Advanced Algorithmic Techniques
(COMP523)

Greedy Algorithms 3



Recap and plan

e |Last 3 lectures:
e (Greedy Algorithms

e Interval Scheduling, Minimum Spanning Tree, Max-
Spacing Clustering

* This lecture:
e Dynamic Programming

e \Weighted Interval Scheduling



Dynamic Programming

e An technique for solving optimisation problems.
e Term attributed to Bellman (1950s).

e “Programming” as in “Planning” or “Optimising”.



Dynamic Programming



Dynamic Programming

 The paradigm of dynamic programming:



Dynamic Programming

 The paradigm of dynamic programming:

e Given a problem P, define a sequence of subproblems, with the
following properties:



Dynamic Programming

 The paradigm of dynamic programming:

e Given a problem P, define a sequence of subproblems, with the
following properties:

 The subproblems are ordered from the smallest to the largest.



Dynamic Programming

 The paradigm of dynamic programming:

e Given a problem P, define a sequence of subproblems, with the
following properties:

 The subproblems are ordered from the smallest to the largest.

* The largest problem is our original problem F.



Dynamic Programming

 The paradigm of dynamic programming:

e Given a problem P, define a sequence of subproblems, with the
following properties:

 The subproblems are ordered from the smallest to the largest.
* The largest problem is our original problem F.

e The optimal solution of a subproblem can be constructed from the
optimal solutions of sub-sub-problems. (Optimal Substructure).



Dynamic Programming

 The paradigm of dynamic programming:

e Given a problem P, define a sequence of subproblems, with the
following properties:

 The subproblems are ordered from the smallest to the largest.
* The largest problem is our original problem F.

e The optimal solution of a subproblem can be constructed from the
optimal solutions of sub-sub-problems. (Optimal Substructure).

e Solve the subproblems from the smallest to the largest. When you
solve a subproblem, store the solution (e.g., in an array) and use it to
solve the larger subproblems.



Recall: Interval Scheduling

A set of requests {7, 2, ..., n}.

 Each request has a starting time s(/) and a finishing
time (/).

e Alternative view: Every request is an interval [s(/), (/)].

 Two requests / and j are compatible if their respective
iIntervals do not overlap.

Goal: Output a schedule which maximises the number of
compatible intervals.



Weighted Interval Scheduling

e A set of requests {7, 2, ..., n}.

* Each request has a starting time s(/), a finishing time f(/),
and a value v().

e Alternative view: Every request is an interval [s(/), f(/)]
associated with a value v(j).

e Two requests/ and j are compatible if their respective
iIntervals do not overlap.

e Goal: Output a schedule which maximises the total value of
compatible intervals.



Greedy Approaches

e \Which one of the following Greedy Algorithms might have
a chance to work?

e Earliest starting time.
e Smallest interval.
e Minimum number of conflicts.

e Earliest finishing time.



Greedy Approaches

e \Which one of the following Greedy Algorithms might have
a chance to work?

e Earliest starting time.
e Smallest interval.
e Minimum number of conflicts.

e Earliest finishing time.



Does it work?



Does it work?

value=1



Does it work?

value=1

value=1



Does it work?

value=1
value=3

value=1



Does it work?

value=1

value=3

value=1



Does it work?

value=1

value=3

value=1




Does it work?

No approach that ignores the values can work!

value=1

value=3

value=1




Greedy Approaches

e \Which one of the following Greedy Algorithms might have
a chance to work?

e Earliest starting time.

e Smallest interval.

e Minimum number of conflicts.
e Earliest finishing time.

e | argest value.



Does it work?



Does it work?

value=2



Does it work?

value=2

value=2



Does it work?

value=2
value=3

value=2



Does it work?

value=2

value=3

value=2



A view of the input

e (Consider the intervals in sorted order of non-decreasing
finishing time, i.e., f(7) < f(2) < ... < f(n).

* For an interval | = (s()), f())), let pjbe the largest index / <
such that intervals / and j are disjoint.

* |.e., /Is the first interval in the ordering that ends before
J begins.

e if no such interval exists, define p; = 0.






Step-by-step?

e |Let O be the optimal schedule.

e Fact: O either contains interval n or not.



Building up a solution

=




If nisin O



If nisin O

e \What does that mean for the other intervals?



If nisin O

e \What does that mean for the other intervals?

e Any interval that overlaps with n cannot be in O.



If nisin O

e What does that mean for the other intervals?
e Any interval that overlaps with n cannot be in O.

* Any interval j > pn cannot be in O.



If nisin O

What does that mean for the other intervals?
Any interval that overlaps with n cannot be in O.
Any interval j > pn cannot be in O.

