Advanced Algorithmic Techniques (COMP523)

Greedy Algorithms 3

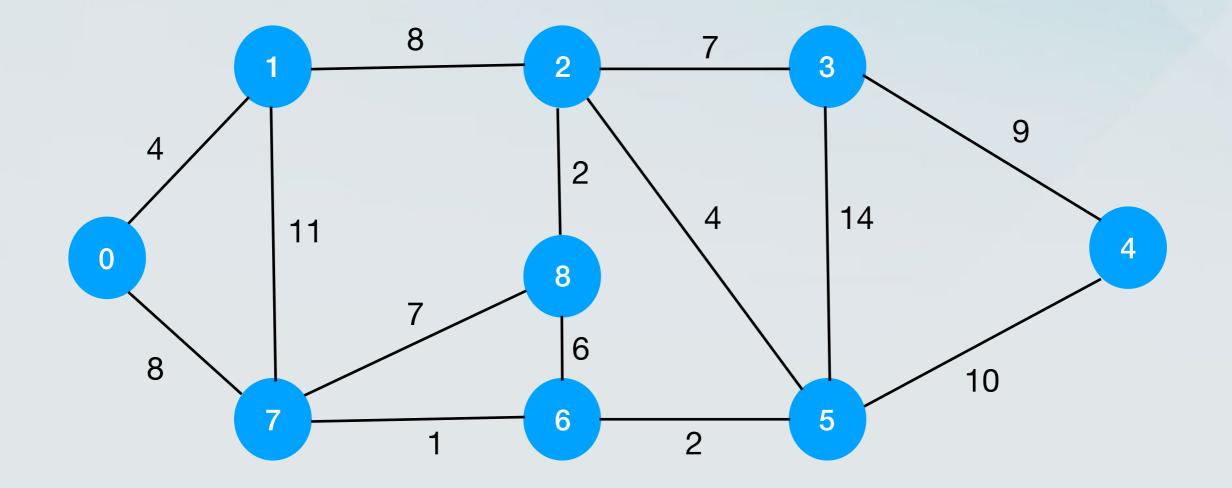
Recap and plan

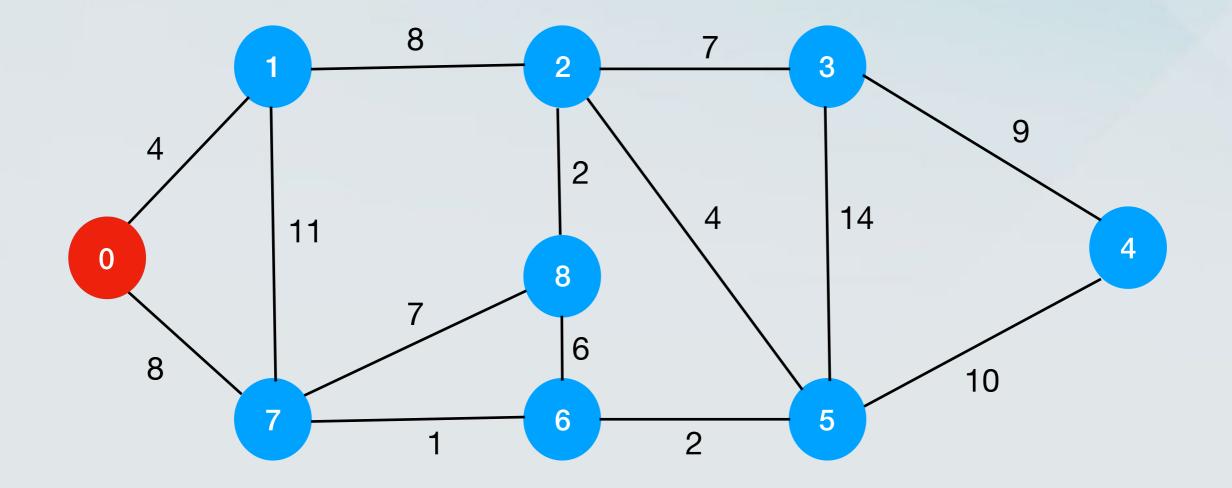
Last lecture:

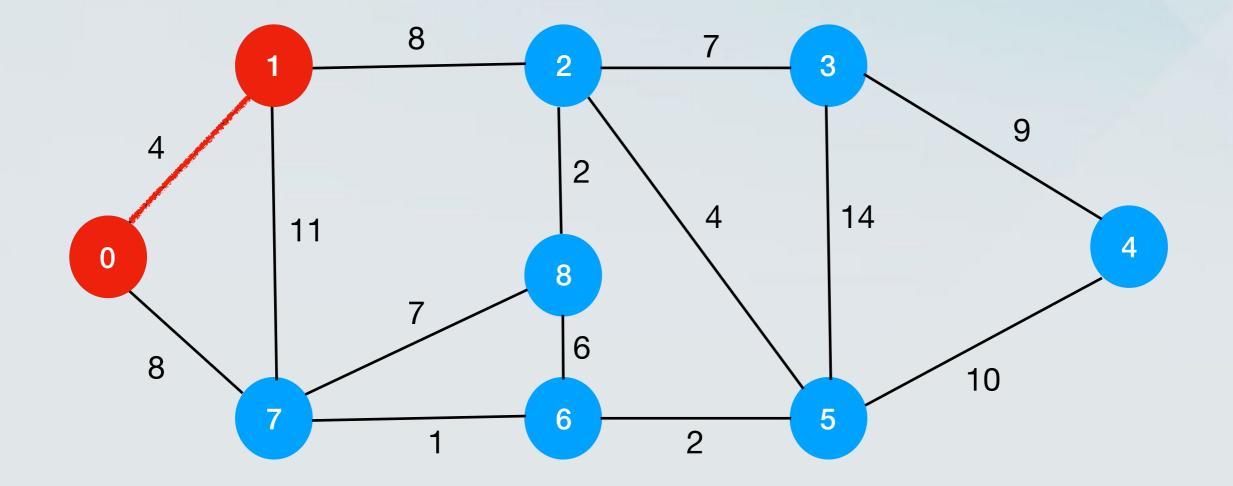
- Minimum Spanning Tree
- Kruskal's Algorithm
- Prim's Algorithm
- This lecture:
 - Prim's Algorithm (cont.)
 - Clustering

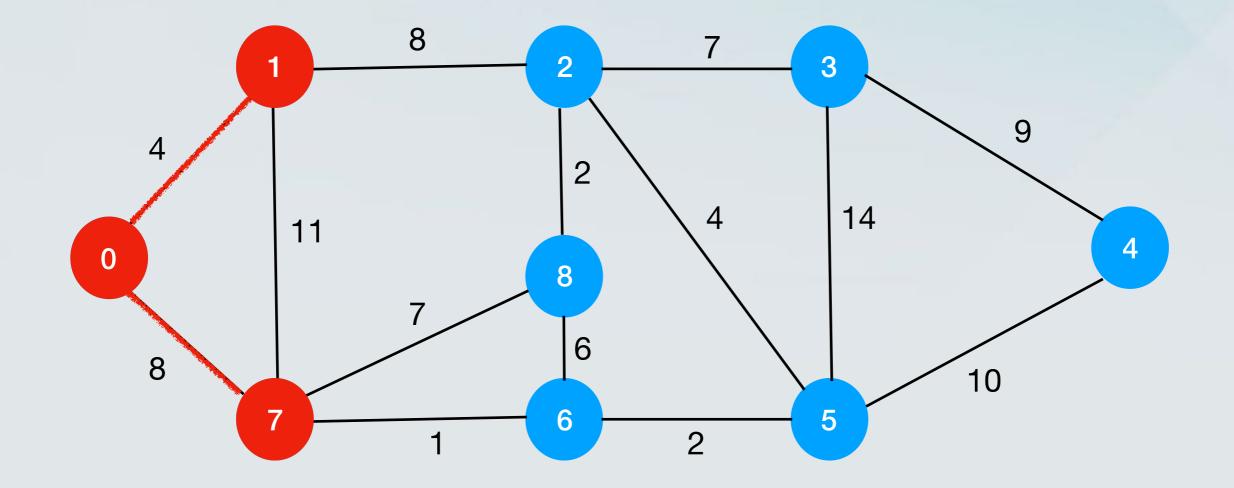
Prim's Algorithm

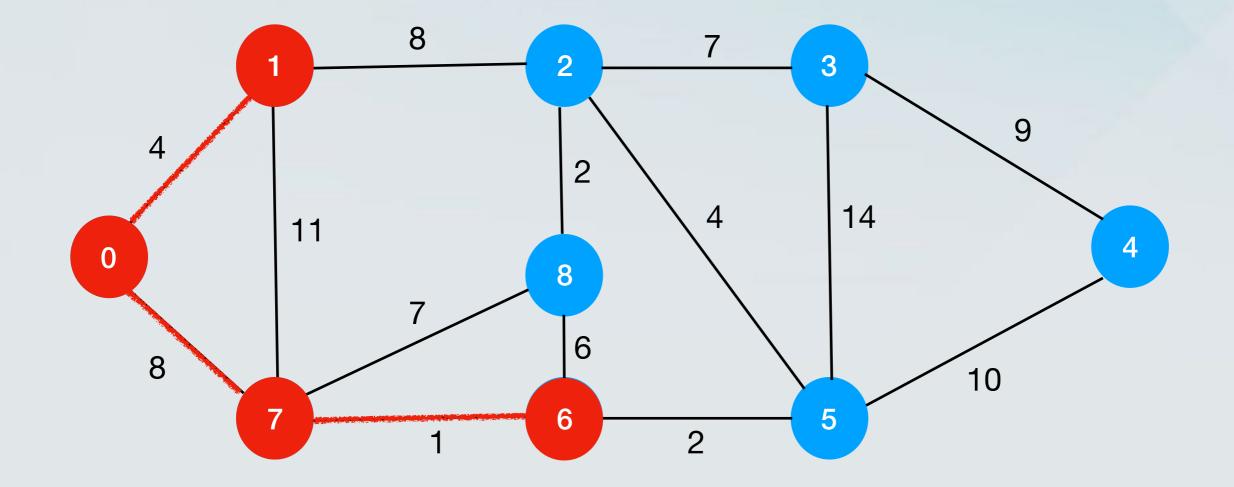
- Start with an empty set of edges T.
- Start with a node s.
 - Add an edge e=(s,w) to T.
 - Which one?
 - The one with the minimum cost c_e.
- We continue like this.
 - We only consider edges to neighbours that are not in the spanning tree.

