Advanced Algorithmic Techniques (COMP523)

Greedy Algorithms 3

Recap and plan

- Last lecture:
- Minimum Spanning Tree
- Kruskal's Algorithm
- Prim's Algorithm
- This lecture:
- Prim's Algorithm (cont.)
- Clustering

Prim's Algorithm

- Start with an empty set of edges T.
- Start with a node s.
- Add an edge e=(s,w) to T.
- Which one?
- The one with the minimum cost Ce .
- We continue like this.
- We only consider edges to neighbours that are not in the spanning tree.

Example

Optimality and running time

- Optimality argued in the last lecture.
- Running time?

Prim's algorithm running time

Prim's algorithm running time

- We add nodes to the expanding spanning tree S.

Prim's algorithm running time

- We add nodes to the expanding spanning tree S.
- We need to figure out which node to add next.

Prim's algorithm running time

- We add nodes to the expanding spanning tree S.
- We need to figure out which node to add next.
- We need to know the attachment cost of each node:

$$
a(v)=\min _{e=(u, v): u \text { is in } S} C_{e}
$$

Prim's algorithm running time

- We add nodes to the expanding spanning tree S.
- We need to figure out which node to add next.
- We need to know the attachment cost of each node:
$a(v)=\min _{e=(u, v): u \text { is in } s C_{e}}$
- Naive solution: For every step run over all candidates.

Prim's algorithm running time

- We add nodes to the expanding spanning tree S.
- We need to figure out which node to add next.
- We need to know the attachment cost of each node:
$a(v)=\min _{e=(u, v): u \text { is in } S C_{e}}$
- Naive solution: For every step run over all candidates.
- $O\left(n^{2}\right)$.

Data Structures

Data Structures

- Array

Data Structures

- Array
- Stack

Data Structures

- Array
- Stack
- Priority Queue

Priority Queue

- Maintains
- A set of elements S.
- A key $\boldsymbol{k e y}(\mathrm{v})$ for each element v in S.
- The key denotes the priority of v .
- Operations:
- $\operatorname{Add}(\mathrm{v})$ - with priority key.
- Delete(v)
- Extract_Min(v)
- Change_key(v)

Priority Queue

Priority Queue

- The Priority Queue is an abstract data type.

Priority Queue

- The Priority Queue is an abstract data type.
- In reality, we have to implement it with known data structures.

Priority Queue

- The Priority Queue is an abstract data type.
- In reality, we have to implement it with known data structures.
- Many implementations exists, the usual one is with heaps.

Priority Queue

- The Priority Queue is an abstract data type.
- In reality, we have to implement it with known data structures.
- Many implementations exists, the usual one is with heaps.
- Will not be covered in the lectures.

Priority Queue

- The Priority Queue is an abstract data type.
- In reality, we have to implement it with known data structures.
- Many implementations exists, the usual one is with heaps.
- Will not be covered in the lectures.
- Curious readers: Kleinberg and Tardos, Chapter 2.5.

Priority Queue

- The Priority Queue is an abstract data type.
- In reality, we have to implement it with known data structures.
- Many implementations exists, the usual one is with heaps.
- Will not be covered in the lectures.
- Curious readers: Kleinberg and Tardos, Chapter 2.5.
- For now:

Priority Queue

- The Priority Queue is an abstract data type.
- In reality, we have to implement it with known data structures.
- Many implementations exists, the usual one is with heaps.
- Will not be covered in the lectures.
- Curious readers: Kleinberg and Tardos, Chapter 2.5.
- For now:
- PQ operations can be implemented in $\mathrm{O}(\log \mathrm{n})$ time.

Prim's algorithm running time

- We add nodes to the expanding spanning tree S .
- We need to figure out which node to add next.
- We need to know the attachment cost of each node:

$$
a(v)=\min _{e=(u, v): u \text { is in } s C_{e}}
$$

Prim's algorithm running time

- We add nodes to the expanding spanning tree S .
- We need to figure out which node to add next.
- We need to know the attachment cost of each node:

$$
a(v)=\min _{e=(u, v): u \text { is in } s C_{e}}
$$

- PQ solution: Insert the nodes in a PQ, with minus the attachment cost as the keys.

Prim's algorithm running time

- We add nodes to the expanding spanning tree S .
- We need to figure out which node to add next.
- We need to know the attachment cost of each node:

$$
a(v)=\min _{e=(u, v): u \text { is in } s C_{e}}
$$

- PQ solution: Insert the nodes in a PQ, with minus the attachment cost as the keys.
- Run Extract_Min(v) to find the next node.