O contains an optimal solution O’ of the subproblem {7, 2, ..., pn }
(why?)



If nisin O

What does that mean for the other intervals?
Any interval that overlaps with n cannot be in O.
Any interval j > pn cannot be in O.

O contains an optimal solution O’ of the subproblem {7, 2, ..., pn }
(why?)

 Because otherwise we could replace O with O’ U {n} and obtain
a better solution.



If nisin O

What does that mean for the other intervals?
Any interval that overlaps with n cannot be in O.
Any interval j > pn cannot be in O.

O contains an optimal solution O’ of the subproblem {7, 2, ..., pn }
(why?)

 Because otherwise we could replace O with O’ U {n} and obtain
a better solution.

Lets use O, ..., j) to denote the optimal solution on (sorted)
intervals /, ..., /.



Building up a solution




If nis notin O



If nis notin O

e Then O =0O(7, ...,n-1)



If nis notin O

e Then O =0O(7, ...,n-1)

e Same argument: Since n is not chosen, all intervals
1, ..., n-1 are “free” to be chosen.



If nis notin O

e Then O =0O(7, ...,n-1)

e Same argument: Since n is not chosen, all intervals
1, ..., n-1 are “free” to be chosen.

e Not picking the optimal schedule for them would violate
the optimality of O.



Building up a solution




Building up a solution

e SO, in order to find O, it suffices to look at smaller
problems and find O(7, ..., ) for some|.

e et O; be a shorthand for O(7, ... , /) and let OPT()) be its
total value.

e Define OPT(0) = 0.

* Then, O = O, with value OPT(n).



Building up a solution




Generalising




Generalising




Generalising




Building up a solution

OPTY())

};
o




Building up a solution

e \What does this look like?



Building up a solution

)

(i OPT(j) = max{ OPT(p;)+v(j) , OPT(-7) }

e \What does this look like?

* Assume that there was an algorithm that inputed {7, ..., j}
and outputted OPT()).



Building up a solution

)

(i OPT(j) = max{ OPT(p;)+v(j) , OPT(-7) }

e \What does this look like?

* Assume that there was an algorithm that inputed {7, ..., j}
and outputted OPT()).

e |t’s a recurrence relation!



Building up a solution

e \What does this look like?

* Assume that there was an algorithm that inputed {7, ..., j}
and outputted OPT()).

e |t's a recurrence relation!



Building up a solution

e \What does this look like?

* Assume that there was an algorithm that inputed {7, ..., j}
and outputted OPT()).

e |t's a recurrence relation!

ComputeOpt())

If j = O then
Return O
Else
Return max{v(/) + ComputeOpt(p;) , ComputeOpt(/- 7)}

Endlf



Correctness

e ComputeOPT()) correctly computes OPT(j) for each j=1, ...n



Correctness

e ComputeOPT()) correctly computes OPT(j) for each j=1, ...n

* Proof by induction:



Correctness

e ComputeOPT()) correctly computes OPT(j) for each j=1, ...n

* Proof by induction:

e Base Case: OPT(0) = 0 by definition.



Correctness

e ComputeOPT()) correctly computes OPT(j) for each j=1, ...n

* Proof by induction:
e Base Case: OPT(0) = 0 by definition.

e |nductive step: Assume that it is true for all / <. (inductive
hypothesis).

Return max{v()) + ComputeOpt(p;) , ComputeOpt(/-7)}



Correctness

e ComputeOPT()) correctly computes OPT(j) for each j=1, ...n

* Proof by induction:
e Base Case: OPT(0) = 0 by definition.

e |nductive step: Assume that it is true for all / <. (inductive
hypothesis).

Return max{v(/) + ComputeOpt

(0j) , ComputeOpt(/-7)}







Example

P =3
P5=3
Psa=0
pa=1
p2=0
Return max{v(/) + ComputeOpt(p;) , Compp:lie;)st(/-n}



Example

OPT(6)

Return max{v(/) + ComputeOpt(p;) , ComputeOpt(/- 7)}



Example

OPT(6)

OPT(4) OPT(3)

Return max{v(/) + ComputeOpt(p;) , ComputeOpt(/- 7)}



Example

OPT(6)

OPT(4) OPT(3)

Return max{v(/) + ComputeOpt(p;) , ComputeOpt(/- 7)}



Example

OPT(6)

OPT(4)
OPT(3)

OPT(2) OP
T(1)
Ps =

Retur
n max{
V() +
ComputeOpt(p;) , C
, ComputeOpt(/
pt(-7)}



Example

- OPT(6)

OPT(4)
OPT(3)

OPT(2) OP
T(1)
Ps =

OPT(1)
Retu
rn max
{v() +
ComputeOpt(p;) , C
, ComputeOpt(/
pt(-7)}



Example

- OPT(6)