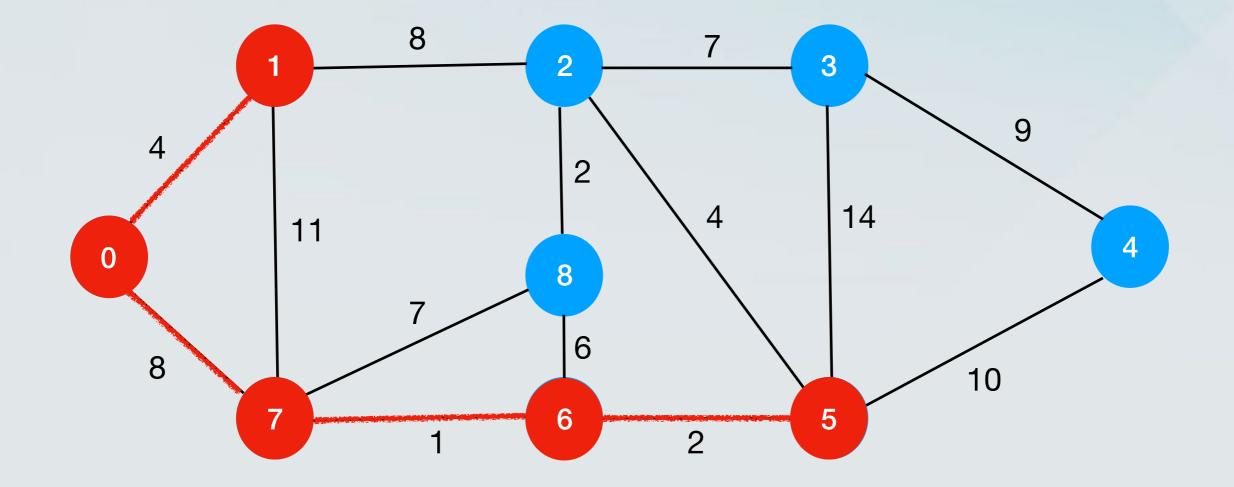


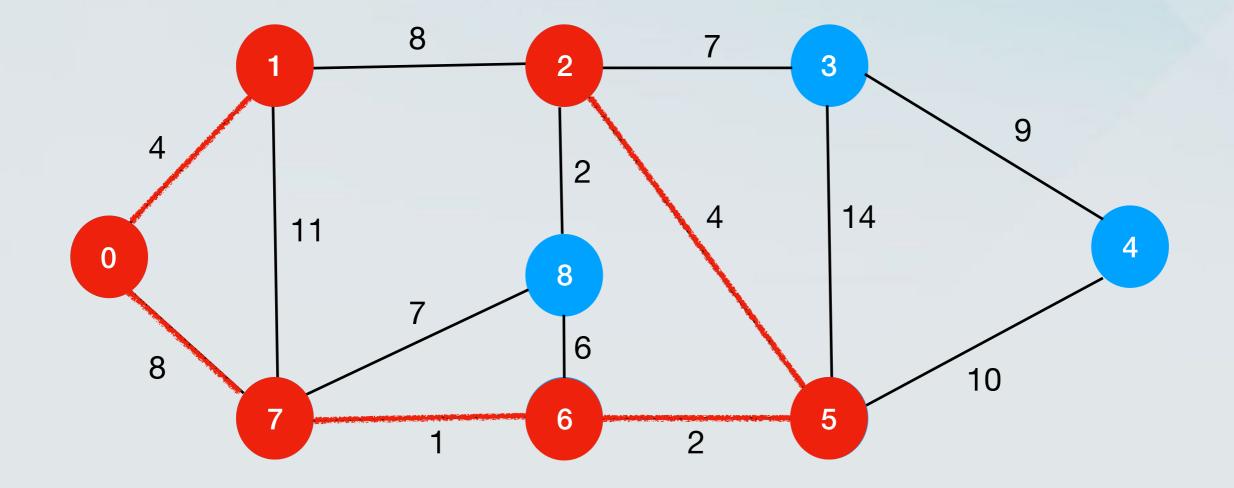


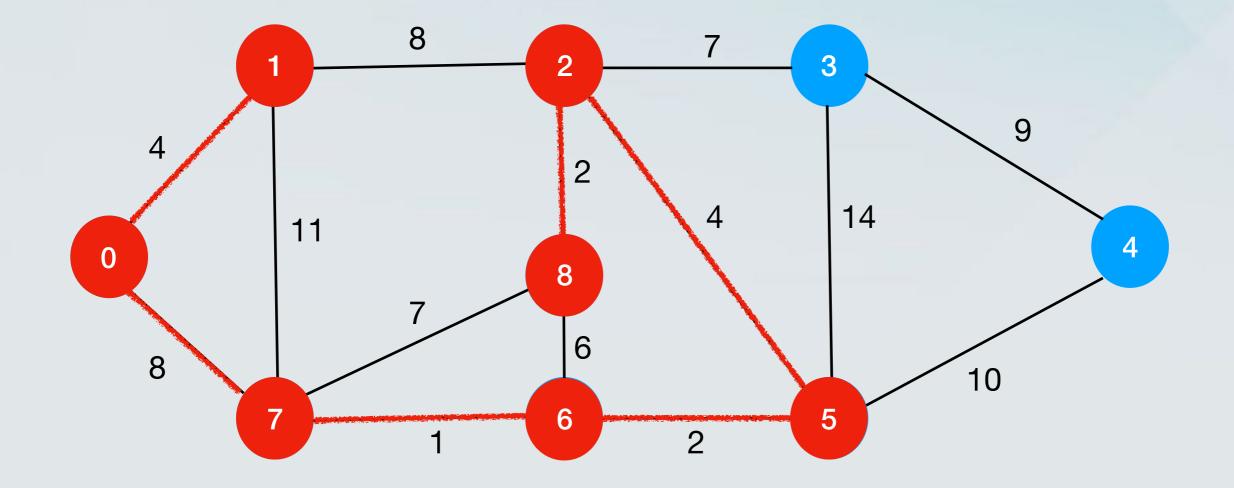


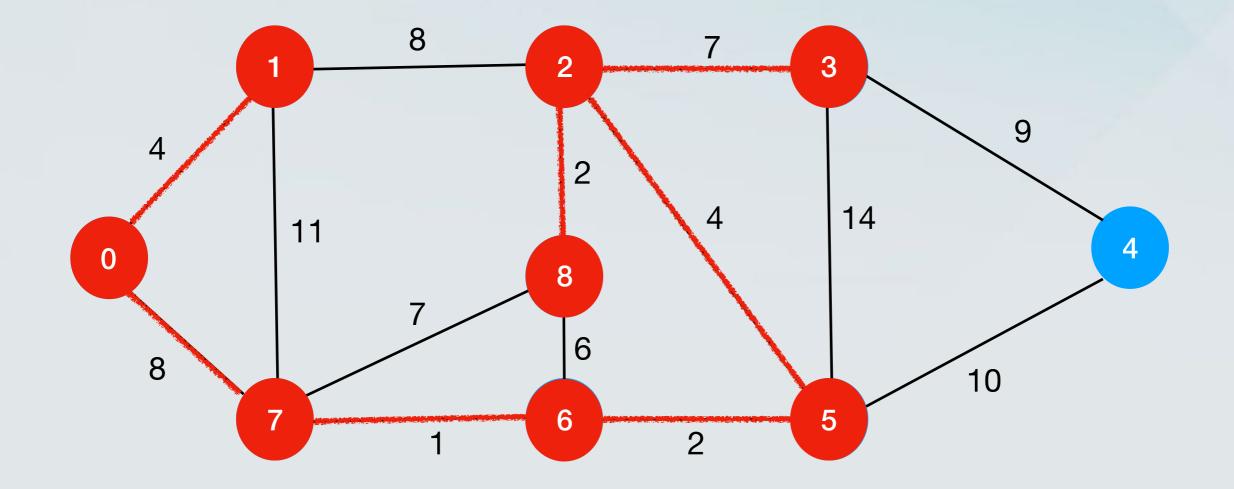


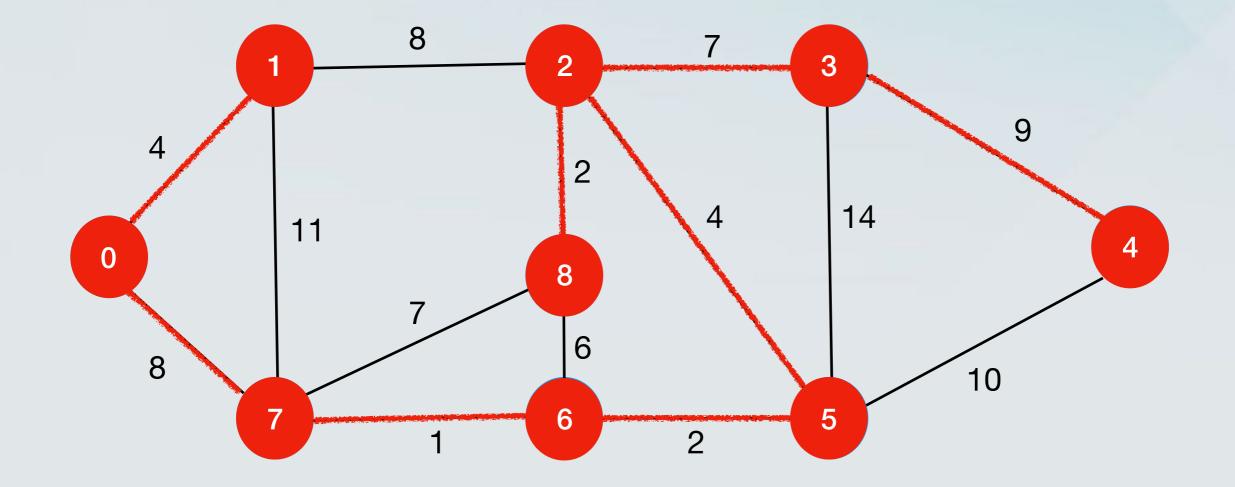












Optimality and running time

- Optimality argued in the last lecture.
- Running time?

• We add nodes to the expanding spanning tree S.

- We add nodes to the expanding spanning tree S.
- We need to figure out which node to add next.

- We add nodes to the expanding spanning tree S.
- We need to figure out which node to add next.
- We need to know the attachment cost of each node:

 $a(v) = min_{e=(u,v):u}$ is in S Ce

- We add nodes to the expanding spanning tree S.
- We need to figure out which node to add next.
- We need to know the attachment cost of each node:

 $a(v) = min_{e=(u,v):u}$ is in S Ce

• Naive solution: For every step run over all candidates.

- We add nodes to the expanding spanning tree S.
- We need to figure out which node to add next.
- We need to know the attachment cost of each node:

 $a(v) = min_{e=(u,v):u}$ is in S Ce

- Naive solution: For every step run over all candidates.
 - O(n²).

• Array

• Array

Stack

- Array
- Stack
- Priority Queue

- Maintains
 - A set of elements S.
 - A key key(v) for each element v in S.
 - The key denotes the priority of v.
- Operations:
 - Add(v) with priority key.
 - Delete(v)
 - Extract_Min(v)
 - Change_key(v)

• The Priority Queue is an abstract data type.

- The Priority Queue is an abstract data type.
- In reality, we have to implement it with known data structures.

- The Priority Queue is an abstract data type.
- In reality, we have to implement it with known data structures.
- Many implementations exists, the usual one is with heaps.

- The Priority Queue is an abstract data type.
- In reality, we have to implement it with known data structures.
- Many implementations exists, the usual one is with heaps.
- Will not be covered in the lectures.

- The Priority Queue is an abstract data type.
- In reality, we have to implement it with known data structures.
- Many implementations exists, the usual one is with heaps.
- Will not be covered in the lectures.
 - Curious readers: Kleinberg and Tardos, Chapter 2.5.

- The Priority Queue is an abstract data type.
- In reality, we have to implement it with known data structures.
- Many implementations exists, the usual one is with heaps.
- Will not be covered in the lectures.
 - Curious readers: Kleinberg and Tardos, Chapter 2.5.
- For now:

- The Priority Queue is an abstract data type.
- In reality, we have to implement it with known data structures.
- Many implementations exists, the usual one is with heaps.
- Will not be covered in the lectures.
 - Curious readers: Kleinberg and Tardos, Chapter 2.5.
- For now:
 - PQ operations can be implemented in O(log n) time.

- We add nodes to the expanding spanning tree S.
- We need to figure out which node to add next.
- We need to know the attachment cost of each node:

 $a(v) = min_{e=(u,v):u}$ is in S Ce

- We add nodes to the expanding spanning tree S.
- We need to figure out which node to add next.
- We need to know the attachment cost of each node:

 $a(v) = min_{e=(u,v):u}$ is in S Ce

 PQ solution: Insert the nodes in a PQ, with minus the attachment cost as the keys.

