
Advanced Algorithmic Techniques
(COMP523)

Greedy Algorithms 3

Recap and plan
• Last 3 lectures:

• Greedy Algorithms

• Interval Scheduling, Minimum Spanning Tree, Max-
Spacing Clustering

• This lecture:

• Dynamic Programming

• Weighted Interval Scheduling

Dynamic Programming

• An technique for solving optimisation problems.

• Term attributed to Bellman (1950s).

• “Programming” as in “Planning” or “Optimising”.

Dynamic Programming

Dynamic Programming
• The paradigm of dynamic programming:

Dynamic Programming
• The paradigm of dynamic programming:

• Given a problem P, define a sequence of subproblems, with the
following properties:

Dynamic Programming
• The paradigm of dynamic programming:

• Given a problem P, define a sequence of subproblems, with the
following properties:

• The subproblems are ordered from the smallest to the largest.

Dynamic Programming
• The paradigm of dynamic programming:

• Given a problem P, define a sequence of subproblems, with the
following properties:

• The subproblems are ordered from the smallest to the largest.

• The largest problem is our original problem P.

Dynamic Programming
• The paradigm of dynamic programming:

• Given a problem P, define a sequence of subproblems, with the
following properties:

• The subproblems are ordered from the smallest to the largest.

• The largest problem is our original problem P.

• The optimal solution of a subproblem can be constructed from the
optimal solutions of sub-sub-problems. (Optimal Substructure).

Dynamic Programming
• The paradigm of dynamic programming:

• Given a problem P, define a sequence of subproblems, with the
following properties:

• The subproblems are ordered from the smallest to the largest.

• The largest problem is our original problem P.

• The optimal solution of a subproblem can be constructed from the
optimal solutions of sub-sub-problems. (Optimal Substructure).

• Solve the subproblems from the smallest to the largest. When you
solve a subproblem, store the solution (e.g., in an array) and use it to
solve the larger subproblems.

Recall: Interval Scheduling
• A set of requests {1, 2, … , n}.

• Each request has a starting time s(i) and a finishing
time f(i).

• Alternative view: Every request is an interval [s(i), f(i)].

• Two requests i and j are compatible if their respective
intervals do not overlap.

• Goal: Output a schedule which maximises the number of
compatible intervals.

Weighted Interval Scheduling

• A set of requests {1, 2, … , n}.

• Each request has a starting time s(i), a finishing time f(i),
and a value v(i).

• Alternative view: Every request is an interval [s(i), f(i)]
associated with a value v(i).

• Two requests i and j are compatible if their respective
intervals do not overlap.

• Goal: Output a schedule which maximises the total value of
compatible intervals.

Greedy Approaches

• Which one of the following Greedy Algorithms might have
a chance to work?

• Earliest starting time.

• Smallest interval.

• Minimum number of conflicts.

• Earliest finishing time.

Greedy Approaches

• Which one of the following Greedy Algorithms might have
a chance to work?

• Earliest starting time.

• Smallest interval.

• Minimum number of conflicts.

• Earliest finishing time.

Does it work?

Does it work?

value=1

Does it work?

value=1

value=1

Does it work?

value=1

value=3

value=1

Does it work?

value=1

value=3

value=1

Does it work?

value=1

value=3

value=1

Does it work?

value=1

value=3

value=1

No approach that ignores the values can work!

Greedy Approaches
• Which one of the following Greedy Algorithms might have

a chance to work?

• Earliest starting time.

• Smallest interval.

• Minimum number of conflicts.

• Earliest finishing time.

• Largest value.

Does it work?

Does it work?

value=2

Does it work?

value=2

value=2

Does it work?

value=2

value=3

value=2

Does it work?

value=2

value=3

value=2

A view of the input

• Consider the intervals in sorted order of non-decreasing
finishing time, i.e., f(1) ≤ f(2) ≤ … ≤ f(n).

• For an interval j = (s(j), f(j)), let pj be the largest index i < j
such that intervals i and j are disjoint.

• i.e., i is the first interval in the ordering that ends before
j begins.

• if no such interval exists, define pj = 0.

Example

v(1)=2, p1 = 0

v(2)=4, p2 = 0

v(3)=4, p3 = 1
v(4)=7, p4 = 0

v(5)=2 , p5 = 3

v(6)=1, p6 = 3

Step-by-step?

• Let O be the optimal schedule.

• Fact: O either contains interval n or not.

Building up a solution
Is n in O ?

yes no

If n is in O

If n is in O
• What does that mean for the other intervals?

If n is in O
• What does that mean for the other intervals?