Prim's algorithm running time

- We add nodes to the expanding spanning tree S .
- We need to figure out which node to add next.
- We need to know the attachment cost of each node:

$$
a(v)=\min _{e=(u, v): u \text { is in } s C_{e}}
$$

- PQ solution: Insert the nodes in a PQ, with minus the attachment cost as the keys.
- Run Extract_Min(v) to find the next node.
- Run Change_key(v) to update the attachment costs.

Prim's algorithm running time

- PQ solution: Insert the nodes in a PQ, with minus the attachment cost as the keys.
- Run Extract_Min(v) to find the next node.
- Run n-1 times.
- Run Change_key(v) to update the attachment costs.
- Run at most once per edge.

Prim's algorithm running time

- PQ solution: Insert the nodes in a PQ, with minus the attachment cost as the keys.
- Run Extract_Min(v) to find the next node.
- Run n-1 times.
- Run Change_key(v) to update the attachment costs.
- Run at most once per edge.
- Running time $\mathrm{O}(\mathrm{m} \log \mathrm{n})$.

Clustering (abstractly)

Clustering (abstractly)

- We have a collection of objects.

Clustering (abstractly)

- We have a collection of objects.
- They have different degrees of similarity.

Clustering (abstractly)

- We have a collection of objects.
- They have different degrees of similarity.
- We want to organise them into coherent groups.

Clustering (abstractly)

- We have a collection of objects.
- They have different degrees of similarity.
- We want to organise them into coherent groups.
- Objects in a group exhibit high similarity.

Clustering (abstractly)

- We have a collection of objects.
- They have different degrees of similarity.
- We want to organise them into coherent groups.
- Objects in a group exhibit high similarity.
- Applications: Many, e.g., machine learning.

Clustering (abstractly)

Clustering (abstractly)

- There is a notion of distance between objects.

Clustering (abstractly)

- There is a notion of distance between objects.
- Could be physical distance (e.g., distance between houses).

Clustering (abstractly)

- There is a notion of distance between objects.
- Could be physical distance (e.g., distance between houses).
- Could be more abstract.

Clustering (abstractly)

- There is a notion of distance between objects.
- Could be physical distance (e.g., distance between houses).
- Could be more abstract.
- E.g., age, height, nationality.

Clustering (abstractly)

- There is a notion of distance between objects.
- Could be physical distance (e.g., distance between houses).
- Could be more abstract.
- E.g., age, height, nationality.
- E.g., running time, algorithmic principle.

Clustering (concretely)

Clustering (concretely)

Properties of distance

- $\mathrm{d}\left(\mathrm{p}_{i}, \mathrm{p}_{\mathrm{i}}\right)=0$ for any $i=1, \ldots, \mathrm{n}$
- $\mathrm{d}\left(\mathrm{p}_{i, p_{j}}\right)>0$ for any $i \neq j$
- $d\left(p_{i}, p_{j}\right)=d\left(p_{j}, p_{i}\right)$ for any i, j

Clustering (concretely)

Clustering (concretely)

Clustering (concretely)

Clustering (concretely)

Clustering

Clustering

- Definition: Given a set U of n elements, a k-clustering of U is a partition of U into non-empty sets C_{1}, \ldots, C_{k}.

Clustering

- Definition: Given a set U of n elements, a k-clustering of U is a partition of U into non-empty sets C_{1}, \ldots, C_{k}.
- Definition: The spacing of a k-clustering is the minimum distance between any pair of points in different clusters.

Clustering

- Definition: Given a set U of n elements, a k-clustering of U is a partition of U into non-empty sets C_{1}, \ldots, C_{k}.
- Definition: The spacing of a k-clustering is the minimum distance between any pair of points in different clusters.
- Goal: Among all possible k-clusterings, find one with the maximum possible spacing.

Clustering (concretely)

Clustering (concretely)

P8

Clustering (concretely)

A greedy algorithm

A greedy algorithm

- Pick two objects p_{i} and p_{j} with the smallest distance $\mathrm{d}\left(\mathrm{p}_{\mathrm{i},} \mathrm{p}_{\mathrm{j}}\right)$.

A greedy algorithm

- Pick two objects p_{i} and p_{j} with the smallest distance $\mathrm{d}\left(\mathrm{p}_{\mathrm{i},} \mathrm{p}_{\mathrm{j}}\right)$.
- Connect them with an edge $e=\left(p_{i}, p_{j}\right)$.