- We add nodes to the expanding spanning tree S.
- We need to figure out which node to add next.
- We need to know the attachment cost of each node:

 $a(v) = min_{e=(u,v):u}$ is in S Ce

- PQ solution: Insert the nodes in a PQ, with minus the attachment cost as the keys.
 - Run Extract_Min(v) to find the next node.

Prim's algorithm running time

- We add nodes to the expanding spanning tree S.
- We need to figure out which node to add next.
- We need to know the attachment cost of each node:

 $a(v) = min_{e=(u,v):u}$ is in S Ce

- PQ solution: Insert the nodes in a PQ, with minus the attachment cost as the keys.
 - Run **Extract_Min(v)** to find the next node.
 - Run **Change_key**(**v**) to update the attachment costs.

Prim's algorithm running time

- PQ solution: Insert the nodes in a PQ, with minus the attachment cost as the keys.
 - Run **Extract_Min(v)** to find the next node.
 - Run n-1 times.
 - Run Change_key(v) to update the attachment costs.
 - Run at most once per edge.

Prim's algorithm running time

- PQ solution: Insert the nodes in a PQ, with minus the attachment cost as the keys.
 - Run **Extract_Min(v)** to find the next node.
 - Run n-1 times.
 - Run **Change_key**(v) to update the attachment costs.
 - Run at most once per edge.
 - Running time O(m log n).

• We have a collection of objects.

- We have a collection of objects.
- They have different degrees of similarity.

- We have a collection of objects.
- They have different degrees of similarity.
- We want to organise them into coherent groups.

- We have a collection of objects.
- They have different degrees of similarity.
- We want to organise them into coherent groups.
 - Objects in a group exhibit high similarity.

- We have a collection of objects.
- They have different degrees of similarity.
- We want to organise them into coherent groups.
 - Objects in a group exhibit high similarity.
- Applications: Many, e.g., machine learning.

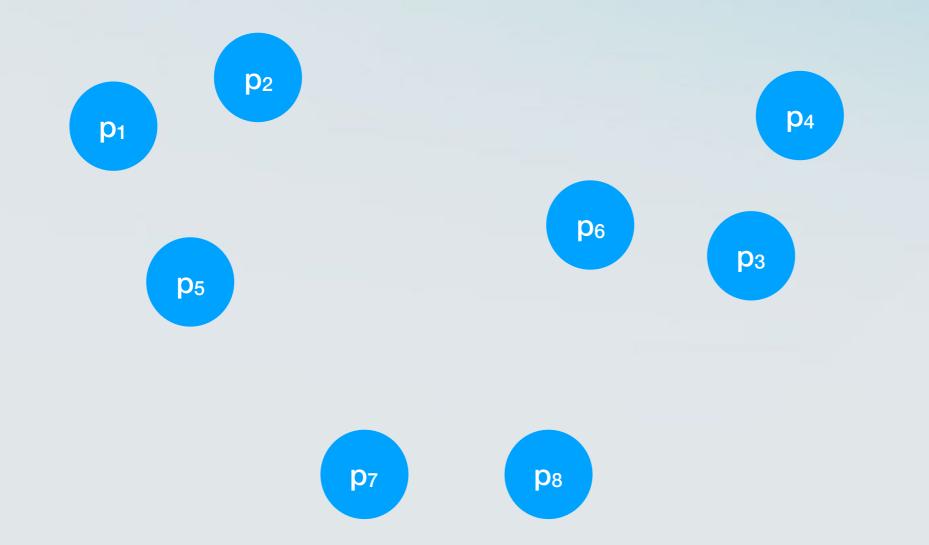
• There is a notion of distance between objects.

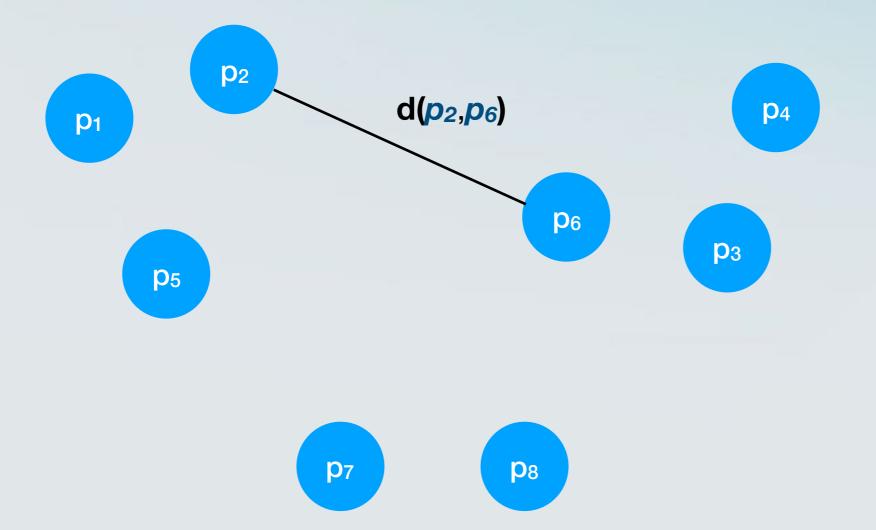
- There is a notion of distance between objects.
- Could be physical distance (e.g., distance between houses).

- There is a notion of distance between objects.
- Could be physical distance (e.g., distance between houses).
- Could be more abstract.

- There is a notion of distance between objects.
- Could be physical distance (e.g., distance between houses).
- Could be more abstract.
 - E.g., age, height, nationality.

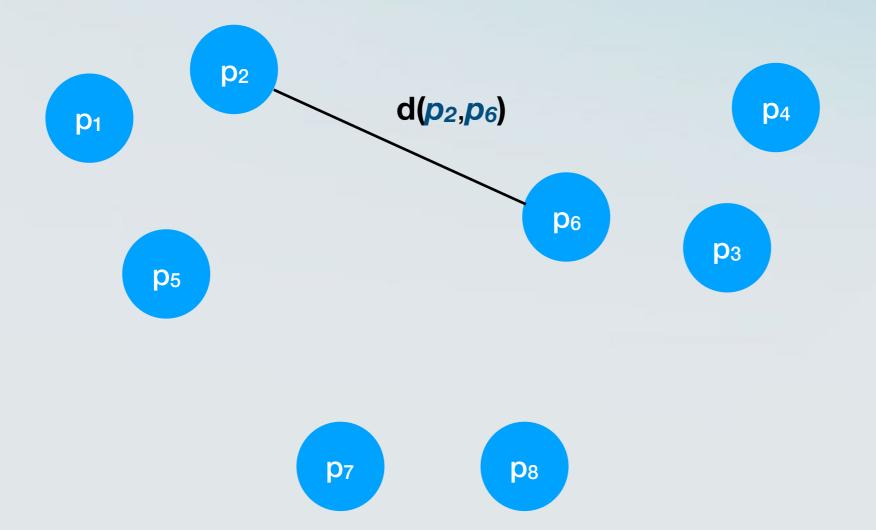
- There is a notion of distance between objects.
- Could be physical distance (e.g., distance between houses).
- Could be more abstract.
 - E.g., age, height, nationality.
 - E.g., running time, algorithmic principle.

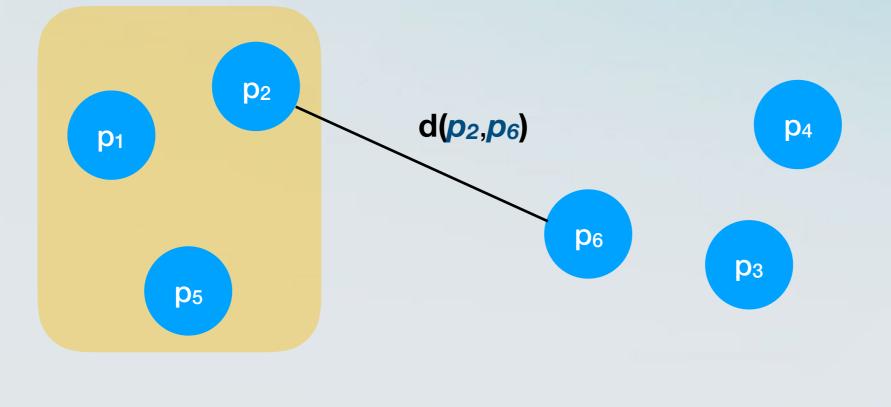


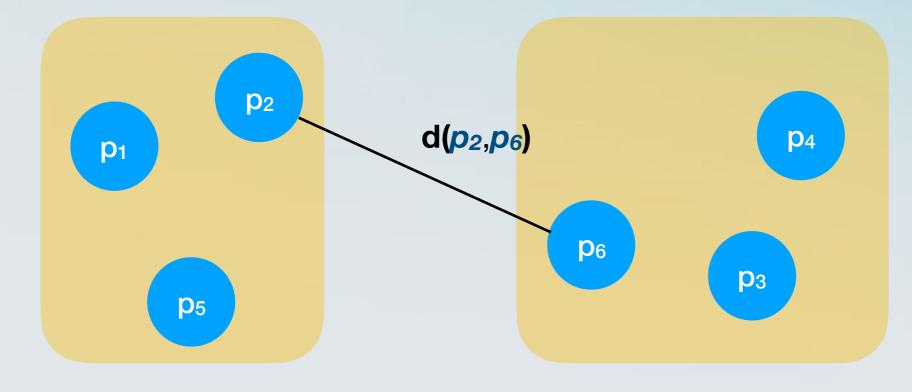


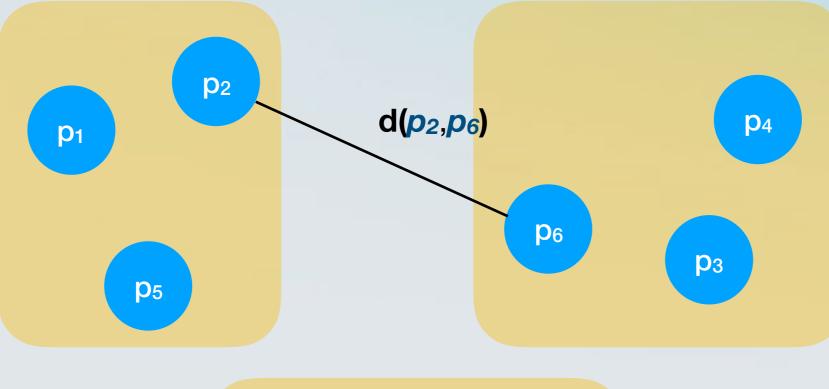
Properties of distance

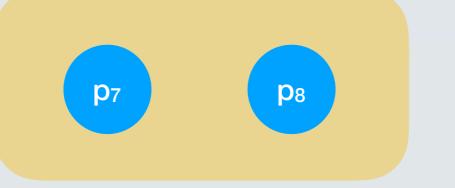
- $d(p_i, p_i) = 0$ for any i = 1, ..., n
- $d(p_i, p_j) > 0$ for any $i \neq j$
- $d(p_i,p_j)=d(p_j,p_i)$ for any *i*, *j*







