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Recap and plan
• Last 3 lectures: 

• Greedy Algorithms


• Interval Scheduling, Minimum Spanning Tree, Max-
Spacing Clustering


• This lecture: 

• Dynamic Programming


• Weighted Interval Scheduling



Dynamic Programming

• An technique for solving optimisation problems.


• Term attributed to Bellman (1950s).


• “Programming” as in “Planning” or “Optimising”.
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Dynamic Programming
• The paradigm of dynamic programming:

• Given a problem P, define a sequence of subproblems, with the 
following properties:

• The subproblems are ordered from the smallest to the largest.

• The largest problem is our original problem P.

• The optimal solution of a subproblem can be constructed from the 
optimal solutions of sub-sub-problems. (Optimal Substructure).

• Solve the subproblems from the smallest to the largest. When you 
solve a subproblem, store the solution (e.g., in an array) and use it to 
solve the larger subproblems.



Recall: Interval Scheduling
• A set of requests {1, 2, … , n}.


• Each request has a starting time s(i) and a finishing 
time f(i).


• Alternative view: Every request is an interval [s(i), f(i)].


• Two requests i and j are compatible if their respective 
intervals do not overlap.


• Goal: Output a schedule which maximises the number of 
compatible intervals.



Weighted Interval Scheduling

• A set of requests {1, 2, … , n}.


• Each request has a starting time s(i), a finishing time f(i), 
and a value v(i).


• Alternative view: Every request is an interval [s(i), f(i)] 
associated with a value v(i).


• Two requests i and j are compatible if their respective 
intervals do not overlap.


• Goal: Output a schedule which maximises the total value of 
compatible intervals.
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Greedy Approaches
• Which one of the following Greedy Algorithms might have 

a chance to work?


• Earliest starting time.


• Smallest interval.


• Minimum number of conflicts.


• Earliest finishing time.


• Largest value.
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Does it work?

value=2 

value=3 

value=2 



A view of the input

• Consider the intervals in sorted order of non-decreasing 
finishing time, i.e., f(1) ≤ f(2) ≤ … ≤ f(n).


• For an interval j = (s(j), f(j)), let pj be the largest index i < j 
such that intervals i and j are disjoint.


• i.e., i is the first interval in the ordering that ends before 
j begins.


• if no such interval exists, define pj = 0.



Example

v(1)=2, p1 = 0 

v(2)=4, p2 = 0 

v(3)=4, p3 = 1
v(4)=7, p4 = 0

v(5)=2 , p5 = 3

v(6)=1, p6 = 3



Step-by-step?

• Let O be the optimal schedule.


• Fact: O either contains interval n or not. 



Building up a solution
Is n in O ?

yes no
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If n is in O
• What does that mean for the other intervals?

• Any interval that overlaps with n cannot be in O.

• Any interval j > pn cannot be in O.

• O contains an optimal solution O’ of the subproblem {1, 2, …, pn } 
(why?)

• Because otherwise we could replace O with O’ U {n}  and obtain 
a better solution. 

• Lets use O(i, …, j) to denote the optimal solution on (sorted) 
intervals i, … , j.



Building up a solution
Is n in O ?

yes no

O = O(1,…,pn) + n
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If n is not in O

• Then O = O(1, …,n-1)

• Same argument: Since n is not chosen, all intervals  
1, …, n-1 are “free” to be chosen. 

• Not picking the optimal schedule for them would violate 
the optimality of O.



Building up a solution
Is n in O ?

yes no

O = O(1,…,pn) + n O = O(1,…,n-1)



Building up a solution

• So, in order to find O, it suffices to look at smaller 
problems and find O(1, … , j) for some j.


• Let Oj be a shorthand for O(1, … , j) and let OPT(j) be its 
total value. 


• Define OPT(0) = 0.


• Then, O = On with value OPT(n).
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In other words, j is in O if and only if 

OPT(pj)+v(j) ≥ OPT(j-1)
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Building up a solution
• What does this look like?


• Assume that there was an algorithm that inputed {1, …, j} 
and outputted OPT(j).


• It’s a recurrence relation!

ComputeOpt(j) 
    If j = 0 then 
         Return 0 
    Else  
          Return max{v(j) + ComputeOpt(pj) , ComputeOpt(j-1)} 
    EndIf
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Correctness
• ComputeOPT(j) correctly computes OPT(j) for each j=1, …n

• Proof by induction:

• Base Case: OPT(0) = 0 by definition.

• Inductive step: Assume that it is true for all i < j. (inductive 
hypothesis). 
 
Return max{v(j) + ComputeOpt(pj) , ComputeOpt(j-1)} 
 

OPT(j) = max{ OPT(pj)+v(j) ,  OPT(j-1) }
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Another example

v(1)=1, p1 = 0 

v(2)=1, p2 = 0 
v(3)=1, p3 = 1

v(4)=1, p4 = 2
v(5)=1 , p5 = 3

v(6)=1, p6 = 4
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Another example

v(1)=1, p1 = 0 

v(2)=1, p2 = 0 
v(3)=1, p3 = 1

v(4)=1, p4 = 2
v(5)=1 , p5 = 3

v(6)=1, p6 = 4

ComputeOpt(6) requires ComputeOpt(5) and ComputeOpt(4)
ComputeOpt(5) requires ComputeOpt(4) and ComputeOpt(3)
ComputeOpt(4) requires ComputeOpt(3) and ComputeOpt(2)
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Running time
• What is the running time of the algorithm?

