don’t disconnect the graph.

Reverse-Delete Algorithm
• Start with the full graph G=(V, E).

• Delete an edge from G.

• Which one?

• The one with the maximum cost ce.

• We continue like this.

• Do we always remove the considered edge e from G?

• As long as we don’t disconnect the graph.

Reverse-Delete Algorithm
• Start with the full graph G=(V, E).

• Delete an edge from G.

• Which one?

• The one with the maximum cost ce.

• We continue like this.

• Do we always remove the considered edge e from G?

• As long as we don’t disconnect the graph.

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

Example

0

1 2 3

4

567

8

4

8

8

2

6
7

1 2

7

9

4

10

Example

0

1 2 3

4

567

8

4

8

8

2

6
7

1 2

7

9

4

10

Example

0

1 2 3

4

567

8

4

8

8

2

6
7

1 2

7

9

4

Example

0

1 2 3

4

567

8

4

8

8

2

6
7

1 2

7

9

4

Example

0

1 2 3

4

567

8

4

8

8

2

6
7

1 2

7

9

4

Example

0

1 2 3

4

567

8

4

8

2

6
7

1 2

7

9

4

Example

0

1 2 3

4

567

8

4

8

2

6
7

1 2

7

9

4

Example

0

1 2 3

4

567

8

4

8

2

6
7

1 2

7

9

4

Example

0

1 2 3

4

567

8

4

8

2

6

1 2

7

9

4

Example

0

1 2 3

4

567

8

4

8

2

6

1 2

7

9

4

Example

0

1 2 3

4

567

8

4

8

2

6

1 2

7

9

4

Example

0

1 2 3

4

567

8

4

8

2

1 2

7

9

4

The cycle property

The cycle property

• Assume that all edge costs are distinct.

The cycle property

• Assume that all edge costs are distinct.

• Let C be any cycle of G.

The cycle property

• Assume that all edge costs are distinct.

• Let C be any cycle of G.

• Let e=(w,v) be the maximum cost edge
of C.

The cycle property

• Assume that all edge costs are distinct.

• Let C be any cycle of G.

• Let e=(w,v) be the maximum cost edge
of C.

• Then e is not contained in any
minimum spanning tree of G.

The cycle property

• Assume that all edge costs are distinct.

• Let C be any cycle of G.

• Let e=(w,v) be the maximum cost edge
of C.

• Then e is not contained in any
minimum spanning tree of G.

e

The cycle property

e

The cycle property

• Let T be a spanning tree that contains e. e

The cycle property

• Let T be a spanning tree that contains e.

• We will show that it does not have
minimum cost.

e

The cycle property

• Let T be a spanning tree that contains e.

• We will show that it does not have
minimum cost.

• We will substitute e with another edge e’,
resulting in a cheaper spanning tree.

e

The cycle property

• Let T be a spanning tree that contains e.

• We will show that it does not have
minimum cost.

• We will substitute e with another edge e’,
resulting in a cheaper spanning tree.

• How to find this edge e’?

e

The cycle property

u w
e

The cycle property
• We delete e from T.

u w
e

The cycle property
• We delete e from T.

u w

The cycle property
• We delete e from T.

• This partitions the nodes into

u w

The cycle property
• We delete e from T.

• This partitions the nodes into

• S (containing u). u w

The cycle property
• We delete e from T.

• This partitions the nodes into

• S (containing u).

• V - S (containing w).

u w

The cycle property
• We delete e from T.

• This partitions the nodes into

• S (containing u).

• V - S (containing w).

u w

The cycle property
• We delete e from T.

• This partitions the nodes into

• S (containing u).

• V - S (containing w).

• We follow the other path the cycle from u to
w.

u w

The cycle property
• We delete e from T.

• This partitions the nodes into

• S (containing u).

• V - S (containing w).

• We follow the other path the cycle from u to
w.

• At some point we cross from S to V - S,
following edge e’.

u w

The cycle property
• We delete e from T.

• This partitions the nodes into

• S (containing u).

• V - S (containing w).

• We follow the other path the cycle from u to
w.