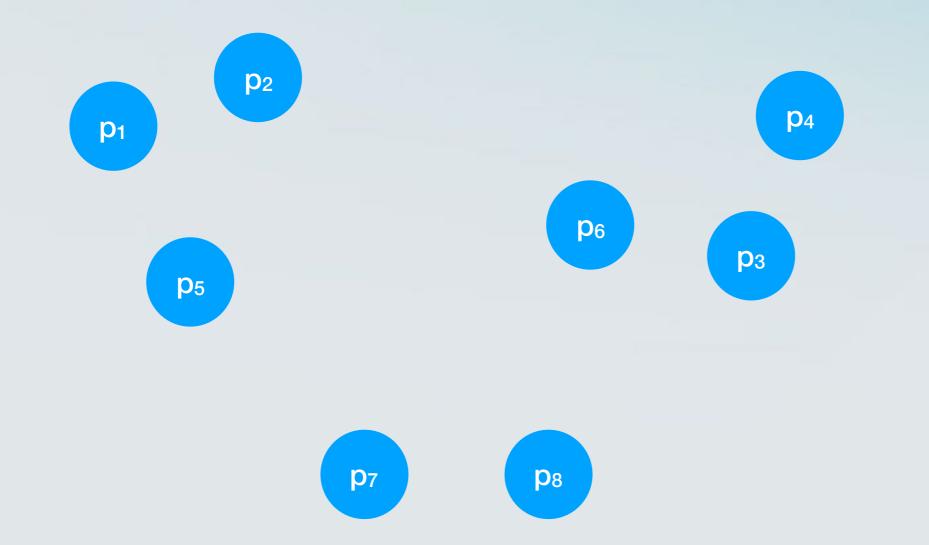


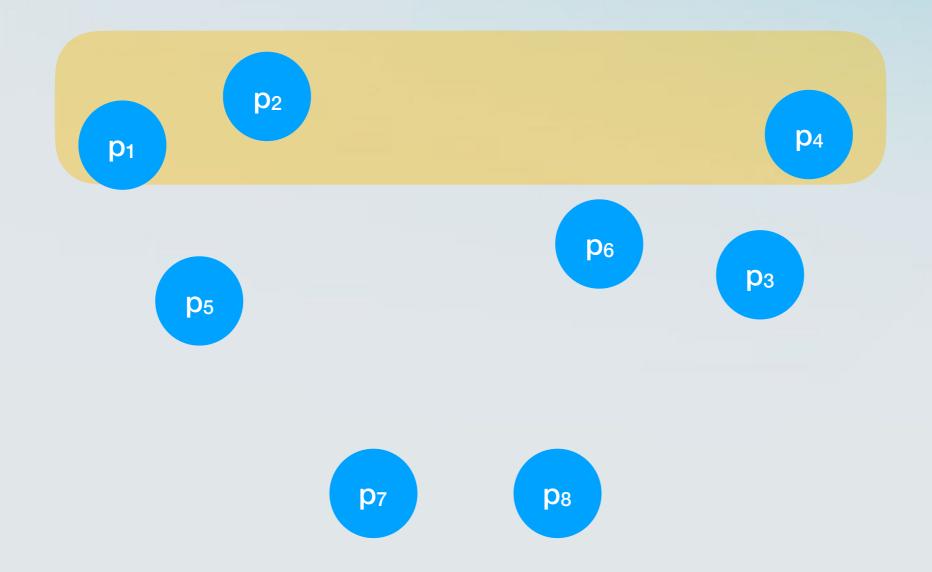


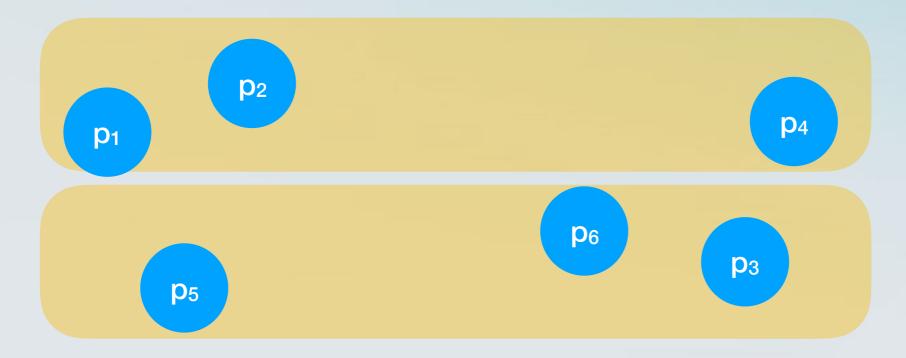
Definition: Given a set U of n elements, a *k-clustering* of U is a partition of U into non-empty sets C₁, ..., C_k.

- Definition: Given a set U of n elements, a *k-clustering* of U is a partition of U into non-empty sets C₁, ..., C_k.
- Definition: The *spacing* of a k-clustering is the minimum distance between any pair of points in different clusters.

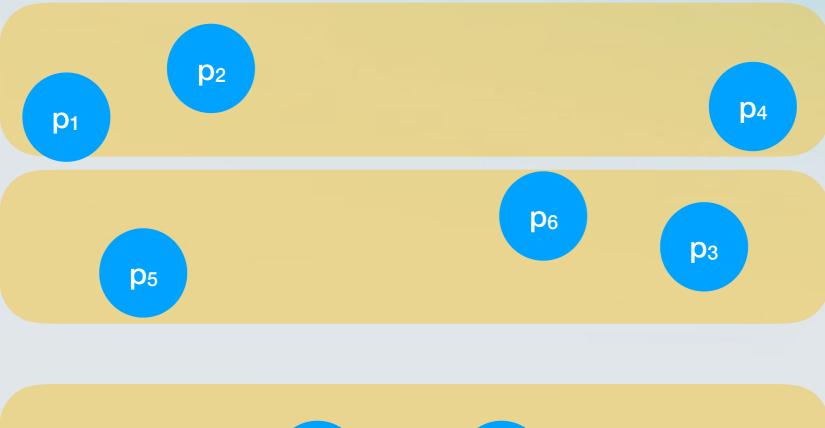
- Definition: Given a set U of n elements, a *k-clustering* of U is a partition of U into non-empty sets C₁, ..., C_k.
- Definition: The *spacing* of a k-clustering is the minimum distance between any pair of points in different clusters.
- Goal: Among all possible k-clusterings, find one with the maximum possible spacing.

