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Recap and plan
• Last lecture: 

• Minimum Spanning Tree


• Kruskal’s Algorithm


• Prim’s Algorithm


• This lecture: 

• Prim’s Algorithm (cont.)


• Clustering



Prim’s Algorithm
• Start with an empty set of edges T.


• Start with a node s.


• Add an edge e=(s,w) to T.


• Which one?


• The one with the minimum cost ce.


• We continue like this.


• We only consider edges to neighbours that are not in the 
spanning tree.
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Optimality and running time

• Optimality argued in the last lecture.


• Running time?
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Prim’s algorithm running time

• We add nodes to the expanding spanning tree S.

• We need to figure out which node to add next.

• We need to know the attachment cost of each node: 
 
a(v) = mine=(u,v):u is in S ce

• Naive solution: For every step run over all candidates.

• O(n2).
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Data Structures

• Array

• Stack

• Priority Queue



Priority Queue
• Maintains


• A set of elements S.


• A key key(v) for each element v in S.


• The key denotes the priority of v.


• Operations:


• Add(v)  - with priority key.


• Delete(v)


• Extract_Min(v)


• Change_key(v)
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Priority Queue
• The Priority Queue is an abstract data type.

• In reality, we have to implement it with known data structures.

• Many implementations exists, the usual one is with heaps.

• Will not be covered in the lectures.

• Curious readers: Kleinberg and Tardos, Chapter 2.5.

• For now:

• PQ operations can be implemented in O(log n) time.
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Prim’s algorithm running time

• PQ solution: Insert the nodes in a PQ, with minus the 
attachment cost as the keys.

• Run Extract_Min(v) to find the next node.

• Run n-1 times.

• Run Change_key(v) to update the attachment costs. 

• Run at most once per edge. 

• Running time O(m log n).
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Clustering (abstractly)

• We have a collection of objects.

• They have different degrees of similarity.

• We want to organise them into coherent groups.

• Objects in a group exhibit high similarity.

• Applications: Many, e.g., machine learning.
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Clustering (abstractly)

• There is a notion of distance between objects.

• Could be physical distance (e.g., distance between 
houses).

• Could be more abstract.

• E.g., age, height, nationality.

• E.g., running time, algorithmic principle. 
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Properties of distance

• d(pi,pi)=0 for any i = 1, … , n


• d(pi,pj)>0 for any i ≠ j 

• d(pi,pj)=d(pj,pi) for any i, j
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Clustering

• Definition: Given a set U of n elements, a k-clustering of U 
is a partition of U into non-empty sets C1, …, Ck.

• Definition: The spacing of a k-clustering is the minimum 
distance between any pair of points in different clusters.

• Goal: Among all possible k-clusterings, find one with the 
maximum possible spacing. 



Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8



Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8



Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8



Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8



Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8



Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8



Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8



Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8



Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8



Clustering (concretely)

p1

p2

p5

p4

p3
p6

p7 p8



A greedy algorithm



A greedy algorithm

• Pick two objects pi and pj with the smallest distance 
d(pi,pj).



A greedy algorithm

• Pick two objects pi and pj with the smallest distance 
d(pi,pj).

• Connect them with an edge e=(pi,pj).



A greedy algorithm

• Pick two objects pi and pj with the smallest distance 
d(pi,pj).

• Connect them with an edge e=(pi,pj).

• Continue like this until we obtain k clusters.



A greedy algorithm

• Pick two objects pi and pj with the smallest distance 
d(pi,pj).

• Connect them with an edge e=(pi,pj).

• Continue like this until we obtain k clusters.

• If the edge e under consideration connects two objects pi 
and pj already in the same component, skip it.
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Sound familiar?
• Pick two objects pi and pj with 

the smallest distance d(pi,pj).

• Connect them with an edge 
e=(pi,pj).

• Continue like this until we 
obtain k clusters.

• If the edge e under 
consideration connects two 
objects pi and pj already in the 
same component, skip it.

• Pick an edge (pi, pj) with 
the smallest cost d(pi,pj).

• Include the edge in the 
output.

• Continue like this until 
obtain k connected 
components.

• If the edge e under 
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Kruskal’s algorithm
• Pick two objects pi and pj with 

the smallest distance d(pi,pj).


• Connect them with an edge 
e=(pi,pj).


• Continue like this until we 
obtain k clusters.


• If the edge e under 
consideration connects two 
objects pi and pj already in the 
same component, skip it.

• Pick an edge (pi, pj) with 
the smallest cost d(pi,pj).


• Include the edge in the 
output.


• Continue like this until 
we connect all nodes.


• If the edge e under 
consideration introduces 
a cycle, then skip it.
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Kruskal’s algorithm

• Pick an edge (pi, pj) with the smallest cost d(pi,pj).

• Include the edge in the output.

• Stop before including the last k-1 edges. 

• i.e., in the end, remove the k-1 most expensive edges.

• If the edge e under consideration introduces a cycle, then 
skip it.



Correctness

• Lemma: Let C1, C2, … , Ck be the k connected 
components formed by deleting the k-1 most expensive 
edges from a minimum spanning tree T.  
 
These are a k-clustering of maximum spacing.
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Proof of the Lemma
• Let C = {C1, C2, … , Ck}. 

• C is obviously a clustering (feasiblity).

• Order the k-1 most expensive edges of the minimum 
spanning tree in non-increasing order:

• ek-1, ek-2 , … , e1 

• What is the spacing of C?

• It is the cost of e1.
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Proof of the Lemma
• What is the cost of (p,p’)?

• At most the cost of e1.

• What is the edge (p,p’) with respect to C’?

• It’s an edge “crossing” clusters.

• The distance is at least d(p,p’).

• The spacing of C’ is not smaller.



Proof of the Lemma

pi
p

p’
pj

Cr

C’i C’j


