
Advanced Algorithmic Techniques
(COMP523)

Dynamic Programming 2

Recap and plan
• Last lecture:

• Dynamic Programming

• Weighted Interval Scheduling

• This lecture:

• Subset Sum

• Knapsack

The subset sum problem

• We are given a set of n items {1, 2, … , n}.

• Each item i has a non-negative weight wi.

• We are given a bound W.

• Goal: Select a subset S of the items such that  
 
and is maximised.

∑
i∈S

wi ≤ W

∑
i∈S

wi

Greedy Approaches

Greedy Approaches

• Ideas?

Greedy Approaches

• Ideas?

• Sort items in terms of decreasing weight and put them in
S one by one.

Greedy Approaches

• Ideas?

• Sort items in terms of decreasing weight and put them in
S one by one.

• Sort items in terms of increasing weight and put them in S
one by one.

Greedy Approaches

• Sort items in terms of decreasing weight and put them in
S one by one.

Greedy Approaches

• Sort items in terms of decreasing weight and put them in
S one by one.

• Example where this fails?

Greedy Approaches

• Sort items in terms of decreasing weight and put them in
S one by one.

• Example where this fails?

• W = 4, w1 = 3, w2 = 2, w3 = 2.

Greedy Approaches

• Sort items in terms of increasing weight and put them in S
one by one.

Greedy Approaches

• Sort items in terms of increasing weight and put them in S
one by one.

• Example where this fails?

Greedy Approaches

• Sort items in terms of increasing weight and put them in S
one by one.

• Example where this fails?

• W = 4, w1 = 1, w2 = 2, w3 = 2.

Dynamic Programming

Dynamic Programming
• We need to identify the appropriate subproblems to use in order to solve

the main problem.

Dynamic Programming
• We need to identify the appropriate subproblems to use in order to solve

the main problem.

• Recall the weighted interval scheduling problem. Similar approach.

Dynamic Programming
• We need to identify the appropriate subproblems to use in order to solve

the main problem.

• Recall the weighted interval scheduling problem. Similar approach.

• Let OPT(i) be the optimal solution to the subset sum problem, using a
subset of {1, 2, … , i}.

Dynamic Programming
• We need to identify the appropriate subproblems to use in order to solve

the main problem.

• Recall the weighted interval scheduling problem. Similar approach.

• Let OPT(i) be the optimal solution to the subset sum problem, using a
subset of {1, 2, … , i}.

• Let Oi be its value and hence O is On.

Dynamic Programming
• We need to identify the appropriate subproblems to use in order to solve

the main problem.

• Recall the weighted interval scheduling problem. Similar approach.

• Let OPT(i) be the optimal solution to the subset sum problem, using a
subset of {1, 2, … , i}.

• Let Oi be its value and hence O is On.

• Should item n be in the optimal solution O or not?

Dynamic Programming
• We need to identify the appropriate subproblems to use in order to solve

the main problem.

• Recall the weighted interval scheduling problem. Similar approach.

• Let OPT(i) be the optimal solution to the subset sum problem, using a
subset of {1, 2, … , i}.

• Let Oi be its value and hence O is On.

• Should item n be in the optimal solution O or not?

• If no, then OPT(n-1) = OPT(n)

Dynamic Programming
• We need to identify the appropriate subproblems to use in order to solve

the main problem.

• Recall the weighted interval scheduling problem. Similar approach.

• Let OPT(i) be the optimal solution to the subset sum problem, using a
subset of {1, 2, … , i}.

• Let Oi be its value and hence O is On.

• Should item n be in the optimal solution O or not?

• If no, then OPT(n-1) = OPT(n)

• If yes, ?

If n is in O

If n is in O
• What information do we get about the other items?

If n is in O
• What information do we get about the other items?

• In weighted interval scheduling, we could remove all
intervals overlapping with n.

If n is in O
• What information do we get about the other items?

• In weighted interval scheduling, we could remove all
intervals overlapping with n.

• Can we do something similar here?

If n is in O
• What information do we get about the other items?

• In weighted interval scheduling, we could remove all
intervals overlapping with n.

• Can we do something similar here?

• There is no reason to a-priori exclude any remaining
item, unless adding it would exceed the weight.

If n is in O
• What information do we get about the other items?

• In weighted interval scheduling, we could remove all
intervals overlapping with n.

• Can we do something similar here?

• There is no reason to a-priori exclude any remaining
item, unless adding it would exceed the weight.

• The only information that we really get is that we now
have weight W - wn left.

What we really need

What we really need
• To find the optimal value of OPT(n), we need

What we really need
• To find the optimal value of OPT(n), we need

• The optimal value of OPT(n-1) if n is not in O.

What we really need
• To find the optimal value of OPT(n), we need

• The optimal value of OPT(n-1) if n is not in O.

• The optimal value of the solution on input  
{1, 2 , …, n-1} and w = W - wn .