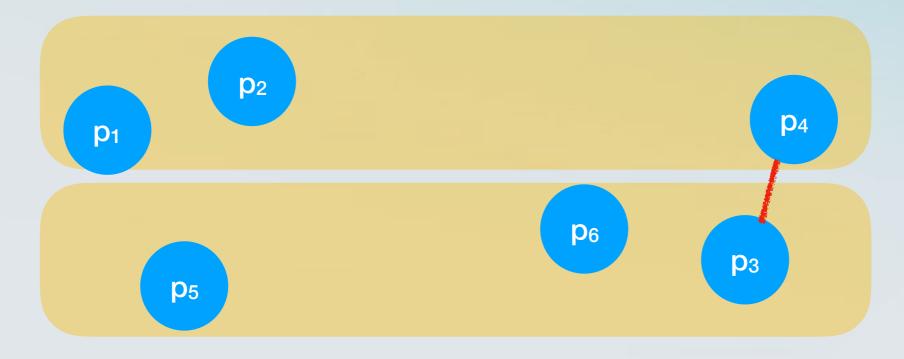


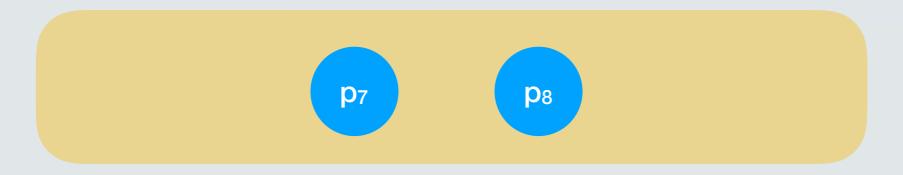


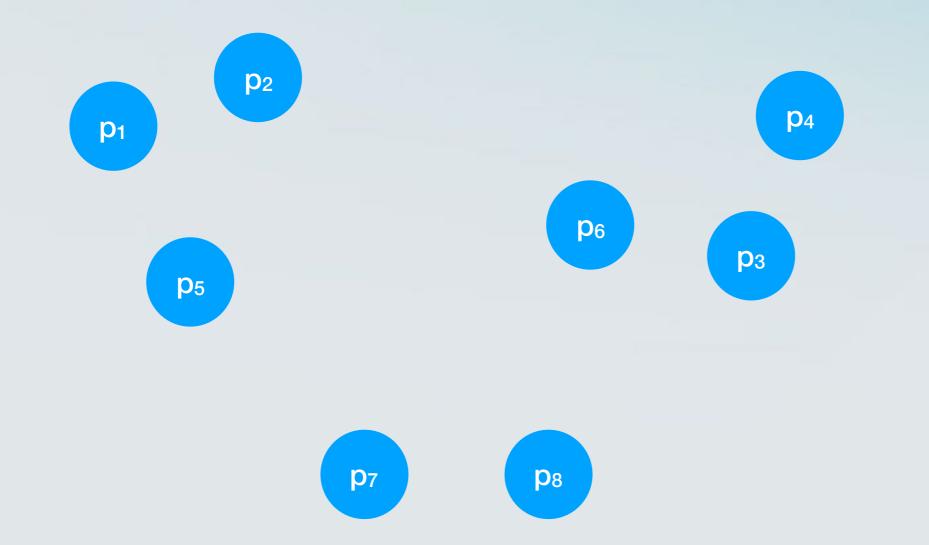


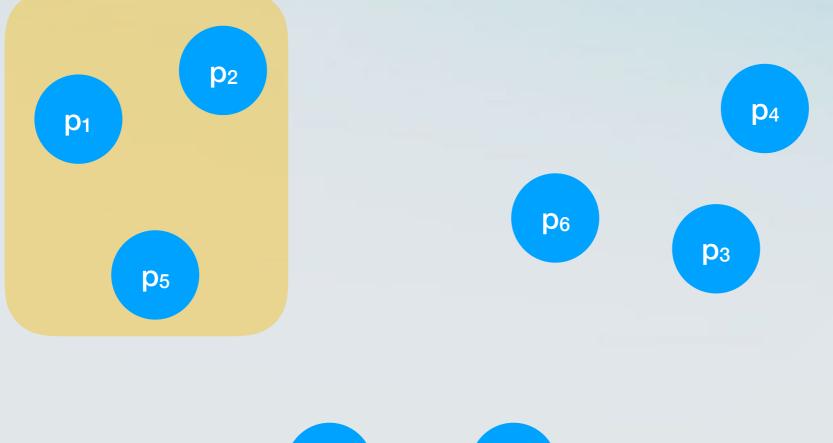




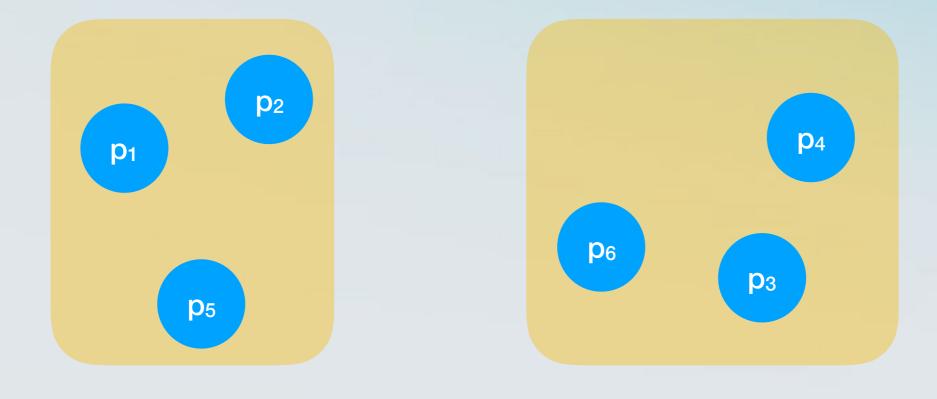


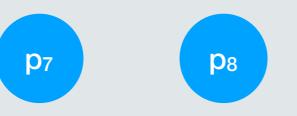


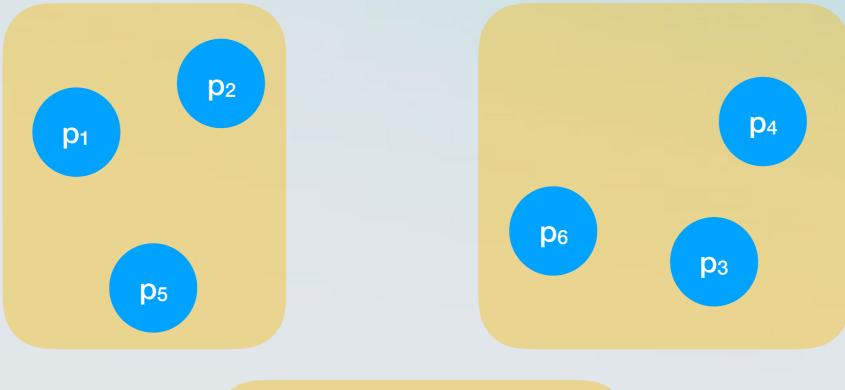


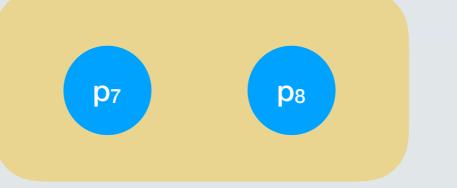


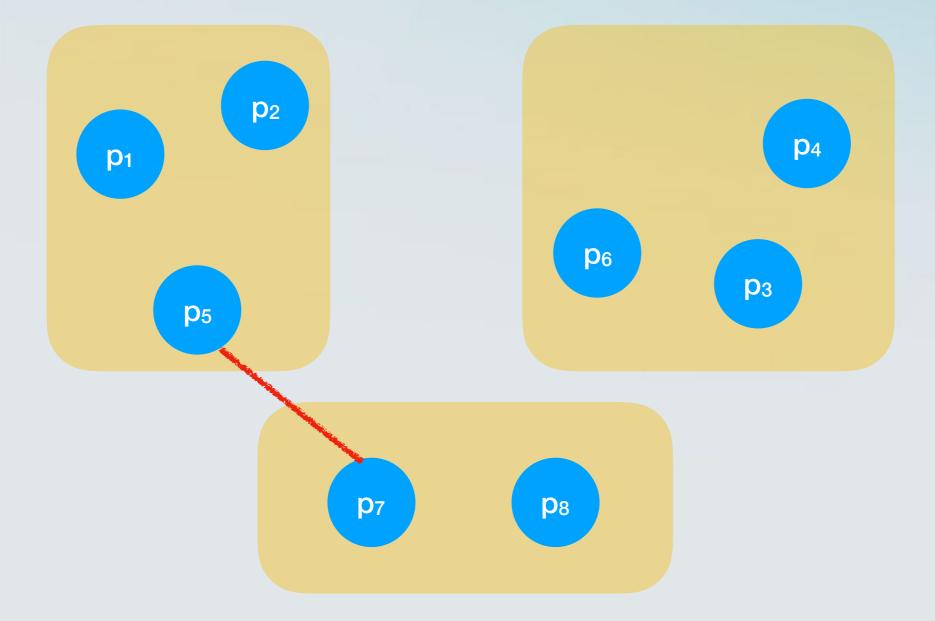
p7 p8









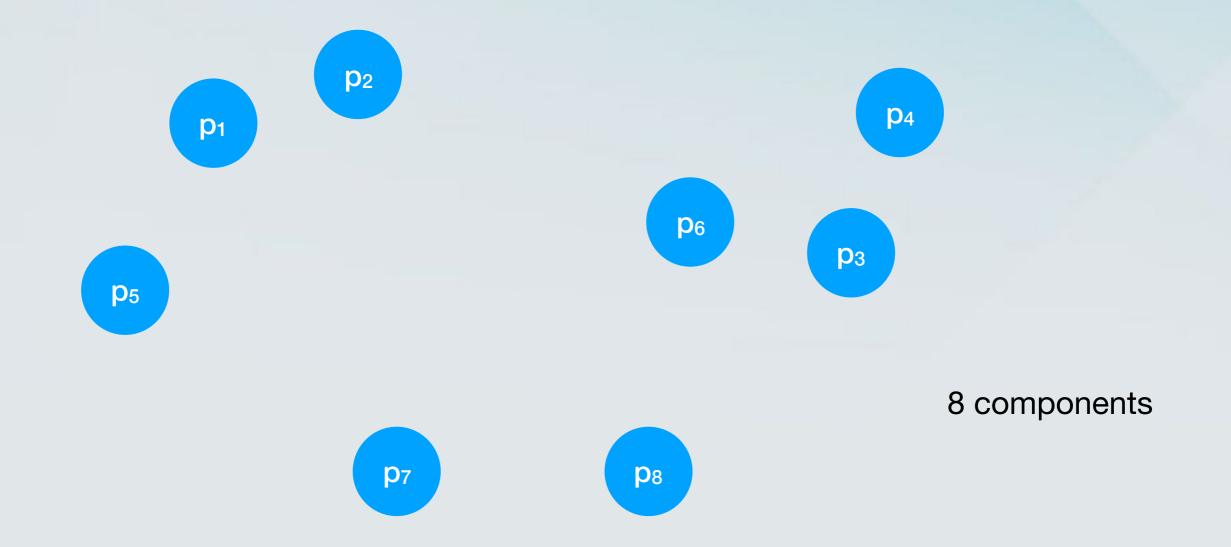


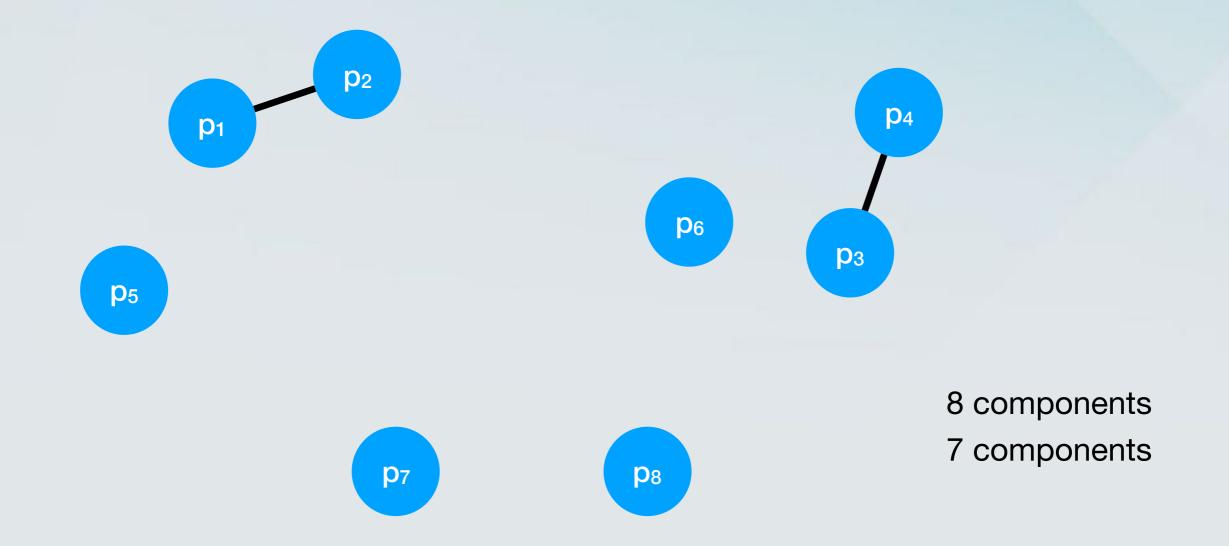
Pick two objects p_i and p_j with the smallest distance d(p_i,p_j).

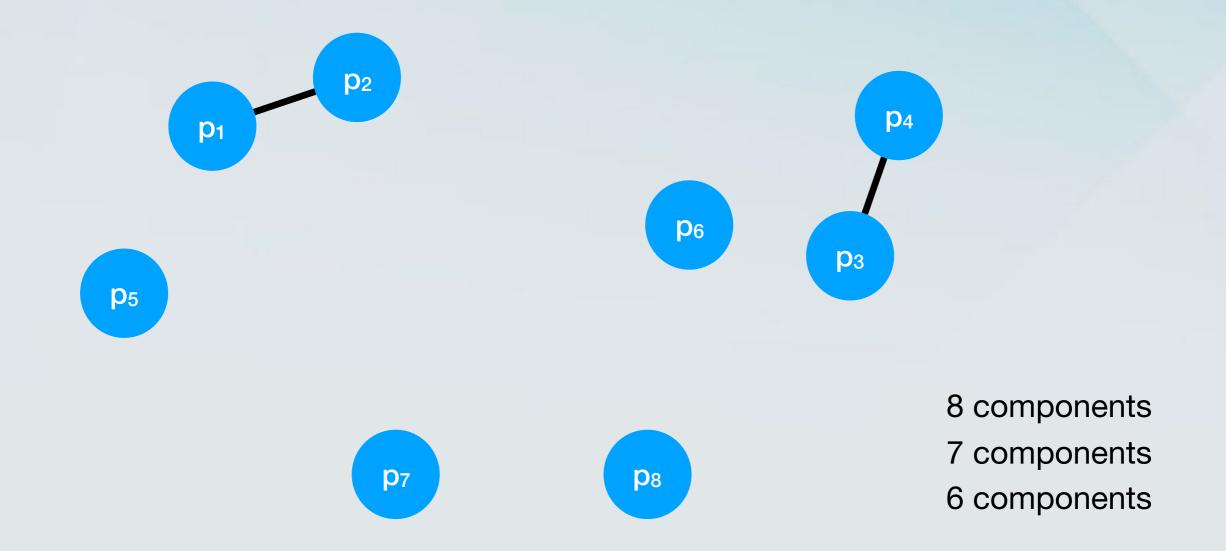
- Pick two objects p_i and p_j with the smallest distance d(p_i,p_j).
- Connect them with an edge $e=(p_i,p_j)$.

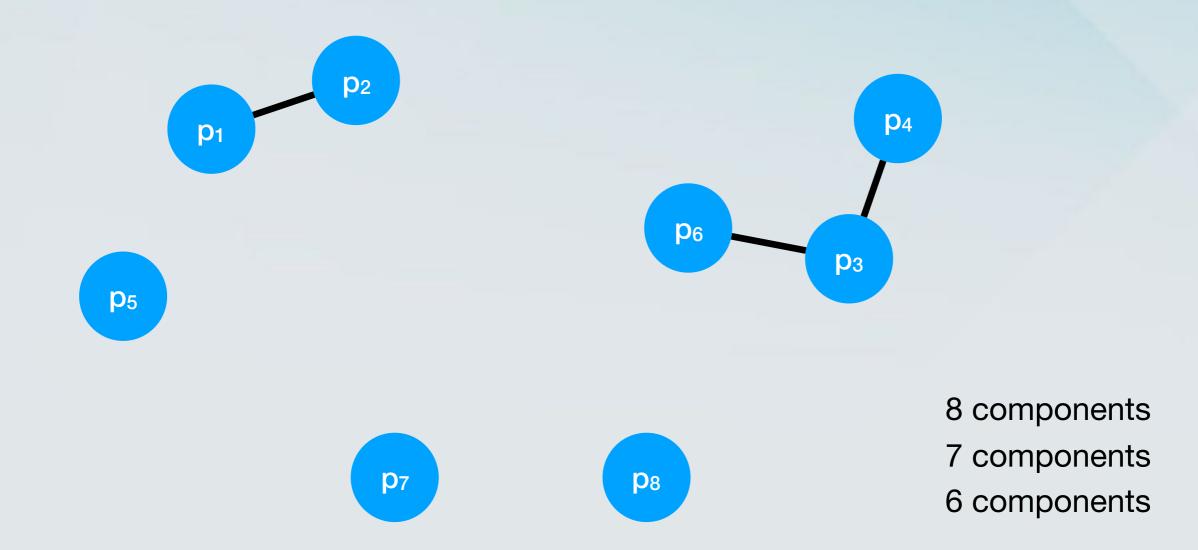
- Pick two objects p_i and p_j with the smallest distance d(p_i,p_j).
- Connect them with an edge $e=(p_i,p_j)$.
- Continue like this until we obtain k clusters.