• Any interval that overlaps with n cannot be in O.

If n is in O
• What does that mean for the other intervals?

• Any interval that overlaps with n cannot be in O.

• Any interval j > pn cannot be in O.

If n is in O
• What does that mean for the other intervals?

• Any interval that overlaps with n cannot be in O.

• Any interval j > pn cannot be in O.

• O contains an optimal solution O’ of the subproblem {1, 2, …, pn }
(why?)

If n is in O
• What does that mean for the other intervals?

• Any interval that overlaps with n cannot be in O.

• Any interval j > pn cannot be in O.

• O contains an optimal solution O’ of the subproblem {1, 2, …, pn }
(why?)

• Because otherwise we could replace O with O’ U {n} and obtain
a better solution.

If n is in O
• What does that mean for the other intervals?

• Any interval that overlaps with n cannot be in O.

• Any interval j > pn cannot be in O.

• O contains an optimal solution O’ of the subproblem {1, 2, …, pn }
(why?)

• Because otherwise we could replace O with O’ U {n} and obtain
a better solution.

• Lets use O(i, …, j) to denote the optimal solution on (sorted)
intervals i, … , j.

Building up a solution
Is n in O ?

yes no

O = O(1,…,pn) + n

If n is not in O

If n is not in O

• Then O = O(1, …,n-1)

If n is not in O

• Then O = O(1, …,n-1)

• Same argument: Since n is not chosen, all intervals  
1, …, n-1 are “free” to be chosen.

If n is not in O

• Then O = O(1, …,n-1)

• Same argument: Since n is not chosen, all intervals  
1, …, n-1 are “free” to be chosen.

• Not picking the optimal schedule for them would violate
the optimality of O.

Building up a solution
Is n in O ?

yes no

O = O(1,…,pn) + n O = O(1,…,n-1)

Building up a solution

• So, in order to find O, it suffices to look at smaller
problems and find O(1, … , j) for some j.

• Let Oj be a shorthand for O(1, … , j) and let OPT(j) be its
total value.

• Define OPT(0) = 0.

• Then, O = On with value OPT(n).

Building up a solution
Is n in O ?

yes no

O = O(1,…,pn) + n O = O(1,…,n-1)

Generalising
Is j in O ?

yes no

OPT(j) = OPT(pj)+v(j) OPT(j) = OPT(j-1)

Generalising
Is j in O ?

yes no

OPT(j) = OPT(pj)+v(j) OPT(j) = OPT(j-1)

OPT(j) = max{ OPT(pj)+v(j) , OPT(j-1) }

Generalising
Is j in O ?

yes no

OPT(j) = OPT(pj)+v(j) OPT(j) = OPT(j-1)

In other words, j is in O if and only if

OPT(pj)+v(j) ≥ OPT(j-1)

Building up a solution

OPT(j) = max{ OPT(pj)+v(j) , OPT(j-1) }

Building up a solution

• What does this look like?

OPT(j) = max{ OPT(pj)+v(j) , OPT(j-1) }

Building up a solution

• What does this look like?

• Assume that there was an algorithm that inputed {1, …, j}
and outputted OPT(j).

OPT(j) = max{ OPT(pj)+v(j) , OPT(j-1) }

Building up a solution

• What does this look like?

• Assume that there was an algorithm that inputed {1, …, j}
and outputted OPT(j).

• It’s a recurrence relation!

OPT(j) = max{ OPT(pj)+v(j) , OPT(j-1) }

Building up a solution
• What does this look like?

• Assume that there was an algorithm that inputed {1, …, j}
and outputted OPT(j).

• It’s a recurrence relation!

Building up a solution
• What does this look like?

• Assume that there was an algorithm that inputed {1, …, j}
and outputted OPT(j).

• It’s a recurrence relation!

ComputeOpt(j) 
 If j = 0 then 
 Return 0 
 Else  
 Return max{v(j) + ComputeOpt(pj) , ComputeOpt(j-1)} 
 EndIf

Correctness
• ComputeOPT(j) correctly computes OPT(j) for each j=1, …n

Correctness
• ComputeOPT(j) correctly computes OPT(j) for each j=1, …n

• Proof by induction:

Correctness
• ComputeOPT(j) correctly computes OPT(j) for each j=1, …n

• Proof by induction:

• Base Case: OPT(0) = 0 by definition.

Correctness
• ComputeOPT(j) correctly computes OPT(j) for each j=1, …n

• Proof by induction:

• Base Case: OPT(0) = 0 by definition.

• Inductive step: Assume that it is true for all i < j. (inductive
hypothesis). 
 