What we really need
• To find the optimal value of OPT(n), we need

• The optimal value of OPT(n-1) if n is not in O.

• The optimal value of the solution on input  
{1, 2 , …, n-1} and w = W - wn .

• How many subproblems do we need?

What we really need
• To find the optimal value of OPT(n), we need

• The optimal value of OPT(n-1) if n is not in O.

• The optimal value of the solution on input  
{1, 2 , …, n-1} and w = W - wn .

• How many subproblems do we need?

• One for each initial set {1, 2 , …, i} of items and each
possible value for the remaining weight w.

Subproblems

Subproblems
• Assumptions:

Subproblems
• Assumptions:

• W is an integer.

Subproblems
• Assumptions:

• W is an integer.

• Every wi is an integer.

Subproblems
• Assumptions:

• W is an integer.

• Every wi is an integer.

• We will have one subproblem for each i=0,1, … ,n and
each integer 0 ≤ w ≤ W.

Subproblems
• Assumptions:

• W is an integer.

• Every wi is an integer.

• We will have one subproblem for each i=0,1, … ,n and
each integer 0 ≤ w ≤ W.

• Let OPT(i,w) be the value of the optimal solution on
subset {1, 2, … , i} and maximum allowed weight w.

Subproblems

Subproblems

• Using this notation, what are we looking for?

Subproblems

• Using this notation, what are we looking for?

• OPT(n,W)

Subproblems

• Using this notation, what are we looking for?

• OPT(n,W)

• Should item n be in the optimal solution O or not?

Subproblems

• Using this notation, what are we looking for?

• OPT(n,W)

• Should item n be in the optimal solution O or not?

• If no, then OPT(n,W) = OPT(n-1,W).

Subproblems

• Using this notation, what are we looking for?

• OPT(n,W)

• Should item n be in the optimal solution O or not?

• If no, then OPT(n,W) = OPT(n-1,W).

• If yes, then OPT(n,W) = wn + OPT(n-1,W-wn).

Subproblems
Is j in O ?

yes no

OPT(j,w) = wj + OPT(j-1,w-wj). OPT(j,w) = OPT(j-1,w)

Subproblems
Is j in O ?

yes no

OPT(j,w) = wj + OPT(j-1,w-wj). OPT(j,w) = OPT(j-1,w)

OPT(j,w) = max{ wj + OPT(j-1,w-wj) , OPT(j-1,w) }

Subproblems
Is j in O ?

yes no

OPT(j,w) = wj + OPT(j-1,w-wj). OPT(j,w) = OPT(j-1,w)

OPT(j,w) = max{ wj + OPT(j-1,w-wj) , OPT(j-1,w) }

Unless wj < w

Algorithm
Algorithm SubsetSum(n,W)

 Array M=[0 … n, 0 … W] 
 Initialise M[0, w] = 0, for each w = 0, 1 , … , W

 For i = 1, 2, … , n 
 For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

 Return M[n, W]

Two dimensional array
n 0

n-1 0

… 0

… 0

i 0

i-1 0

… 0

2 0

1 0

0 0 0 0 0 0 0 0 0 0 0 0

0 1 … w-wi w W

Example

• n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2

1

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

Array M=[0 … n, 0 … W] 
 Initialise M[0, w] = 0, for each w = 0, 1 , … , W

Example

• n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2

1

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

Example

• n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2

1

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

Example

• n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2

1

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example

• n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2

1 0

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example

• n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2

1 0 0

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example

• n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2

1 0 0 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example

• n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example

• n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example

• n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example

• n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2 0 0

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example

• n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2 0 0 2

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example

• n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2 0 0 2 2

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example

• n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2 0 0 2 2 4

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example

• n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2 0 0 2 2 4 4 4

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example

• n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2 0 0 2 2 4 4 4

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example

• n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2 0 0 2 2 4 4 4

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example

• n=3, W=6, w1 = w2 = 2 and w3 = 3.

3 0 0 2

2 0 0 2 2 4 4 4

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example

• n=3, W=6, w1 = w2 = 2 and w3 = 3.

3 0 0 2 3

2 0 0 2 2 4 4 4

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example

• n=3, W=6, w1 = w2 = 2 and w3 = 3.

3 0 0 2 3 4

2 0 0 2 2 4 4 4

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example

• n=3, W=6, w1 = w2 = 2 and w3 = 3.

3 0 0 2 3 4 5

2 0 0 2 2 4 4 4

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example

• n=3, W=6, w1 = w2 = 2 and w3 = 3.

3 0 0 2 3 4 5 5

2 0 0 2 2 4 4 4

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example

• n=3, W=6, w1 = w2 = 2 and w3 = 3.

3 0 0 2 3 4 5 5

2 0 0 2 2 4 4 4

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Optimal value

From values to solutions

• Very similar idea to weighted interval scheduling

Is j in O ?

yes no

OPT(j,w) = wj + OPT(j-1,w-wj). OPT(j,w) = OPT(j-1,w)

Running Time

Running Time
• Similar to weighted interval scheduling.