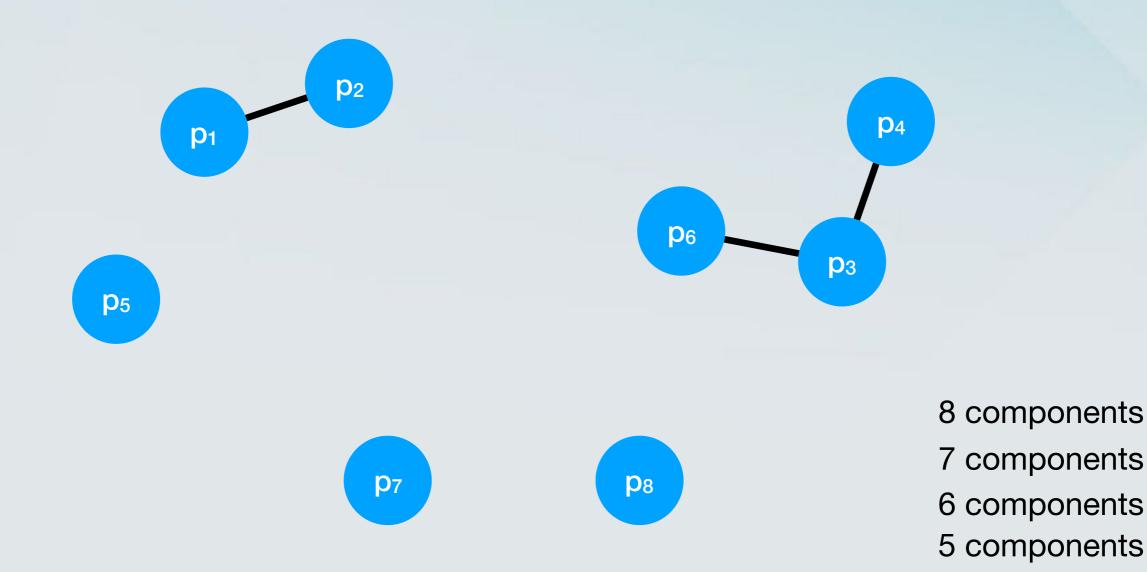
- Pick two objects p_i and p_j with the smallest distance d(p_i,p_j).
- Connect them with an edge $e=(p_i,p_j)$.
- Continue like this until we obtain k clusters.
- If the edge e under consideration connects two objects p_i and p_j already in the same component, skip it.

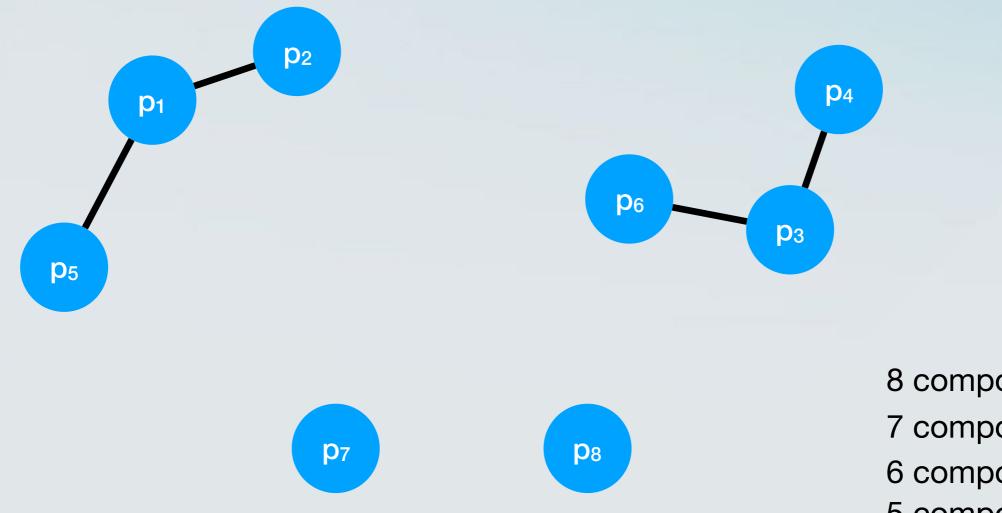




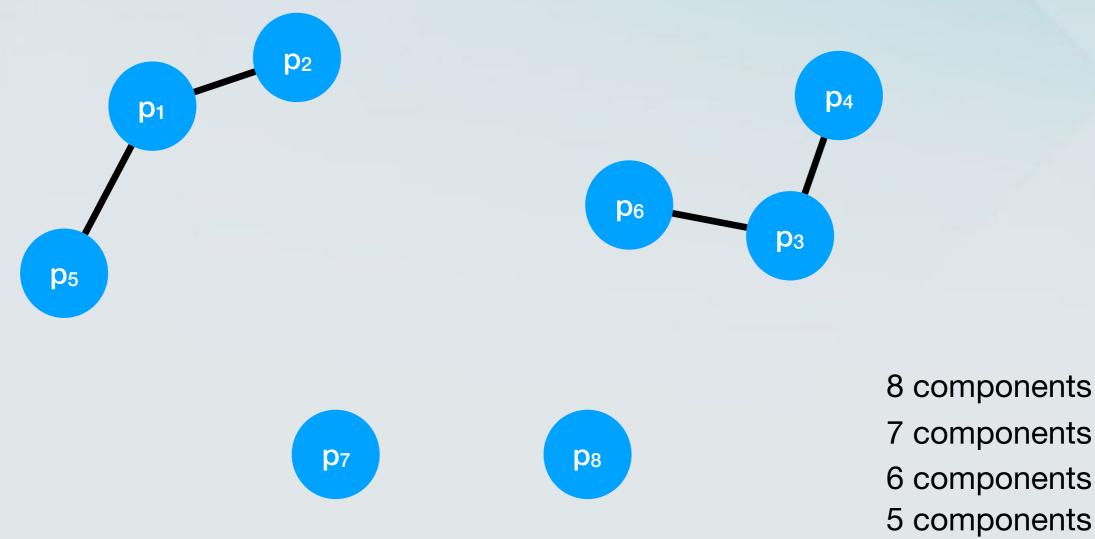




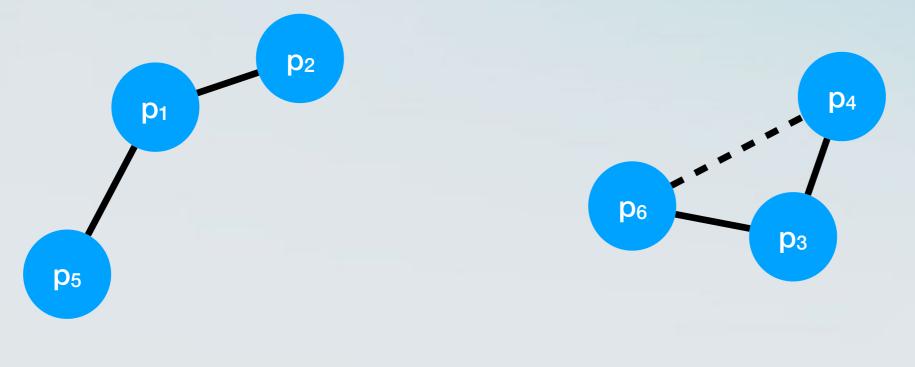


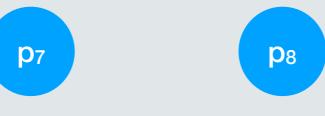


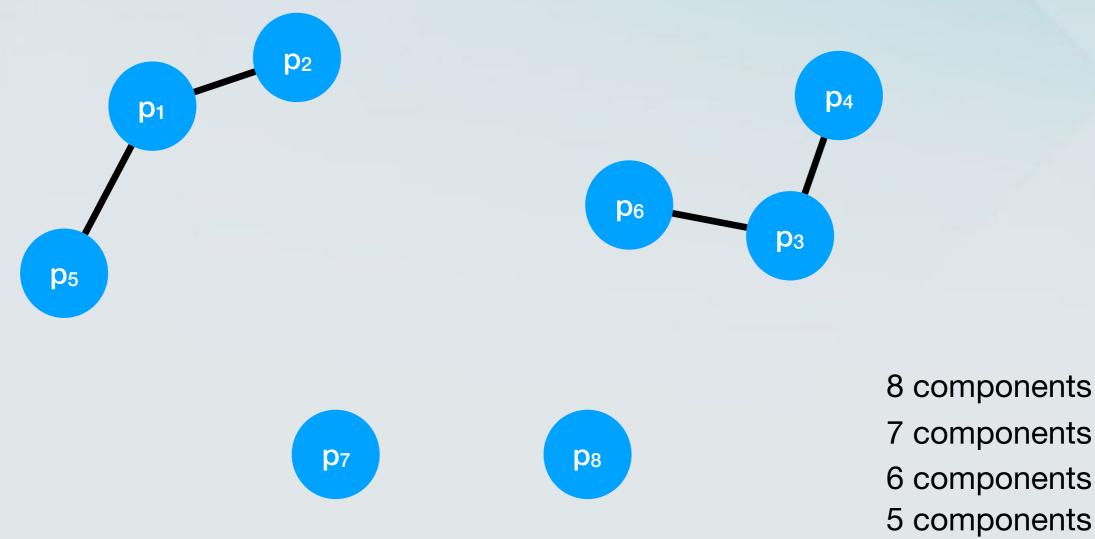
8 components 7 components 6 components 5 components