A greedy algorithm

- Pick two objects p_{i} and p_{j} with the smallest distance $\mathrm{d}\left(\mathrm{p}_{\mathrm{i},} \mathrm{p}_{\mathrm{j}}\right)$.
- Connect them with an edge $e=\left(p_{i}, p_{j}\right)$.
- Continue like this until we obtain k clusters.

A greedy algorithm

- Pick two objects p_{i} and p_{j} with the smallest distance $\mathrm{d}\left(\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}\right)$.
- Connect them with an edge $e=\left(p_{i}, p_{j}\right)$.
- Continue like this until we obtain k clusters.
- If the edge e under consideration connects two objects p_{i} and p_{j} already in the same component, skip it.

Clustering (concretely)

8 components

Clustering (concretely)

8 components

Clustering (concretely)

8 components
7 components

Clustering (concretely)

[^0]8 components
7 components

Clustering (concretely)

8 components
7 components
6 components

Clustering (concretely)

8 components
7 components
6 components

Clustering (concretely)

8 components

P8

7 components
6 components
5 components

Clustering (concretely)

Sound familiar?

Sound familiar?

- Pick two objects p_{i} and p_{j} with the smallest distance $d\left(p_{i}, p_{j}\right)$.

Sound familiar?

- Pick two objects p_{i} and p_{j} with the smallest distance $d\left(p_{i}, p_{j}\right)$.
- Pick an edge $\left(p_{i}, p_{j}\right)$ with the smallest cost $d\left(p_{i}, p_{j}\right)$.

Sound familiar?

- Pick two objects p_{i} and p_{j} with the smallest distance $\mathrm{d}\left(p_{i}, p_{j}\right)$.
- Pick an edge $\left(p_{i}, p_{j}\right)$ with the smallest cost $d\left(p_{i}, p_{j}\right)$.
- Connect them with an edge $e=\left(p_{i}, p_{j}\right)$.

Sound familiar?

- Pick two objects p_{i} and p_{j} with the smallest distance $d\left(p_{i}, p_{j}\right)$.
- Connect them with an edge $\mathrm{e}=\left(\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}\right)$.
- Pick an edge $\left(p_{i}, p_{j}\right)$ with the smallest cost $d\left(p_{i}, p_{j}\right)$.
- Include the edge in the output.

Sound familiar?

- Pick two objects p_{i} and p_{j} with the smallest distance $d\left(p_{i}, p_{j}\right)$.
- Connect them with an edge $e=\left(p_{i}, p_{j}\right)$.
- Continue like this until we obtain k clusters.
- Pick an edge $\left(p_{i}, p_{j}\right)$ with the smallest cost $d\left(p_{i}, p_{j}\right)$.
- Include the edge in the output.

Sound familiar?

- Pick two objects p_{i} and p_{j} with the smallest distance $d\left(p_{i}, p_{j}\right)$.
- Connect them with an edge $e=\left(p_{i}, p_{j}\right)$.
- Continue like this until we obtain k clusters.
- Pick an edge $\left(p_{i}, p_{j}\right)$ with the smallest cost $d\left(p_{i}, p_{j}\right)$.
- Include the edge in the output.
- Continue like this until obtain k connected components.

Sound familiar?

- Pick two objects p_{i} and p_{j} with the smallest distance $d\left(p_{i}, p_{j}\right)$.
- Connect them with an edge $e=\left(p_{i}, p_{j}\right)$.
- Continue like this until we obtain k clusters.
- If the edge e under consideration connects two objects p_{i} and p_{j} already in the same component, skip it.
- Pick an edge $\left(p_{i}, p_{j}\right)$ with the smallest cost $d\left(p_{i}, p_{j}\right)$.
- Include the edge in the output.
- Continue like this until obtain k connected components.

Sound familiar?

- Pick two objects p_{i} and p_{j} with the smallest distance $d\left(p_{i}, p_{j}\right)$.
- Connect them with an edge $e=\left(p_{i}, p_{j}\right)$.
- Continue like this until we obtain k clusters.
- If the edge e under consideration connects two objects p_{i} and p_{j} already in the same component, skip it.
- Pick an edge $\left(p_{i}, p_{j}\right)$ with the smallest cost $d\left(p_{i}, p_{j}\right)$.
- Include the edge in the output.
- Continue like this until obtain k connected components.
- If the edge e under consideration introduces a cycle, then skip it.

Kruskal's algorithm

- Pick two objects p_{i} and p_{j} with the smallest distance $d\left(p_{i}, p_{j}\right)$.
- Connect them with an edge $e=\left(p_{i}, p_{j}\right)$.
- Continue like this until we obtain k clusters.
- If the edge e under consideration connects two objects p_{i} and p_{j} already in the same component, skip it.
- Pick an edge (p_{i}, p_{j}) with the smallest cost $d\left(p_{i}, p_{j}\right)$.
- Include the edge in the output.
- Continue like this until we connect all nodes.
- If the edge e under consideration introduces a cycle, then skip it.

