
Advanced Algorithmic Techniques
(COMP523)

Greedy Algorithms 3

Recap and plan
• Last lecture:

• Minimum Spanning Tree

• Kruskal’s Algorithm

• Prim’s Algorithm

• This lecture:

• Prim’s Algorithm (cont.)

• Clustering

Prim’s Algorithm
• Start with an empty set of edges T.

• Start with a node s.

• Add an edge e=(s,w) to T.

• Which one?

• The one with the minimum cost ce.

• We continue like this.

• We only consider edges to neighbours that are not in the
spanning tree.

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

1

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

1

7

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

1

7 6

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

1

7 6 5

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

1

7 6 5

2

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

1

7 6 5

2

8

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

1

7 6 5

2

8

3

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

1

7 6 5

2

8

3

4

Optimality and running time

• Optimality argued in the last lecture.

• Running time?

Prim’s algorithm running time

Prim’s algorithm running time

• We add nodes to the expanding spanning tree S.

Prim’s algorithm running time

• We add nodes to the expanding spanning tree S.

• We need to figure out which node to add next.

Prim’s algorithm running time

• We add nodes to the expanding spanning tree S.

• We need to figure out which node to add next.

• We need to know the attachment cost of each node: 
 
a(v) = mine=(u,v):u is in S ce

Prim’s algorithm running time

• We add nodes to the expanding spanning tree S.

• We need to figure out which node to add next.

• We need to know the attachment cost of each node: 
 
a(v) = mine=(u,v):u is in S ce

• Naive solution: For every step run over all candidates.

Prim’s algorithm running time

• We add nodes to the expanding spanning tree S.

• We need to figure out which node to add next.

• We need to know the attachment cost of each node: 
 
a(v) = mine=(u,v):u is in S ce

• Naive solution: For every step run over all candidates.

• O(n2).

Data Structures

Data Structures

• Array

Data Structures

• Array

• Stack

Data Structures

• Array

• Stack

• Priority Queue

Priority Queue
• Maintains

• A set of elements S.

• A key key(v) for each element v in S.

• The key denotes the priority of v.

• Operations:

• Add(v) - with priority key.

• Delete(v)

• Extract_Min(v)

• Change_key(v)

Priority Queue

Priority Queue
• The Priority Queue is an abstract data type.

Priority Queue
• The Priority Queue is an abstract data type.

• In reality, we have to implement it with known data structures.

Priority Queue
• The Priority Queue is an abstract data type.

• In reality, we have to implement it with known data structures.

• Many implementations exists, the usual one is with heaps.

Priority Queue
• The Priority Queue is an abstract data type.

• In reality, we have to implement it with known data structures.

• Many implementations exists, the usual one is with heaps.

• Will not be covered in the lectures.

Priority Queue
• The Priority Queue is an abstract data type.

• In reality, we have to implement it with known data structures.

• Many implementations exists, the usual one is with heaps.

• Will not be covered in the lectures.

• Curious readers: Kleinberg and Tardos, Chapter 2.5.

Priority Queue
• The Priority Queue is an abstract data type.

• In reality, we have to implement it with known data structures.

• Many implementations exists, the usual one is with heaps.

• Will not be covered in the lectures.

• Curious readers: Kleinberg and Tardos, Chapter 2.5.

• For now:

Priority Queue
• The Priority Queue is an abstract data type.

• In reality, we have to implement it with known data structures.

• Many implementations exists, the usual one is with heaps.

• Will not be covered in the lectures.

• Curious readers: Kleinberg and Tardos, Chapter 2.5.

• For now:

• PQ operations can be implemented in O(log n) time.

Prim’s algorithm running time
• We add nodes to the expanding spanning tree S.

• We need to figure out which node to add next.

• We need to know the attachment cost of each node: 
 
a(v) = mine=(u,v):u is in S ce

Prim’s algorithm running time
• We add nodes to the expanding spanning tree S.

• We need to figure out which node to add next.

• We need to know the attachment cost of each node: 
 
a(v) = mine=(u,v):u is in S ce

• PQ solution: Insert the nodes in a PQ, with minus the attachment
cost as the keys.

Prim’s algorithm running time
• We add nodes to the expanding spanning tree S.

• We need to figure out which node to add next.

• We need to know the attachment cost of each node: 
 
a(v) = mine=(u,v):u is in S ce

• PQ solution: Insert the nodes in a PQ, with minus the attachment
cost as the keys.

• Run Extract_Min(v) to find the next node.

Prim’s algorithm running time
• We add nodes to the expanding spanning tree S.

• We need to figure out which node to add next.