Running Time
• Similar to weighted interval scheduling.

• We are building up a table M of solutions (instead of an
array).

Running Time
• Similar to weighted interval scheduling.

• We are building up a table M of solutions (instead of an
array).

• We compute each value M(i, w) of the table in O(1) time
using the previous values.

Running Time
• Similar to weighted interval scheduling.

• We are building up a table M of solutions (instead of an
array).

• We compute each value M(i, w) of the table in O(1) time
using the previous values.

• What is the running time overall?

Running Time
• Similar to weighted interval scheduling.

• We are building up a table M of solutions (instead of an
array).

• We compute each value M(i, w) of the table in O(1) time
using the previous values.

• What is the running time overall?

• How many entries does the table M have?

Running Time

Running Time
• SubsetSum(n,W) runs in time O(nW).

Running Time
• SubsetSum(n,W) runs in time O(nW).

• Is this a polynomial time algorithm?

Running Time
• SubsetSum(n,W) runs in time O(nW).

• Is this a polynomial time algorithm?

• No, because it depends on W.

Running Time
• SubsetSum(n,W) runs in time O(nW).

• Is this a polynomial time algorithm?

• No, because it depends on W.

• It is pseudopolynomial, as it runs in time polynomial in
n and W.

Running Time
• SubsetSum(n,W) runs in time O(nW).

• Is this a polynomial time algorithm?

• No, because it depends on W.

• It is pseudopolynomial, as it runs in time polynomial in
n and W.

• It is fairly efficient, if in the number involved in the input
are reasonably small.

Should we be happy?

Should we be happy?
• Pseudopolynomial is good in some cases.

Should we be happy?
• Pseudopolynomial is good in some cases.

• But why not polynomial?

Should we be happy?
• Pseudopolynomial is good in some cases.

• But why not polynomial?

• How hard is it to design a polynomial time algorithm for
subset sum?

Should we be happy?
• Pseudopolynomial is good in some cases.

• But why not polynomial?

• How hard is it to design a polynomial time algorithm for
subset sum?

• Hard enough to justify a reward of 1 million dollars!

Should we be happy?
• Pseudopolynomial is good in some cases.

• But why not polynomial?

• How hard is it to design a polynomial time algorithm for
subset sum?

• Hard enough to justify a reward of 1 million dollars!

• Subset sum is NP-hard!

Should we be happy?
• Pseudopolynomial is good in some cases.

• But why not polynomial?

• How hard is it to design a polynomial time algorithm for
subset sum?

• Hard enough to justify a reward of 1 million dollars!

• Subset sum is NP-hard!

• More about that later on in the module.

The subset sum problem

• We are given a set of n items {1, 2, … , n}.

• Each item i has a non-negative weight wi.

• We are given a bound W.

• Goal: Select a subset S of the items such that  
 
and is maximised.

∑
i∈S

wi ≤ W

∑
i∈S

wi

The knapsack problem

• We are given a set of n items {1, 2, … , n}.

• Each item i has a non-negative weight wi and a non-
negative value vi.

• We are given a bound W.

• Goal: Select a subset S of the items such that  
 
and is maximised.

∑
i∈S

wi ≤ W

∑
i∈S

vi

The knapsack problem

• The subset sum problem is a specific instance of the
knapsack problem (why?)

• You have actually seen this problem before!

The fractional knapsack problem

• We are given a set of n items {1, 2, … , n}.

• Each item i has a non-negative weight wi and a non-
negative value vi.

• We are given a bound W.

• Goal: Select a fraction xi from each item i to maximise 
  
 such that ∑
i∈n

xi ⋅ vi ∑
i∈n

xi ⋅ wi ≤ W

A greedy solution

• Sort the items in terms of their “bang-per-buck” value  
vi / wi : v1 / w1, v2 / w2, … , vn / wn.

• Put as much as possible from the first item in the
knapsack, then as much as possible from the second
item, … and so on.

• This algorithm solves the fractional knapsack problem
optimally.

The knapsack problem

The 0/1 knapsack problem

The 0/1 knapsack problem
• Could the greedy algorithm solve the 0/1 knapsack

problem optimally?

The 0/1 knapsack problem
• Could the greedy algorithm solve the 0/1 knapsack

problem optimally?

• Counter-example:

The 0/1 knapsack problem
• Could the greedy algorithm solve the 0/1 knapsack

problem optimally?

• Counter-example:

300 190
180

100 95 90

W = 190

7 minute exercise

Algorithm SubsetSum(n,W)

 Array M=[0 … n, 0 … W] 
 Initialise M[0, w] = 0, for each w = 0, 1 , … , W

 For i = 1, 2, … , n 
 For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

 Return M[n, W]

Design a dynamic programming algorithm for 0/1 knapsack.