OPT(4)
OPT(3)

OPT(2)
OPT(1)
ps =3

OPT(2) OP
T(1)
Ps =

OPT(1)
Retu
rn max
{v() +
ComputeOpt(p;) , C
, ComputeOpt(/
pt(-7)}



Example

OPT(6)
OPT(5)

OPT(4) OPT(3)

OPT(2) OPT(1) ps = 3

OPT(2) OPT(1) OPT(1) P3 =

OPT(1) Return max{v(/) + ComputeOpt(p;) , ComputeOpt(/- 7)}



Example

OPT(6)
OPT(5)

OPT() OFT(S) OPT(2) OPT(1)

OPT(2) OPT(1)

OPT(2) OPT(1) OPT(1)

OPT(1) Return max{v(/) + ComputeOpt(p;) , ComputeOpt(/- 7)}



Example

OPT(6)
OPT(5)

OPT() OFT(S) OPT(2) OPT(1)

OPT(2) OPT(1) OPT(1)

OPT(2) OPT(1) OPT(1)

OPT(1) Return max{v(/) + ComputeOpt(p;) , ComputeOpt(/- 7)}



Another example



Another example

 v@)=1,ps=1

Vd)=1, pa = 2

- v(5)=1, ps = 3

v(6)=1, ps = 4

- ' . = =

" ComputeOpt(6) requires Computept(5) and ComputeOpt(4)



Another example

v(2)=1,p2=0
T v@)=1,ps=

v(6)=1, ps = 4

"~ ComputeOpt(6) requires ComputeOpt(5) and ComputeOpt(4)
ComputeOpt(5) requires ComputeOpt(4) and ComputeOpt(3)



Another example

v(2)=1,p2=0
T v@)=1,ps=

v(6)=1, ps = 4

"~ ComputeOpt(6) requires Computept(5) and ComputeOpt(4)
ComputeOpt(5) requires ComputeOpt(4) and ComputeOpt(3)
ComputeOpt(4) requires ComputeOpt(3) and ComputeOpt(2)



Running time



Running time

* What is the running time of the algorithm?



Running time

* What is the running time of the algorithm?

* A problem of size j requires solving problems of sizes -1
and j-2.



Running time

* What is the running time of the algorithm?

* A problem of size j requires solving problems of sizes -1
and j-2.

* Do you know any numbers for which F(n) = F(n-7) + F(n-2) ?



Running time

* What is the running time of the algorithm?

* A problem of size j requires solving problems of sizes -1
and j-2.

* Do you know any numbers for which F(n) = F(n-7) + F(n-2) ?

e Fibonaccl numbers.



Running time

What is the running time of the algorithm?

A problem of size j requires solving problems of sizes -1
and j-2.

Do you know any numbers for which F(n) = F(n-7) + F(n-2) ?
e Fibonaccl numbers.

The nth Fibonacci number is approximately ¢7/,/5



Running time

What is the running time of the algorithm?

A problem of size j requires solving problems of sizes -1
and j-2.

Do you know any numbers for which F(n) = F(n-7) + F(n-2) ?
 Fibonacci numbers.
The nth Fibonacci number is approximately ¢7/,/5

The running time of our algorithm is Q(2n) !



Are we being smart enough?

OPT(6)
OPT(5)

SPUIEL QUFIIEY OPT(2) OPT(1)

OPT(2) OPT(1) OPT(1)

OPT(2) OPT(1) OPT(1)

OPT(1) Return max{v(/) + ComputeOpt(p;) , ComputeOpt(/- 7)}



Are we being smart enough?

OPT(6)

OPT(5)

b QAP OPT(2) OPT(1)
Pe =3
OPT(2) OPT(1) OPT(1) P5 =3
p4=0
Why are we computing p;3=

OPT(2) OPT(1) OPT(1) these every time?

p2=0
l \ =0

OPT(1) Return max{v(/) + ComputeOpt(p;) , ComputeOpt(/- 7)}



Memoization

e Compute ComputeOpt()) once for every .

e Store it in an accessible place to use again in the future.
e Keep an array M[O, ... ,n].
e |nitially M[j] = “empty” for all .

e \WWhen ComputeOpt()) is calculated, M[/] = ComputeOpt())



A more clever implementation

M-ComputeOpt())

If /=0 then
Return O

Else if M[/] is not empty then
Return M[j]

Else
M[j] = max{v()) + M-ComputeOpt(p;) , M-ComputeOpt(/- 7)}

Return MJj]

Endlf



Running time



Running time

* |n each call of M-ComputeOpt, there is a constant number of

operations, besides the recursive calls. So the running time
Is bounded by the number of recursive calls.