• We need to know the attachment cost of each node: 
 
a(v) = mine=(u,v):u is in S ce

• PQ solution: Insert the nodes in a PQ, with minus the attachment
cost as the keys.

• Run Extract_Min(v) to find the next node.

• Run Change_key(v) to update the attachment costs.

Prim’s algorithm running time

• PQ solution: Insert the nodes in a PQ, with minus the
attachment cost as the keys.

• Run Extract_Min(v) to find the next node.

• Run n-1 times.

• Run Change_key(v) to update the attachment costs.

• Run at most once per edge.

Prim’s algorithm running time

• PQ solution: Insert the nodes in a PQ, with minus the
attachment cost as the keys.

• Run Extract_Min(v) to find the next node.

• Run n-1 times.

• Run Change_key(v) to update the attachment costs.

• Run at most once per edge.

• Running time O(m log n).

Clustering (abstractly)

Clustering (abstractly)

• We have a collection of objects.

Clustering (abstractly)

• We have a collection of objects.

• They have different degrees of similarity.

Clustering (abstractly)

• We have a collection of objects.

• They have different degrees of similarity.

• We want to organise them into coherent groups.

Clustering (abstractly)

• We have a collection of objects.

• They have different degrees of similarity.

• We want to organise them into coherent groups.

• Objects in a group exhibit high similarity.

Clustering (abstractly)

• We have a collection of objects.

• They have different degrees of similarity.

• We want to organise them into coherent groups.

• Objects in a group exhibit high similarity.

• Applications: Many, e.g., machine learning.

Clustering (abstractly)

Clustering (abstractly)

• There is a notion of distance between objects.

Clustering (abstractly)

• There is a notion of distance between objects.

• Could be physical distance (e.g., distance between
houses).

Clustering (abstractly)

• There is a notion of distance between objects.

• Could be physical distance (e.g., distance between
houses).

• Could be more abstract.

Clustering (abstractly)

• There is a notion of distance between objects.

• Could be physical distance (e.g., distance between
houses).

• Could be more abstract.

• E.g., age, height, nationality.

Clustering (abstractly)

• There is a notion of distance between objects.

• Could be physical distance (e.g., distance between
houses).

• Could be more abstract.

• E.g., age, height, nationality.

• E.g., running time, algorithmic principle.

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

d(p2,p6)

Properties of distance

• d(pi,pi)=0 for any i = 1, … , n

• d(pi,pj)>0 for any i ≠ j

• d(pi,pj)=d(pj,pi) for any i, j

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

d(p2,p6)

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

d(p2,p6)

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

d(p2,p6)

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

d(p2,p6)

Clustering

Clustering

• Definition: Given a set U of n elements, a k-clustering of U
is a partition of U into non-empty sets C1, …, Ck.

Clustering

• Definition: Given a set U of n elements, a k-clustering of U
is a partition of U into non-empty sets C1, …, Ck.

• Definition: The spacing of a k-clustering is the minimum
distance between any pair of points in different clusters.

Clustering

• Definition: Given a set U of n elements, a k-clustering of U
is a partition of U into non-empty sets C1, …, Ck.

• Definition: The spacing of a k-clustering is the minimum
distance between any pair of points in different clusters.

• Goal: Among all possible k-clusterings, find one with the
maximum possible spacing.

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

A greedy algorithm

A greedy algorithm

• Pick two objects pi and pj with the smallest distance
d(pi,pj).

A greedy algorithm

• Pick two objects pi and pj with the smallest distance
d(pi,pj).

• Connect them with an edge e=(pi,pj).

A greedy algorithm

• Pick two objects pi and pj with the smallest distance
d(pi,pj).

• Connect them with an edge e=(pi,pj).

• Continue like this until we obtain k clusters.

A greedy algorithm

• Pick two objects pi and pj with the smallest distance
d(pi,pj).

• Connect them with an edge e=(pi,pj).

• Continue like this until we obtain k clusters.

• If the edge e under consideration connects two objects pi
and pj already in the same component, skip it.

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

8 components

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

8 components

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

8 components
7 components

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

8 components
7 components

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

8 components
7 components
6 components

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

8 components
7 components
6 components

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

8 components
7 components
6 components
5 components

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

8 components
7 components
6 components
5 components

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

8 components
7 components
6 components
5 components
4 components

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

8 components
7 components
6 components
5 components
4 components

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

8 components
7 components
6 components
5 components
4 components

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

8 components
7 components
6 components
5 components
4 components

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

8 components
7 components
6 components
5 components
4 components
3 components

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

8 components
7 components
6 components
5 components
4 components
3 components

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

8 components
7 components
6 components
5 components
4 components
3 components

Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8

8 components
7 components
6 components
5 components
4 components
3 components

Sound familiar?