Return max{v(j) + ComputeOpt(pj) , ComputeOpt(j-1)} 
 

Correctness
• ComputeOPT(j) correctly computes OPT(j) for each j=1, …n

• Proof by induction:

• Base Case: OPT(0) = 0 by definition.

• Inductive step: Assume that it is true for all i < j. (inductive
hypothesis). 
 
Return max{v(j) + ComputeOpt(pj) , ComputeOpt(j-1)} 
 

OPT(j) = max{ OPT(pj)+v(j) , OPT(j-1) }

Example

v(1)=2, p1 = 0

v(2)=4, p2 = 0

v(3)=4, p3 = 1
v(4)=7, p4 = 0

v(5)=2 , p5 = 3

v(6)=1, p6 = 3

Example
OPT(6)

Return max{v(j) + ComputeOpt(pj) , ComputeOpt(j-1)}

p6 = 3

p5 = 3

p4 = 0

p3 = 1
p2 = 0
p1 = 0

Example
OPT(6)

OPT(5) OPT(3)

Return max{v(j) + ComputeOpt(pj) , ComputeOpt(j-1)}

p6 = 3

p5 = 3

p4 = 0

p3 = 1
p2 = 0
p1 = 0

Example
OPT(6)

OPT(5) OPT(3)

OPT(4) OPT(3)

Return max{v(j) + ComputeOpt(pj) , ComputeOpt(j-1)}

p6 = 3

p5 = 3

p4 = 0

p3 = 1
p2 = 0
p1 = 0

Example
OPT(6)

OPT(5) OPT(3)

OPT(4) OPT(3)

OPT(3)

Return max{v(j) + ComputeOpt(pj) , ComputeOpt(j-1)}

p6 = 3

p5 = 3

p4 = 0

p3 = 1
p2 = 0
p1 = 0

Example
OPT(6)

OPT(5) OPT(3)

OPT(4) OPT(3)

OPT(3)

OPT(2) OPT(1)

Return max{v(j) + ComputeOpt(pj) , ComputeOpt(j-1)}

p6 = 3

p5 = 3

p4 = 0

p3 = 1
p2 = 0
p1 = 0

Example
OPT(6)

OPT(5) OPT(3)

OPT(4) OPT(3)

OPT(3)

OPT(2) OPT(1)

OPT(1) Return max{v(j) + ComputeOpt(pj) , ComputeOpt(j-1)}

p6 = 3

p5 = 3

p4 = 0

p3 = 1
p2 = 0
p1 = 0

Example
OPT(6)

OPT(5) OPT(3)

OPT(4) OPT(3)

OPT(3)

OPT(2) OPT(1)

OPT(1)

OPT(2) OPT(1)

Return max{v(j) + ComputeOpt(pj) , ComputeOpt(j-1)}

p6 = 3

p5 = 3

p4 = 0

p3 = 1
p2 = 0
p1 = 0

Example
OPT(6)

OPT(5) OPT(3)

OPT(4) OPT(3)

OPT(3)

OPT(2) OPT(1)

OPT(1)

OPT(2)

OPT(1)

OPT(1)

Return max{v(j) + ComputeOpt(pj) , ComputeOpt(j-1)}

p6 = 3

p5 = 3

p4 = 0

p3 = 1
p2 = 0
p1 = 0

Example
OPT(6)

OPT(5) OPT(3)

OPT(4) OPT(3)

OPT(3)

OPT(2) OPT(1)

OPT(1)

OPT(2)

OPT(1)

OPT(1)

OPT(2) OPT(1)

Return max{v(j) + ComputeOpt(pj) , ComputeOpt(j-1)}

p6 = 3

p5 = 3

p4 = 0

p3 = 1
p2 = 0
p1 = 0

Example
OPT(6)

OPT(5) OPT(3)

OPT(4) OPT(3)

OPT(3)

OPT(2) OPT(1)

OPT(1)

OPT(2)

OPT(1)

OPT(1)

OPT(2) OPT(1)

OPT(1)

Return max{v(j) + ComputeOpt(pj) , ComputeOpt(j-1)}

p6 = 3

p5 = 3

p4 = 0

p3 = 1
p2 = 0
p1 = 0

Another example

v(1)=1, p1 = 0

v(2)=1, p2 = 0
v(3)=1, p3 = 1

v(4)=1, p4 = 2
v(5)=1 , p5 = 3

v(6)=1, p6 = 4

Another example

v(1)=1, p1 = 0

v(2)=1, p2 = 0
v(3)=1, p3 = 1

v(4)=1, p4 = 2
v(5)=1 , p5 = 3

v(6)=1, p6 = 4

ComputeOpt(6) requires ComputeOpt(5) and ComputeOpt(4)