• At some point we cross from S to V - S,
following edge e’.

u w

e’

The cycle property
• We delete e from T.

• This partitions the nodes into

• S (containing u).

• V - S (containing w).

• We follow the other path the cycle from u to
w.

• At some point we cross from S to V - S,
following edge e’.

• The resulting graph is a tree with smaller
cost.

u w

e’

Reverse-Delete is optimal

Reverse-Delete is optimal

• Consider any edge e=(v, w) which is removed by Reverse-
Delete.

Reverse-Delete is optimal

• Consider any edge e=(v, w) which is removed by Reverse-
Delete.

• Just before deleting, it lies on some cycle C.

Reverse-Delete is optimal

• Consider any edge e=(v, w) which is removed by Reverse-
Delete.

• Just before deleting, it lies on some cycle C.

• It has the maximum cost among edges, so it cannot be
part of any minimum spanning tree.

Is it feasible?

e

Is it feasible?
• i.e., does it always produce a spanning tree?

e

Is it feasible?
• i.e., does it always produce a spanning tree?

• Is it connected?
e

Is it feasible?
• i.e., does it always produce a spanning tree?

• Is it connected?

• The algorithm will never disconnect the
graph.

e

Is it feasible?
• i.e., does it always produce a spanning tree?

• Is it connected?

• The algorithm will never disconnect the
graph.

• Is it a tree?

e

Is it feasible?
• i.e., does it always produce a spanning tree?

• Is it connected?

• The algorithm will never disconnect the
graph.

• Is it a tree?

• Suppose that it’s not.

e

Is it feasible?
• i.e., does it always produce a spanning tree?

• Is it connected?

• The algorithm will never disconnect the
graph.

• Is it a tree?

• Suppose that it’s not.

• Then it contains some cycle C.

e

Is it feasible?
• i.e., does it always produce a spanning tree?

• Is it connected?

• The algorithm will never disconnect the
graph.

• Is it a tree?

• Suppose that it’s not.

• Then it contains some cycle C.

• Consider the most expensive edge e on
that cycle.

e

Is it feasible?
• i.e., does it always produce a spanning tree?

• Is it connected?

• The algorithm will never disconnect the
graph.

• Is it a tree?

• Suppose that it’s not.

• Then it contains some cycle C.

• Consider the most expensive edge e on
that cycle.

• The algorithm would have removed that
edge.

e

Are we done?

Are we done?
• “Assume that all edge costs are distinct”.

• What if they are not?

Are we done?
• “Assume that all edge costs are distinct”.

• What if they are not?

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Are we done?
• “Assume that all edge costs are distinct”.

• What if they are not?

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Non-distinct costs

Non-distinct costs
• Take the original instance with non-distinct costs.

• Make the costs distinct by adding small numbers ε to the
costs to break ties.

• Obtain a perturbed instance.

• Run the algorithm on the perturbed instance.

• Output the minimum spanning tree T.

• T is a minimum spanning tree on the original instance.

T in the original instance

• Suppose that there was a cheaper spanning tree T* on
the original instance.

• If T* contains different edges with the same costs, it is not
cheaper than T on the original instance.

• If T contains different edges with different costs, we can
make ε small enough to make sure the ones we selected
are still cheaper.

 Perturbing the costs

0

1 2 3

4

567

8

4

8+ε

11

8

2+ε

6
7+ε

1 2

7

9

4+ε

10

14

Perturbing the costs

1, 2, 2, 4, 4, 6, 7, 7, 8, 8, 9, 10, 11, 14

1, 2, 2+ε, 4, 4+ε, 6, 7, 7+ε, 8, 8+ε, 9, 10, 11, 14

Running time?

Running time?

• Kruskal’s Algorithm

Running time?

• Kruskal’s Algorithm

• We will not cover it, Kleinberg and Tardos Chapter 4.6.

Running time?

• Kruskal’s Algorithm

• We will not cover it, Kleinberg and Tardos Chapter 4.6.

• Prim’s Algorithm

Running time?

• Kruskal’s Algorithm

• We will not cover it, Kleinberg and Tardos Chapter 4.6.

• Prim’s Algorithm

• Next lecture.