Sound familiar?
• Pick two objects pi and pj with

the smallest distance d(pi,pj).

Sound familiar?
• Pick two objects pi and pj with

the smallest distance d(pi,pj).
• Pick an edge (pi, pj) with

the smallest cost d(pi,pj).

Sound familiar?
• Pick two objects pi and pj with

the smallest distance d(pi,pj).

• Connect them with an edge
e=(pi,pj).

• Pick an edge (pi, pj) with
the smallest cost d(pi,pj).

Sound familiar?
• Pick two objects pi and pj with

the smallest distance d(pi,pj).

• Connect them with an edge
e=(pi,pj).

• Pick an edge (pi, pj) with
the smallest cost d(pi,pj).

• Include the edge in the
output.

Sound familiar?
• Pick two objects pi and pj with

the smallest distance d(pi,pj).

• Connect them with an edge
e=(pi,pj).

• Continue like this until we
obtain k clusters.

• Pick an edge (pi, pj) with
the smallest cost d(pi,pj).

• Include the edge in the
output.

Sound familiar?
• Pick two objects pi and pj with

the smallest distance d(pi,pj).

• Connect them with an edge
e=(pi,pj).

• Continue like this until we
obtain k clusters.

• Pick an edge (pi, pj) with
the smallest cost d(pi,pj).

• Include the edge in the
output.

• Continue like this until
obtain k connected
components.

Sound familiar?
• Pick two objects pi and pj with

the smallest distance d(pi,pj).

• Connect them with an edge
e=(pi,pj).

• Continue like this until we
obtain k clusters.

• If the edge e under
consideration connects two
objects pi and pj already in the
same component, skip it.

• Pick an edge (pi, pj) with
the smallest cost d(pi,pj).

• Include the edge in the
output.

• Continue like this until
obtain k connected
components.

Sound familiar?
• Pick two objects pi and pj with

the smallest distance d(pi,pj).

• Connect them with an edge
e=(pi,pj).

• Continue like this until we
obtain k clusters.

• If the edge e under
consideration connects two
objects pi and pj already in the
same component, skip it.

• Pick an edge (pi, pj) with
the smallest cost d(pi,pj).

• Include the edge in the
output.

• Continue like this until
obtain k connected
components.

• If the edge e under
consideration introduces
a cycle, then skip it.

Kruskal’s algorithm
• Pick two objects pi and pj with

the smallest distance d(pi,pj).

• Connect them with an edge
e=(pi,pj).

• Continue like this until we
obtain k clusters.

• If the edge e under
consideration connects two
objects pi and pj already in the
same component, skip it.

• Pick an edge (pi, pj) with
the smallest cost d(pi,pj).

• Include the edge in the
output.

• Continue like this until
we connect all nodes.

• If the edge e under
consideration introduces
a cycle, then skip it.

Kruskal’s algorithm

• Pick an edge (pi, pj) with the smallest cost d(pi,pj).

• Include the edge in the output.

Kruskal’s algorithm

• Pick an edge (pi, pj) with the smallest cost d(pi,pj).

• Include the edge in the output.

• Stop before including the last k-1 edges.

Kruskal’s algorithm

• Pick an edge (pi, pj) with the smallest cost d(pi,pj).

• Include the edge in the output.

• Stop before including the last k-1 edges.

• i.e., in the end, remove the k-1 most expensive edges.

Kruskal’s algorithm

• Pick an edge (pi, pj) with the smallest cost d(pi,pj).

• Include the edge in the output.

• Stop before including the last k-1 edges.

• i.e., in the end, remove the k-1 most expensive edges.

• If the edge e under consideration introduces a cycle, then
skip it.

Correctness

• Lemma: Let C1, C2, … , Ck be the k connected
components formed by deleting the k-1 most expensive
edges from a minimum spanning tree T.  
 
These are a k-clustering of maximum spacing.

Proof of the Lemma

Proof of the Lemma
• Let C = {C1, C2, … , Ck}.

Proof of the Lemma
• Let C = {C1, C2, … , Ck}.

• C is obviously a clustering (feasiblity).

Proof of the Lemma
• Let C = {C1, C2, … , Ck}.

• C is obviously a clustering (feasiblity).

• Order the k-1 most expensive edges of the minimum
spanning tree in non-increasing order:

Proof of the Lemma
• Let C = {C1, C2, … , Ck}.

• C is obviously a clustering (feasiblity).

• Order the k-1 most expensive edges of the minimum
spanning tree in non-increasing order:

• ek-1, ek-2 , … , e1

Proof of the Lemma
• Let C = {C1, C2, … , Ck}.

• C is obviously a clustering (feasiblity).