Another example

v(1)=1, p1 = 0

v(2)=1, p2 = 0
v(3)=1, p3 = 1

v(4)=1, p4 = 2
v(5)=1 , p5 = 3

v(6)=1, p6 = 4

ComputeOpt(6) requires ComputeOpt(5) and ComputeOpt(4)
ComputeOpt(5) requires ComputeOpt(4) and ComputeOpt(3)

Another example

v(1)=1, p1 = 0

v(2)=1, p2 = 0
v(3)=1, p3 = 1

v(4)=1, p4 = 2
v(5)=1 , p5 = 3

v(6)=1, p6 = 4

ComputeOpt(6) requires ComputeOpt(5) and ComputeOpt(4)
ComputeOpt(5) requires ComputeOpt(4) and ComputeOpt(3)
ComputeOpt(4) requires ComputeOpt(3) and ComputeOpt(2)

Running time

Running time
• What is the running time of the algorithm?

Running time
• What is the running time of the algorithm?

• A problem of size j requires solving problems of sizes j-1
and j-2.

Running time
• What is the running time of the algorithm?

• A problem of size j requires solving problems of sizes j-1
and j-2.

• Do you know any numbers for which F(n) = F(n-1) + F(n-2) ?

Running time
• What is the running time of the algorithm?

• A problem of size j requires solving problems of sizes j-1
and j-2.

• Do you know any numbers for which F(n) = F(n-1) + F(n-2) ?

• Fibonacci numbers.

Running time
• What is the running time of the algorithm?

• A problem of size j requires solving problems of sizes j-1
and j-2.

• Do you know any numbers for which F(n) = F(n-1) + F(n-2) ?

• Fibonacci numbers.

• The nth Fibonacci number is approximately φn/√5

Running time
• What is the running time of the algorithm?

• A problem of size j requires solving problems of sizes j-1
and j-2.

• Do you know any numbers for which F(n) = F(n-1) + F(n-2) ?

• Fibonacci numbers.

• The nth Fibonacci number is approximately φn/√5

• The running time of our algorithm is Ω(2n) !

Are we being smart enough?
OPT(6)

OPT(5) OPT(3)

OPT(4) OPT(3)

OPT(3)

OPT(2) OPT(1)

OPT(1)

OPT(2)

OPT(1)

OPT(1)

OPT(2) OPT(1)

OPT(1)

Return max{v(j) + ComputeOpt(pj) , ComputeOpt(j-1)}

p6 = 3

p5 = 3

p4 = 0

p3 = 1
p2 = 0
p1 = 0

Are we being smart enough?
OPT(6)

OPT(5) OPT(3)

OPT(4) OPT(3)

OPT(3)

OPT(2) OPT(1)

OPT(1)

OPT(2)

OPT(1)

OPT(1)

OPT(2) OPT(1)

OPT(1)

Return max{v(j) + ComputeOpt(pj) , ComputeOpt(j-1)}

p6 = 3

p5 = 3

p4 = 0

p3 = 1
p2 = 0
p1 = 0

Why are we computing 
these every time?

Memoization

• Compute ComputeOpt(j) once for every j.

• Store it in an accessible place to use again in the future.

• Keep an array M[0, … ,n].

• Initially M[j] = “empty” for all j.

• When ComputeOpt(j) is calculated, M[j] = ComputeOpt(j)

A more clever implementation
M-ComputeOpt(j) 
 
 If j=0 then 
 Return 0 
  
 Else if M[j] is not empty then 
 Return M[j] 
 
 Else 
 M[j] = max{v(j) + M-ComputeOpt(pj) , M-ComputeOpt(j-1)} 
 Return M[j]

 EndIf  

Running time

Running time
• In each call of M-ComputeOpt, there is a constant number of

operations, besides the recursive calls. So the running time
is bounded by the number of recursive calls.

Running time
• In each call of M-ComputeOpt, there is a constant number of

operations, besides the recursive calls. So the running time
is bounded by the number of recursive calls.

• The two recursive call only happen when M[j] is empty.

Running time
• In each call of M-ComputeOpt, there is a constant number of

operations, besides the recursive calls. So the running time
is bounded by the number of recursive calls.

• The two recursive call only happen when M[j] is empty.

• But when they happens, M[j] is no longer empty.

Running time
• In each call of M-ComputeOpt, there is a constant number of

operations, besides the recursive calls. So the running time
is bounded by the number of recursive calls.