• A problem of size j requires solving problems of sizes j-1 
and j-2.

• Do you know any numbers for which F(n) = F(n-1) + F(n-2) ?

• Fibonacci numbers.

• The nth Fibonacci number is approximately φn/√5

• The running time of our algorithm is Ω(2n) ! 
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Are we being smart enough?
OPT(6)

OPT(5) OPT(3)

OPT(4) OPT(3)
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OPT(2) OPT(1)

OPT(1)

OPT(2)

OPT(1)
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OPT(2) OPT(1)

OPT(1)

Return max{v(j) + ComputeOpt(pj) , ComputeOpt(j-1)}

p6 = 3

p5 = 3

p4 = 0

p3 = 1
p2 = 0
p1 = 0

Why are we computing 
these every time?



Memoization 

• Compute ComputeOpt(j) once for every j.


• Store it in an accessible place to use again in the future.


• Keep an array M[0, … ,n].


• Initially M[j] = “empty” for all j.


• When ComputeOpt(j) is calculated, M[j] = ComputeOpt(j)



A more clever implementation
M-ComputeOpt(j) 
 
        If j=0 then 
            Return 0 
      
        Else if M[j] is not empty then 
             Return M[j] 
 
        Else 
              M[j] = max{v(j) + M-ComputeOpt(pj) , M-ComputeOpt(j-1)} 
              Return M[j]


        EndIf  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Running time
• In each call of M-ComputeOpt, there is a constant number of 

operations, besides the recursive calls. So the running time 
is bounded by the number of recursive calls.

• The two recursive call only happen when M[j] is empty.

• But when they happens, M[j] is no longer empty.

• So the recursively calls only happen O(n) times.

• The running time of M-ComputeOpt is O(n), assuming we are 
given the intervals as sorted by their finishing times, 
otherwise O(n log n), to sort them first.



So our algorithm …

• … solved the main problem by solving subproblems of 
smaller sizes,


• stored the solutions to the smaller problems in an array,


• recalled them from the array every time they needed to 
used. (memoization).


• Anything else?



What does M-ComputeOpt(n) actually find?

M-ComputeOpt(j) 
 
        If j=0 then 
            Return 0 
      
        Else if M[j] is not empty then 
             Return M[j] 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What does M-ComputeOpt(n) actually find?

M-ComputeOpt(j) 
 
        If j=0 then 
            Return 0 
      
        Else if M[j] is not empty then 
             Return M[j] 
 
        Else 
              M[j] = max{v(j) + M-ComputeOpt(pj) , M-ComputeOpt(j-1)} 
              Return M[j]


        EndIf  
            

It finds the value of the optimal schedule O.
Is that what we were looking for?



Weighted Interval Scheduling

• A set of requests {1, 2, … , n}.


• Each request has a starting time s(i), a finishing time f(i), and 
a value v(i).


• Alternative view: Every request is an interval [s(i), f(i)] 
associated with a value v(i).
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do not overlap.


• Goal: Output a schedule which maximises the total value of 
compatible intervals.
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• A set of requests {1, 2, … , n}.


• Each request has a starting time s(i), a finishing time f(i), and 
a value v(i).


• Alternative view: Every request is an interval [s(i), f(i)] 
associated with a value v(i).


• Two requests i and j are compatible if their respective intervals 
do not overlap.


• Goal: Output a schedule which maximises the total value of 
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   If j=0 , no solution


   Else 
      If v(j) + M(pj) ≥ M(j-1) then 
          Output j together with FindSolution(pj) 
      Else 
          Output FindSolution(j-1) 
      EndIf 
   End If
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From values to schedules

FindSolution(j) 
 
   If j=0 , no solution


   Else 
      If v(j) + M(pj) ≥ M(j-1) then 
          Output j together with FindSolution(pj) 
      Else 
          Output FindSolution(j-1) 
      EndIf 
   End If

In other words, j is in O if and only if 

OPT(pj)+v(j) ≥ OPT(j-1)

This can be done in O(n) time.



Dynamic Programming vs 
Divide and Conquer

• DP is an optimisation technique 
and is only applicable to 
problems with optimal 
substructure.


• DP splits the problem into parts, 
finds solutions to the parts and 
joins them.


• The parts are not significantly 
smaller and are overlapping.


• In DP, the subproblem 
dependency can be represented 
by a DAG.

• DQ is not normally used for 
optimisation problems.


• DQ splits the problem into 
parts, finds solutions to the 
parts and joins them.


• The parts are significantly 
smaller and do not 
normally overlap.


• In DQ, the subproblem 
dependency can be 
represented by a tree.