• Order the k-1 most expensive edges of the minimum
spanning tree in non-increasing order:

• ek-1, ek-2 , … , e1

• What is the spacing of C?

Proof of the Lemma
• Let C = {C1, C2, … , Ck}.

• C is obviously a clustering (feasiblity).

• Order the k-1 most expensive edges of the minimum
spanning tree in non-increasing order:

• ek-1, ek-2 , … , e1

• What is the spacing of C?

• It is the cost of e1.

Proof of the Lemma

Proof of the Lemma

• Let C’ = {C’1, C’2, … , C’k} be any other k-clustering.

Proof of the Lemma

• Let C’ = {C’1, C’2, … , C’k} be any other k-clustering.

• By other, there exists a cluster Cr of C which is not
contained in any cluster C's of C’.

Proof of the Lemma

• Let C’ = {C’1, C’2, … , C’k} be any other k-clustering.

• By other, there exists a cluster Cr of C which is not
contained in any cluster C's of C’.

• This means that there exist points pi, pj in Cr that belong
to different clusters in C’.

Proof of the Lemma

• Let C’ = {C’1, C’2, … , C’k} be any other k-clustering.

• By other, there exists a cluster Cr of C which is not
contained in any cluster C's of C’.

• This means that there exist points pi, pj in Cr that belong
to different clusters in C’.

• Let C’i and C’j denote these clusters respectively.

Proof of the Lemma

pi
p

p’
pj

Cr

Proof of the Lemma

pi
p

p’
pj

Cr

C’i

Proof of the Lemma

pi
p

p’
pj

Cr

C’i C’j

Proof of the Lemma

Proof of the Lemma

• This means that there exist points pi, pj in Cr that belong
to different clusters in C’.

Proof of the Lemma

• This means that there exist points pi, pj in Cr that belong
to different clusters in C’.

• This implies that Kruskal’s algorithm added all the edges
of path from pi to pj and none of these edges was
deleted.

Proof of the Lemma

• This means that there exist points pi, pj in Cr that belong
to different clusters in C’.

• This implies that Kruskal’s algorithm added all the edges
of path from pi to pj and none of these edges was
deleted.

• What is the maximum cost of any of these edges then?

Proof of the Lemma

• This means that there exist points pi, pj in Cr that belong
to different clusters in C’.

• This implies that Kruskal’s algorithm added all the edges
of path from pi to pj and none of these edges was
deleted.

• What is the maximum cost of any of these edges then?

• The cost of e1.

Proof of the Lemma

Proof of the Lemma
• This means that there exist points pi, pj in Cr that belong

to different clusters in C’.

Proof of the Lemma
• This means that there exist points pi, pj in Cr that belong

to different clusters in C’.

• Let C’i and C’j denote these clusters respectively.

Proof of the Lemma
• This means that there exist points pi, pj in Cr that belong

to different clusters in C’.

• Let C’i and C’j denote these clusters respectively.

• On the path from pi to pj let p be the last node of C’i and
p’ be the first node of C’j.

Proof of the Lemma
• This means that there exist points pi, pj in Cr that belong

to different clusters in C’.

• Let C’i and C’j denote these clusters respectively.

• On the path from pi to pj let p be the last node of C’i and
p’ be the first node of C’j.

• What is the cost of (p,p’)?

Proof of the Lemma
• This means that there exist points pi, pj in Cr that belong

to different clusters in C’.

• Let C’i and C’j denote these clusters respectively.

• On the path from pi to pj let p be the last node of C’i and
p’ be the first node of C’j.

• What is the cost of (p,p’)?

• At most the cost of e1.

Proof of the Lemma

Proof of the Lemma
• What is the cost of (p,p’)?

Proof of the Lemma
• What is the cost of (p,p’)?

• At most the cost of e1.

Proof of the Lemma
• What is the cost of (p,p’)?

• At most the cost of e1.

• What is the edge (p,p’) with respect to C’?

Proof of the Lemma
• What is the cost of (p,p’)?

• At most the cost of e1.

• What is the edge (p,p’) with respect to C’?

• It’s an edge “crossing” clusters.

Proof of the Lemma
• What is the cost of (p,p’)?

• At most the cost of e1.

• What is the edge (p,p’) with respect to C’?

• It’s an edge “crossing” clusters.

• The distance is at least d(p,p’).

Proof of the Lemma
• What is the cost of (p,p’)?

• At most the cost of e1.

• What is the edge (p,p’) with respect to C’?

• It’s an edge “crossing” clusters.

• The distance is at least d(p,p’).

• The spacing of C’ is not smaller.

Proof of the Lemma

pi
p

p’
pj

Cr

C’i C’j