• The two recursive call only happen when M[j] is empty.

• But when they happens, M[j] is no longer empty.

• So the recursively calls only happen O(n) times.

Running time
• In each call of M-ComputeOpt, there is a constant number of

operations, besides the recursive calls. So the running time
is bounded by the number of recursive calls.

• The two recursive call only happen when M[j] is empty.

• But when they happens, M[j] is no longer empty.

• So the recursively calls only happen O(n) times.

• The running time of M-ComputeOpt is O(n), assuming we are
given the intervals as sorted by their finishing times,
otherwise O(n log n), to sort them first.

So our algorithm …

• … solved the main problem by solving subproblems of
smaller sizes,

• stored the solutions to the smaller problems in an array,

• recalled them from the array every time they needed to
used. (memoization).

• Anything else?

What does M-ComputeOpt(n) actually find?

M-ComputeOpt(j) 
 
 If j=0 then 
 Return 0 
  
 Else if M[j] is not empty then 
 Return M[j] 
 
 Else 
 M[j] = max{v(j) + M-ComputeOpt(pj) , M-ComputeOpt(j-1)} 
 Return M[j]

 EndIf  

What does M-ComputeOpt(n) actually find?

M-ComputeOpt(j) 
 
 If j=0 then 
 Return 0 
  
 Else if M[j] is not empty then 
 Return M[j] 
 
 Else 
 M[j] = max{v(j) + M-ComputeOpt(pj) , M-ComputeOpt(j-1)} 
 Return M[j]

 EndIf  

It finds the value of the optimal schedule O.

What does M-ComputeOpt(n) actually find?

M-ComputeOpt(j) 
 
 If j=0 then 
 Return 0 
  
 Else if M[j] is not empty then 
 Return M[j] 
 
 Else 
 M[j] = max{v(j) + M-ComputeOpt(pj) , M-ComputeOpt(j-1)} 
 Return M[j]

 EndIf  

It finds the value of the optimal schedule O.
Is that what we were looking for?

Weighted Interval Scheduling

• A set of requests {1, 2, … , n}.

• Each request has a starting time s(i), a finishing time f(i), and
a value v(i).

• Alternative view: Every request is an interval [s(i), f(i)]
associated with a value v(i).

• Two requests i and j are compatible if their respective intervals
do not overlap.

• Goal: Output a schedule which maximises the total value of
compatible intervals.

Weighted Interval Scheduling

• A set of requests {1, 2, … , n}.

• Each request has a starting time s(i), a finishing time f(i), and
a value v(i).

• Alternative view: Every request is an interval [s(i), f(i)]
associated with a value v(i).

• Two requests i and j are compatible if their respective intervals
do not overlap.

• Goal: Output a schedule which maximises the total value of
compatible intervals.

Weighted Interval Scheduling

• A set of requests {1, 2, … , n}.

• Each request has a starting time s(i), a finishing time f(i), and
a value v(i).

• Alternative view: Every request is an interval [s(i), f(i)]
associated with a value v(i).

• Two requests i and j are compatible if their respective intervals
do not overlap.

• Goal: Output a schedule which maximises the total value of
compatible intervals.

From values to schedules
In other words, j is in O if and only if

OPT(pj)+v(j) ≥ OPT(j-1)

From values to schedules

FindSolution(j) 
 
 If j=0 , no solution

 Else 
 If v(j) + M(pj) ≥ M(j-1) then 
 Output j together with FindSolution(pj) 
 Else 
 Output FindSolution(j-1) 
 EndIf 
 End If

In other words, j is in O if and only if

OPT(pj)+v(j) ≥ OPT(j-1)

From values to schedules

FindSolution(j) 
 
 If j=0 , no solution

 Else 
 If v(j) + M(pj) ≥ M(j-1) then 
 Output j together with FindSolution(pj) 
 Else 
 Output FindSolution(j-1) 
 EndIf 
 End If

In other words, j is in O if and only if

OPT(pj)+v(j) ≥ OPT(j-1)

This can be done in O(n) time.

Dynamic Programming vs
Divide and Conquer

• DP is an optimisation technique
and is only applicable to
problems with optimal
substructure.

• DP splits the problem into parts,
finds solutions to the parts and
joins them.

• The parts are not significantly
smaller and are overlapping.

• In DP, the subproblem
dependency can be represented
by a DAG.

• DQ is not normally used for
optimisation problems.

• DQ splits the problem into
parts, finds solutions to the
parts and joins them.

• The parts are significantly
smaller and do not
normally overlap.

• In DQ, the subproblem
dependency can be
represented by a tree.