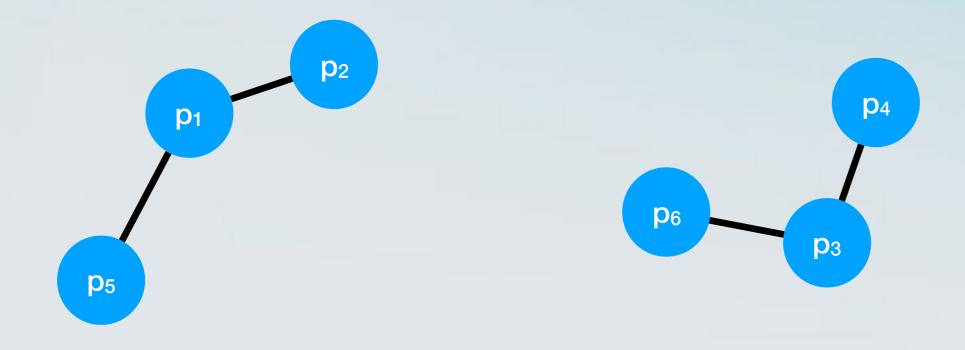
4 components

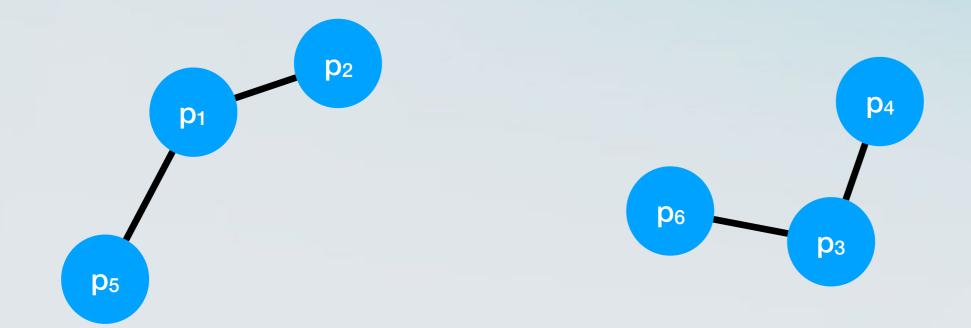


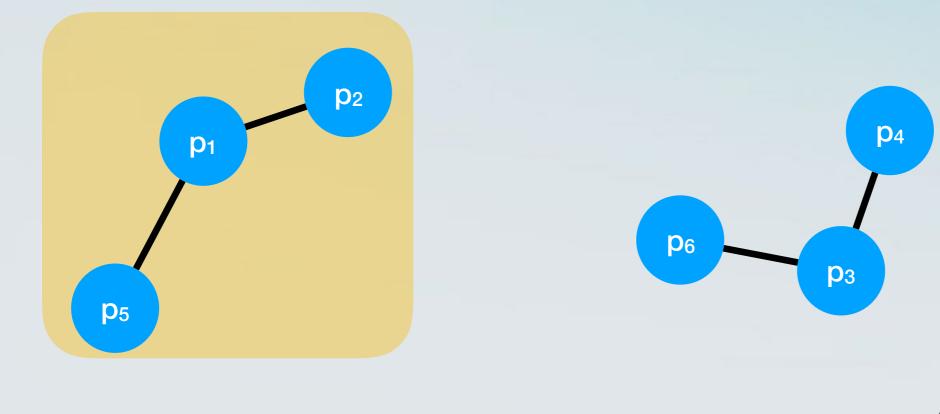


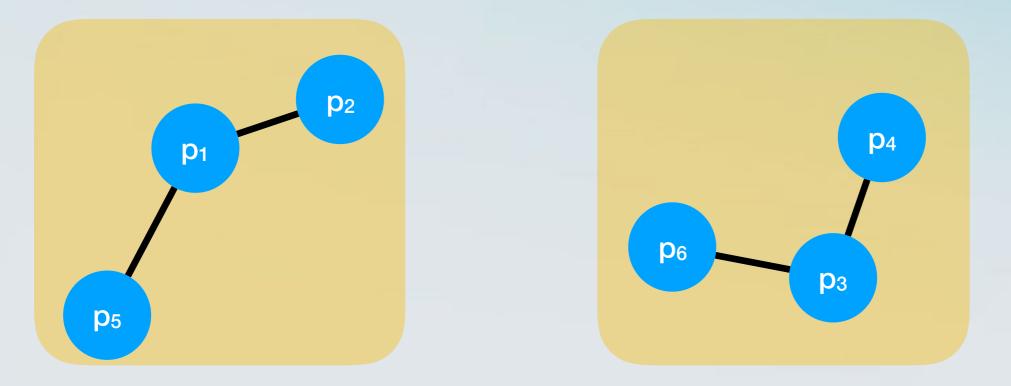


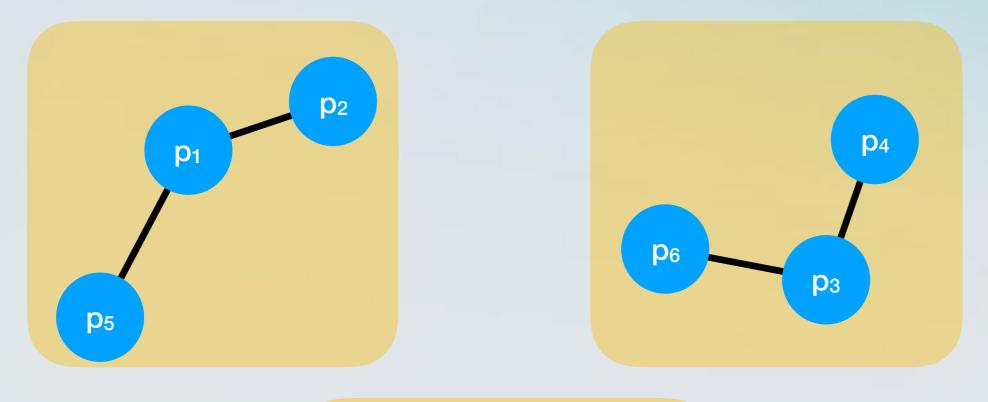
4 components

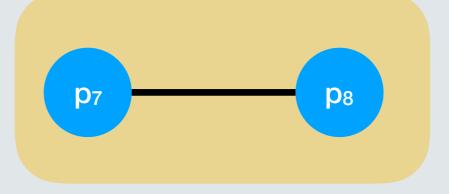












 Pick two objects *p_i* and *p_j* with the smallest distance d(*p_i*,*p_j*).

- Pick two objects p_i and p_j with the smallest distance d(p_i,p_j).
- Pick an edge (p_i, p_j) with the smallest cost d(p_i, p_j).

- Pick two objects p_i and p_j with the smallest distance d(p_i,p_j).
- Connect them with an edge e=(p_i, p_j).

 Pick an edge (p_i, p_j) with the smallest cost d(p_i, p_j).

- Pick two objects *p_i* and *p_j* with the smallest distance d(*p_i*,*p_j*).
- Connect them with an edge e=(p_i,p_j).

- Pick an edge (p_i, p_j) with the smallest cost d(p_i, p_j).
- Include the edge in the output.

- Pick two objects *p_i* and *p_j* with the smallest distance d(*p_i*,*p_j*).
- Connect them with an edge e=(p_i,p_j).
- Continue like this until we obtain k clusters.

- Pick an edge (p_i, p_j) with the smallest cost d(p_i, p_j).
- Include the edge in the output.

- Pick two objects *p_i* and *p_j* with the smallest distance d(*p_i*,*p_j*).
- Connect them with an edge e=(p_i,p_j).
- Continue like this until we obtain k clusters.

- Pick an edge (p_i, p_j) with the smallest cost d(p_i, p_j).
- Include the edge in the output.
- Continue like this until obtain k connected components.

- Pick two objects *p_i* and *p_j* with the smallest distance d(*p_i*,*p_j*).
- Connect them with an edge e=(p_i,p_j).
- Continue like this until we obtain k clusters.
- If the edge e under consideration connects two objects p_i and p_j already in the same component, skip it.

- Pick an edge (p_i, p_j) with the smallest cost d(p_i, p_j).
- Include the edge in the output.
- Continue like this until obtain k connected components.

- Pick two objects *p_i* and *p_j* with the smallest distance d(*p_i*,*p_j*).
- Connect them with an edge e=(p_i, p_j).
- Continue like this until we obtain k clusters.
- If the edge e under consideration connects two objects p_i and p_j already in the same component, skip it.

- Pick an edge (p_i, p_j) with the smallest cost d(p_i, p_j).
- Include the edge in the output.
- Continue like this until obtain k connected components.
- If the edge e under consideration introduces a cycle, then skip it.

- Pick two objects *p_i* and *p_j* with the smallest distance d(*p_i*,*p_j*).
- Connect them with an edge e=(p_i, p_j).
- Continue like this until we obtain k clusters.
- If the edge e under consideration connects two objects p_i and p_j already in the same component, skip it.

- Pick an edge (p_i, p_j) with the smallest cost d(p_i, p_j).
- Include the edge in the output.
- Continue like this until we connect all nodes.
- If the edge e under consideration introduces a cycle, then skip it.

- Pick an edge (p_i, p_j) with the smallest cost $d(p_i, p_j)$.
- Include the edge in the output.

- Pick an edge (p_i, p_j) with the smallest cost $d(p_i, p_j)$.
- Include the edge in the output.
- Stop before including the last k-1 edges.

- Pick an edge (p_i, p_j) with the smallest cost $d(p_i, p_j)$.
- Include the edge in the output.
- Stop before including the last k-1 edges.
 - i.e., in the end, remove the k-1 most expensive edges.

- Pick an edge (p_i, p_j) with the smallest cost $d(p_i, p_j)$.
- Include the edge in the output.
- Stop before including the last k-1 edges.
 - i.e., in the end, remove the k-1 most expensive edges.
- If the edge e under consideration introduces a cycle, then skip it.

Correctness

 Lemma: Let C₁, C₂, ..., C_k be the k connected components formed by deleting the k-1 most expensive edges from a minimum spanning tree T.

These are a k-clustering of maximum spacing.

• Let $C = \{C_1, C_2, \dots, C_k\}.$

- Let $C = \{C_1, C_2, \dots, C_k\}.$
 - C is obviously a clustering (feasiblity).

- Let $C = \{C_1, C_2, \dots, C_k\}.$
 - C is obviously a clustering (feasiblity).
- Order the k-1 most expensive edges of the minimum spanning tree in non-increasing order:

- Let $C = \{C_1, C_2, \dots, C_k\}.$
 - C is obviously a clustering (feasiblity).
- Order the k-1 most expensive edges of the minimum spanning tree in non-increasing order:
 - *e_{k-1}*, *e_{k-2}*, ..., *e₁*

- Let $C = \{C_1, C_2, \dots, C_k\}.$
 - C is obviously a clustering (feasiblity).
- Order the k-1 most expensive edges of the minimum spanning tree in non-increasing order:
 - *e*_{*k*-1}, *e*_{*k*-2}, ..., *e*₁
- What is the *spacing* of C?

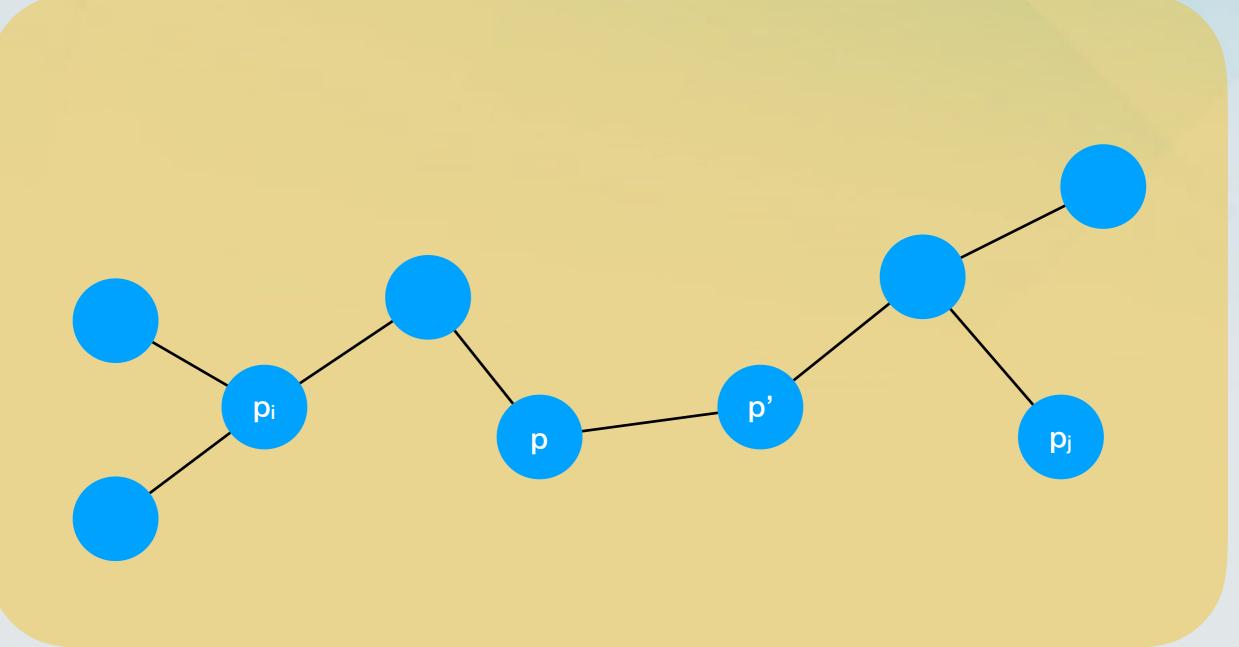
- Let $C = \{C_1, C_2, \dots, C_k\}.$
 - C is obviously a clustering (feasiblity).
- Order the k-1 most expensive edges of the minimum spanning tree in non-increasing order:
 - *e*_{*k*-1}, *e*_{*k*-2}, ..., *e*₁
- What is the *spacing* of C?
 - It is the cost of e₁.