Kruskal's algorithm

- Pick an edge $\left(p_{i}, p_{j}\right)$ with the smallest cost $d\left(p_{i}, p_{j}\right)$.
- Include the edge in the output.

Kruskal's algorithm

- Pick an edge $\left(p_{i}, p_{j}\right)$ with the smallest cost $d\left(p_{i}, p_{j}\right)$.
- Include the edge in the output.
- Stop before including the last k-1 edges.

Kruskal's algorithm

- Pick an edge $\left(p_{i}, p_{j}\right)$ with the smallest cost $d\left(p_{i,}, p_{j}\right)$.
- Include the edge in the output.
- Stop before including the last k-1 edges.
- i.e., in the end, remove the $\mathrm{k}-1$ most expensive edges.

Kruskal's algorithm

- Pick an edge $\left(p_{i}, p_{j}\right)$ with the smallest cost $d\left(p_{i,}, p_{j}\right)$.
- Include the edge in the output.
- Stop before including the last k-1 edges.
- i.e., in the end, remove the $\mathrm{k}-1$ most expensive edges.
- If the edge e under consideration introduces a cycle, then skip it.

Correctness

- Lemma: Let $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{k}}$ be the k connected components formed by deleting the $\mathrm{k}-1$ most expensive edges from a minimum spanning tree T.

These are a k-clustering of maximum spacing.

Proof of the Lemma

Proof of the Lemma

- Let $C=\left\{\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{k}\right\}$.

Proof of the Lemma

- Let $\mathrm{C}=\left\{\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{k}\right\}$.
- C is obviously a clustering (feasiblity).

Proof of the Lemma

- Let $\mathrm{C}=\left\{\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{k}\right\}$.
- C is obviously a clustering (feasiblity).
- Order the $\mathrm{k}-1$ most expensive edges of the minimum spanning tree in non-increasing order:

Proof of the Lemma

- Let $\mathrm{C}=\left\{\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{k}\right\}$.
- C is obviously a clustering (feasiblity).
- Order the $\mathrm{k}-1$ most expensive edges of the minimum spanning tree in non-increasing order:
- $e_{k-1}, e_{k-2}, \ldots, e_{1}$

Proof of the Lemma

- Let $\mathrm{C}=\left\{\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{k}\right\}$.
- C is obviously a clustering (feasiblity).
- Order the k-1 most expensive edges of the minimum spanning tree in non-increasing order:
- $e_{k-1}, e_{k-2}, \ldots, e_{1}$
- What is the spacing of C ?

Proof of the Lemma

- Let $\mathrm{C}=\left\{\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{k}\right\}$.
- C is obviously a clustering (feasiblity).
- Order the k-1 most expensive edges of the minimum spanning tree in non-increasing order:
- $e_{k-1}, e_{k-2}, \ldots, e_{1}$
- What is the spacing of C ?
- It is the cost of e_{1}.

Proof of the Lemma

Proof of the Lemma

- Let $C^{\prime}=\left\{C^{\prime}, C^{\prime}{ }_{2}, \ldots, C^{\prime}\right\}$ be any other k-clustering.

Proof of the Lemma

- Let $C^{\prime}=\left\{C^{\prime}{ }_{1}, C^{\prime}{ }_{2}, \ldots, C^{\prime} k\right.$ be any other k-clustering.
- By other, there exists a cluster C_{r} of C which is not contained in any cluster C^{\prime} s of C^{\prime}.

Proof of the Lemma

- Let $C^{\prime}=\left\{C^{\prime}{ }_{1}, C^{\prime}{ }_{2}, \ldots, C^{\prime} k\right.$ be any other k-clustering.
- By other, there exists a cluster C_{r} of C which is not contained in any cluster C^{\prime} s of C^{\prime}.
- This means that there exist points p_{i}, p_{j} in C_{r} that belong to different clusters in C'.

Proof of the Lemma

- Let $C^{\prime}=\left\{C^{\prime}{ }_{1}, C^{\prime}{ }_{2}, \ldots, C^{\prime} k\right.$ be any other k-clustering.
- By other, there exists a cluster C_{r} of C which is not contained in any cluster C^{\prime} s of C^{\prime}.
- This means that there exist points p_{i}, p_{j} in C_{r} that belong to different clusters in C'.
- Let $\mathrm{C}^{\prime} \mathrm{i}$ and $\mathrm{C}^{\prime} \mathrm{j}$ denote these clusters respectively.