Running time

* |n each call of M-ComputeOpt, there is a constant number of

operations, besides the recursive calls. So the running time
Is bounded by the number of recursive calls.

* The two recursive call only happen when M[j] is empty.



Running time

* |n each call of M-ComputeOpt, there is a constant number of

operations, besides the recursive calls. So the running time
Is bounded by the number of recursive calls.

* The two recursive call only happen when M[j] is empty.

 But when they happens, M[j] is no longer empty.



Running time

In each call of M-ComputeOpt, there is a constant number of

operations, besides the recursive calls. So the running time
Is bounded by the number of recursive calls.

The two recursive call only happen when M[j] is empty.
But when they happens, M|j] is no longer empty.

So the recursively calls only happen O(n) times.



Running time

In each call of M-ComputeOpt, there is a constant number of

operations, besides the recursive calls. So the running time
Is bounded by the number of recursive calls.

The two recursive call only happen when M[j] is empty.
But when they happens, M|j] is no longer empty.
So the recursively calls only happen O(n) times.

The running time of M-ComputeOptis O(n), assuming we are

given the intervals as sorted by their finishing times,
otherwise O(n log n), to sort them first.



So our algorithm ...

... solved the main problem by solving subproblems of
smaller sizes,

stored the solutions to the smaller problems in an array,

recalled them from the array every time they needed to
used. (memoization).

Anything else?



What does M-ComputeOpt(n) actually find?

M-ComputeOpt())

If /=0 then
Return O

Else if M[/] is not empty then
Return M[j]

Else
M[j] = max{v()) + M-ComputeOpt(p;) , M-ComputeOpt(/- 7)}

Return MJj]

Endlf



What does M-ComputeOpt(n) actually find?

M-ComputeOpt()) It finds the value of the optimal schedule O.

If /=0 then
Return O

Else if M[/] is not empty then
Return M[j]

Else
M[j] = max{v()) + M-ComputeOpt(p;) , M-ComputeOpt(/- 7)}

Return MJj]

Endlf



What does M-ComputeOpt(n) actually find?

M-ComputeOpt()) It finds the value of the optimal schedule O.
Is that what we were looking for?
If /=0 then
Return O

Else if M[/] is not empty then
Return M[j]

Else
M[j] = max{v()) + M-ComputeOpt(p;) , M-ComputeOpt(/- 7)}

Return MJj]

Endlf



Weighted Interval Scheduling

e A setof requests {7, 2, ..., n}.

e Each request has a starting time s(/), a finishing time f(/), and
a value v(/).

e Alternative view: Every request is an interval [s(/), f(/)]
associated with a value v().

e Two requests / and j are compatible if their respective intervals
do not overlap.

e (Goal: Output a schedule which maximises the total value of
compatible intervals.



Weighted Interval Scheduling

e A setof requests {7, 2, ..., n}.

e Each request has a starting time s(/), a finishing time f(/), and
a value v(/).

e Alternative view: Every request is an interval [s(/), f(/)]
associated with a value v().

e Two requests / and j are compatible if their respective intervals
do not overlap.

e (Goal: Output a schedule which maximises the total value of
compatible intervals.



Weighted Interval Scheduling

e A setof requests {7, 2, ..., n}.

e Each request has a starting time s(/), a finishing time f(/), and
a value v(/).

e Alternative view: Every request is an interval [s(/), f(/)]
associated with a value v().

e Two requests / and j are compatible if their respective intervals
do not overlap.

e (Goal: Output a schedule which maximises the total value of
compatible intervals.



From values to schedules

| In other words, j is in O if and only if
|

t‘ | ) OPT(pj)+v(j) = OPT(j-17)




From values to schedules

FindSolution())

If /=0, no solution

Else
If v(j) + M(pj) = M(/-7) then
Output j together with FindSolution(p;)

Else
Output FindSolution(/-7)

Endlf
End If



From values to schedules

FindSolution())

This can be done in O(n) time.
If /=0, no solution

Else
If v(j) + M(pj) = M(/-7) then
Output j together with FindSolution(p;)

Else
Output FindSolution(/-7)

Endlf
End If



Dynamic Programming vs
Divide and Conquer

* DP is an optimisation technique e DQ is not normally used for

and'is only applicable 1o optimisation problems.
problems with optimal

substructure. , ,
e DQ splits the problem into

parts, finds solutions to the

* DP splits the problem into parts, >
parts and joins them.

finds solutions to the parts and

joins them.
 The parts are significantly
e The parts are not significantly smaller and do not
smaller and are overlapping. normally overlap.
* In DP, the subproblem e In DQ, the subproblem
dependency can be represented dependency can be

by a DAG. represented by a tree.