• Let $C' = \{C'_1, C'_2, \dots, C'_k\}$ be any other k-clustering.

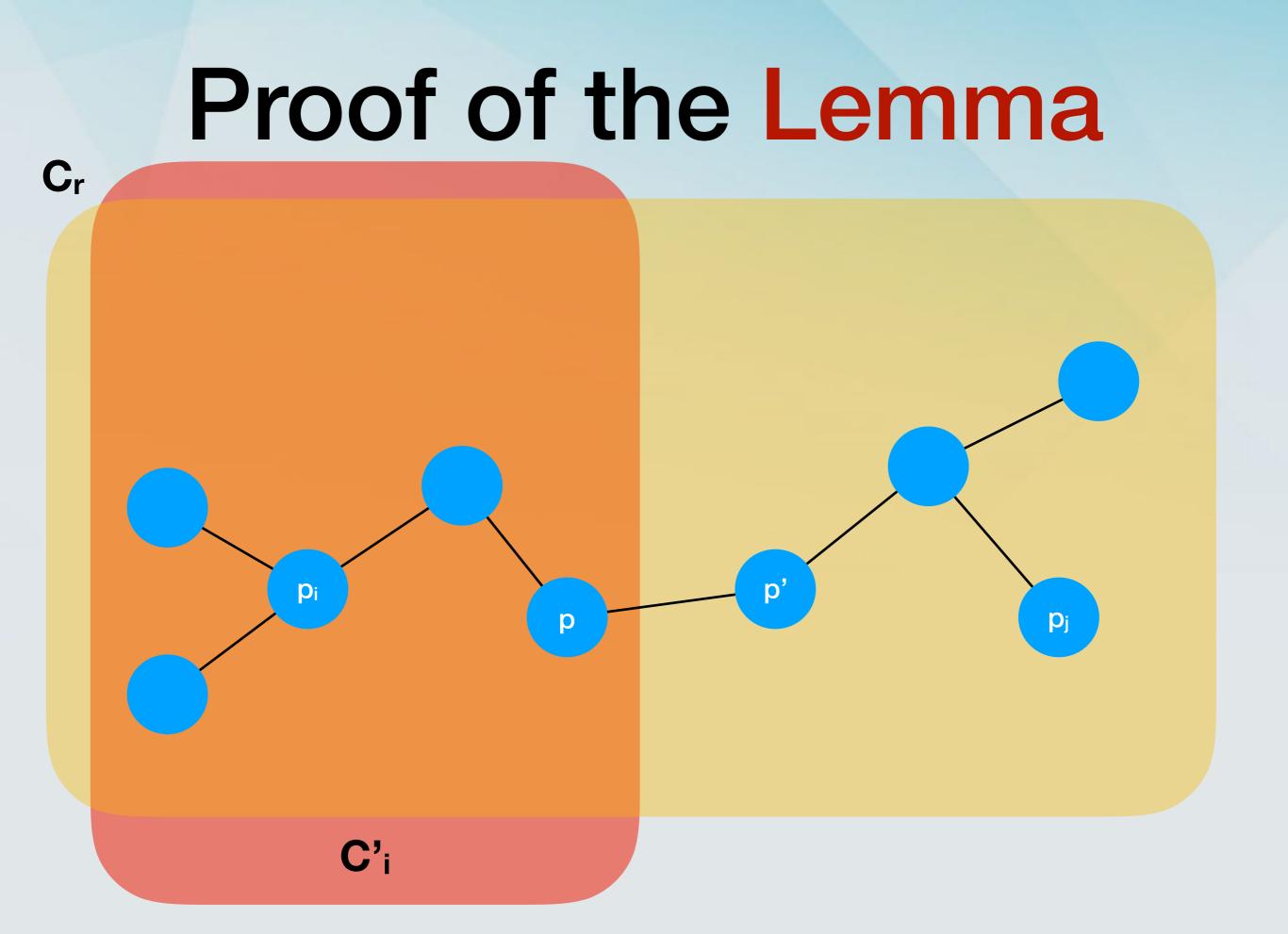
- Let $C' = \{C'_1, C'_2, \dots, C'_k\}$ be any other k-clustering.
- By other, there exists a cluster Cr of C which is not contained in any cluster C's of C'.

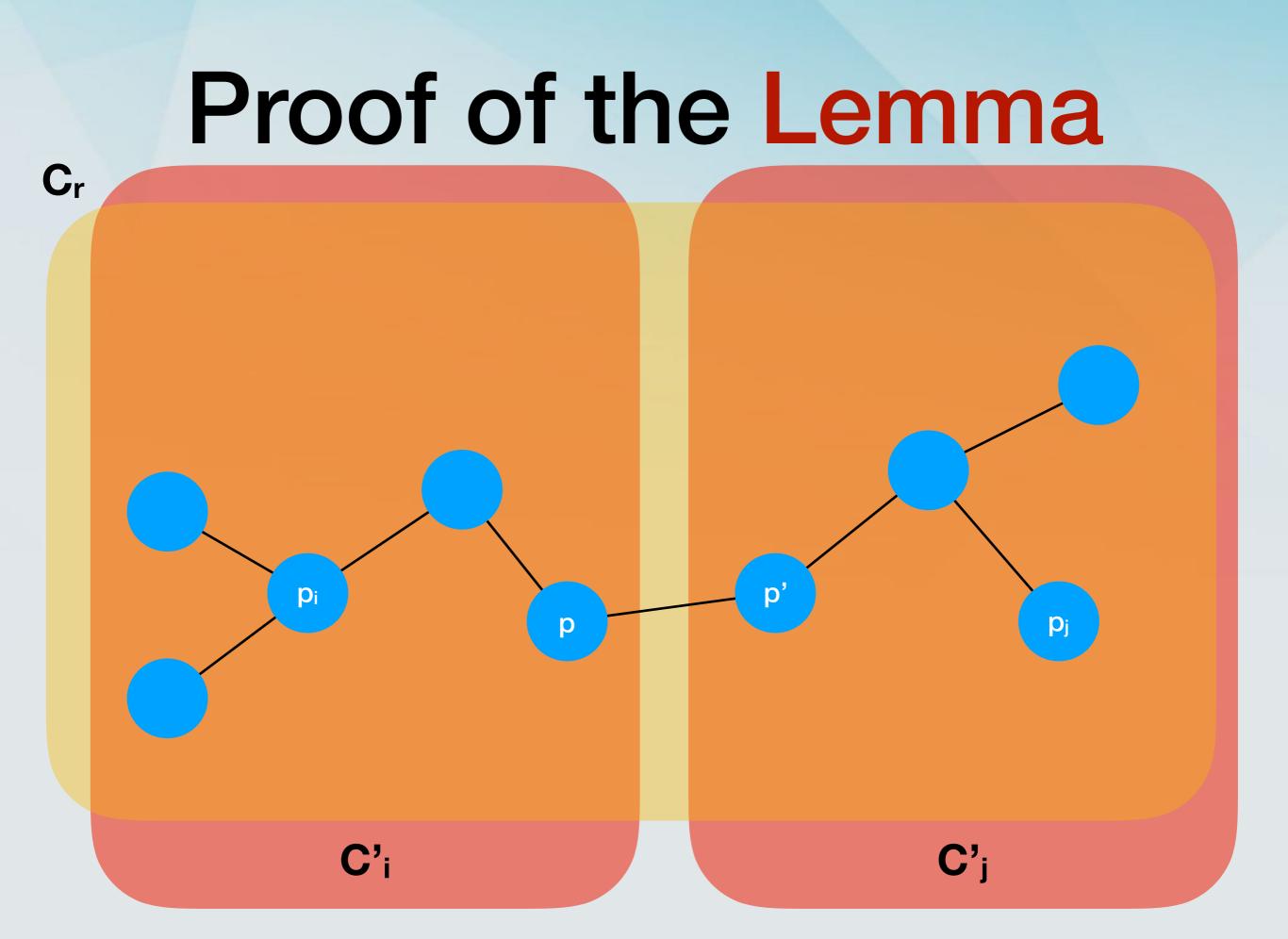
- Let $C' = \{C'_1, C'_2, \dots, C'_k\}$ be any other k-clustering.
- By other, there exists a cluster Cr of C which is not contained in any cluster C's of C'.
- This means that there exist points p_i, p_j in C_r that belong to different clusters in C'.

- Let $C' = \{C'_1, C'_2, \dots, C'_k\}$ be any other k-clustering.
- By other, there exists a cluster Cr of C which is not contained in any cluster C's of C'.
- This means that there exist points p_i, p_j in C_r that belong to different clusters in C'.
 - Let C'_i and C'_j denote these clusters respectively.



Cr





 This means that there exist points p_i, p_j in C_r that belong to different clusters in C'.

- This means that there exist points p_i, p_j in C_r that belong to different clusters in C'.
- This implies that Kruskal's algorithm added all the edges of path from p_i to p_j and none of these edges was deleted.

- This means that there exist points p_i, p_j in C_r that belong to different clusters in C'.
- This implies that Kruskal's algorithm added all the edges of path from p_i to p_j and none of these edges was deleted.
- What is the maximum cost of any of these edges then?

- This means that there exist points p_i, p_j in C_r that belong to different clusters in C'.
- This implies that Kruskal's algorithm added all the edges of path from p_i to p_j and none of these edges was deleted.
- What is the maximum cost of any of these edges then?
 - The cost of e1.

 This means that there exist points p_i, p_j in C_r that belong to different clusters in C'.

- This means that there exist points p_i, p_j in C_r that belong to different clusters in C'.
 - Let C'_i and C'_j denote these clusters respectively.

- This means that there exist points p_i, p_j in C_r that belong to different clusters in C'.
 - Let C'_i and C'_j denote these clusters respectively.
- On the path from p_i to p_j let p be the last node of C'_i and p' be the first node of C'_j.

- This means that there exist points p_i, p_j in C_r that belong to different clusters in C'.
 - Let C'_i and C'_j denote these clusters respectively.
- On the path from p_i to p_j let p be the last node of C'_i and p' be the first node of C'_j.
- What is the cost of (p,p')?

- This means that there exist points p_i, p_j in C_r that belong to different clusters in C'.
 - Let C'_i and C'_j denote these clusters respectively.
- On the path from p_i to p_j let p be the last node of C'_i and p' be the first node of C'_j.
- What is the cost of (p,p')?
 - At most the cost of e1.

What is the cost of (p,p')?

- What is the cost of (p,p')?
 - At most the cost of e1.

- What is the cost of (p,p')?
 - At most the cost of e1.
- What is the edge (p,p') with respect to C'?

- What is the cost of (p,p')?
 - At most the cost of e1.
- What is the edge (p,p') with respect to C'?
 - It's an edge "crossing" clusters.

- What is the cost of (p,p')?
 - At most the cost of e1.
- What is the edge (p,p') with respect to C'?
 - It's an edge "crossing" clusters.
 - The distance is at least d(p,p').

- What is the cost of (p,p')?
 - At most the cost of e1.
- What is the edge (p,p') with respect to C'?
 - It's an edge "crossing" clusters.
 - The distance is at least d(p,p').
 - The spacing of C' is not smaller.