Proof of the Lemma

C_{r}

Proof of the Lemma

C_{r}

C_{i}^{\prime}

Proof of the Lemma

C_{r}

Proof of the Lemma

Proof of the Lemma

- This means that there exist points p_{i}, p_{j} in C_{r} that belong to different clusters in C'.

Proof of the Lemma

- This means that there exist points p_{i}, p_{j} in C_{r} that belong to different clusters in C'.
- This implies that Kruskal's algorithm added all the edges of path from p_{i} to p_{j} and none of these edges was deleted.

Proof of the Lemma

- This means that there exist points p_{i}, p_{j} in C_{r} that belong to different clusters in C'.
- This implies that Kruskal's algorithm added all the edges of path from p_{i} to p_{j} and none of these edges was deleted.
- What is the maximum cost of any of these edges then?

Proof of the Lemma

- This means that there exist points p_{i}, p_{j} in C_{r} that belong to different clusters in C'.
- This implies that Kruskal's algorithm added all the edges of path from p_{i} to p_{j} and none of these edges was deleted.
- What is the maximum cost of any of these edges then?
- The cost of e_{1}.

Proof of the Lemma

Proof of the Lemma

- This means that there exist points p_{i}, p_{j} in C_{r} that belong to different clusters in C'.

Proof of the Lemma

- This means that there exist points p_{i}, p_{j} in C_{r} that belong to different clusters in C'.
- Let C_{i}^{\prime} and C_{j}^{\prime} denote these clusters respectively.

Proof of the Lemma

- This means that there exist points p_{i}, p_{j} in C_{r} that belong to different clusters in C'.
- Let $\mathrm{C}^{\prime} \mathrm{i}$ and $\mathrm{C}^{\prime} \mathrm{j}$ denote these clusters respectively.
- On the path from p_{i} to p_{j} let p be the last node of C_{i}^{\prime} and p^{\prime} be the first node of $C^{\prime} j$.

Proof of the Lemma

- This means that there exist points p_{i}, p_{j} in C_{r} that belong to different clusters in C'.
- Let $\mathrm{C}^{\prime} \mathrm{i}$ and $\mathrm{C}^{\prime} \mathrm{j}$ denote these clusters respectively.
- On the path from p_{i} to p_{j} let p be the last node of C_{i}^{\prime} and p^{\prime} be the first node of $C^{\prime} j$.
- What is the cost of $\left(p, p^{\prime}\right)$?

Proof of the Lemma

- This means that there exist points p_{i}, p_{j} in C_{r} that belong to different clusters in C'.
- Let $\mathrm{C}^{\prime} \mathrm{i}$ and $\mathrm{C}^{\prime} \mathrm{j}$ denote these clusters respectively.
- On the path from p_{i} to p_{j} let p be the last node of C_{i}^{\prime} and p^{\prime} be the first node of $C^{\prime} j$.
- What is the cost of $\left(p, p^{\prime}\right)$?
- At most the cost of e_{1}.

Proof of the Lemma

Proof of the Lemma

- What is the cost of $\left(p, p^{\prime}\right)$?

Proof of the Lemma

- What is the cost of $\left(p, p^{\prime}\right)$?
- At most the cost of e_{1}.

Proof of the Lemma

- What is the cost of $\left(p, p^{\prime}\right)$?
- At most the cost of e_{1}.
- What is the edge (p, p^{\prime}) with respect to C^{\prime} ?

Proof of the Lemma

- What is the cost of $\left(p, p^{\prime}\right)$?
- At most the cost of e_{1}.
- What is the edge (p, p^{\prime}) with respect to C^{\prime} ?
- It's an edge "crossing" clusters.

Proof of the Lemma

- What is the cost of $\left(p, p^{\prime}\right)$?
- At most the cost of e_{1}.
- What is the edge (p, p^{\prime}) with respect to C^{\prime} ?
- It's an edge "crossing" clusters.
- The distance is at least $\mathbf{d}\left(p, p^{\prime}\right)$.

Proof of the Lemma

- What is the cost of $\left(p, p^{\prime}\right)$?
- At most the cost of e_{1}.
- What is the edge ($\mathrm{p}, \mathrm{p}^{\prime}$) with respect to C^{\prime} ?
- It's an edge "crossing" clusters.
- The distance is at least $\mathbf{d}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)$.
- The spacing of C^{\prime} is not smaller.

Proof of the Lemma

C_{r}

[^0]: P5

