
Advanced Algorithmic Techniques  
(COMP523)

Dynamic Programming 2



Recap and plan
• Last lecture: 

• Dynamic Programming


• Weighted Interval Scheduling


• This lecture: 

• Subset Sum


• Knapsack



The subset sum problem

• We are given a set of n items {1, 2, … , n}.


• Each item i has a non-negative weight wi.


• We are given a bound W.


• Goal: Select a subset S of the items such that  
 
and                 is maximised.

∑
i∈S

wi ≤ W

∑
i∈S

wi
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Greedy Approaches

• Sort items in terms of increasing weight and put them in S 
one by one.

• Example where this fails?

• W = 4, w1 = 1, w2 = 2, w3 = 2.
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Dynamic Programming
• We need to identify the appropriate subproblems to use in order to solve 

the main problem.

• Recall the weighted interval scheduling problem. Similar approach.

• Let OPT(i) be the optimal solution to the subset sum problem, using a 
subset of {1, 2,  … , i}. 

• Let Oi be its value and hence O is On.

• Should item n be in the optimal solution O or not?

• If no, then OPT(n-1) = OPT(n)

• If yes, ?
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If n is in O
• What information do we get about the other items?

• In weighted interval scheduling, we could remove all 
intervals overlapping with n.

• Can we do something similar here?

• There is no reason to a-priori exclude any remaining 
item, unless adding it would exceed the weight.

• The only information that we really get is that we now 
have weight W - wn left.
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What we really need
• To find the optimal value of OPT(n), we need

• The optimal value of OPT(n-1) if n is not in O.

• The optimal value of the solution on input  
{1, 2 , …, n-1} and w = W - wn .

• How many subproblems do we need?

• One for each initial set {1, 2 , …, i} of items and each 
possible value for the remaining weight w.
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Subproblems
• Assumptions:

• W is an integer.

• Every wi is an integer.

• We will have one subproblem for each i=0,1, … ,n  and 
each integer 0 ≤ w ≤ W.

• Let OPT(i,w) be the value of the optimal solution on 
subset {1, 2,  … , i} and maximum allowed weight w.
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Subproblems

• Using this notation, what are we looking for?

• OPT(n,W)

• Should item n be in the optimal solution O or not?

• If no, then OPT(n,W) = OPT(n-1,W).

• If yes, then OPT(n,W)  = wn + OPT(n-1,W-wn).
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Subproblems
Is j in O ?

yes no

OPT(j,w)  = wj + OPT(j-1,w-wj). OPT(j,w) = OPT(j-1,w)

OPT(j,w) = max{ wj + OPT(j-1,w-wj) ,  OPT(j-1,w) }

Unless wj < w



Algorithm
Algorithm SubsetSum(n,W)


       Array M=[0 … n, 0 … W] 
       Initialise M[0, w] = 0, for each w = 0, 1 , … , W


       For i = 1, 2, … , n 
            For w = 0 , … , W 
               If (wi > w)  
                   M[i, w] = M[i-1, w] 
               Else 
                   M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi ]} 
               EndIf


        Return M[n, W]



Two dimensional array
n 0

n-1 0

… 0

… 0

i 0

i-1 0

… 0

2 0

1 0

0 0 0 0 0 0 0 0 0 0 0 0

0 1 … w-wi w W



Example

• n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2
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0 1 2 3 4 5 6

Array M=[0 … n, 0 … W] 
       Initialise M[0, w] = 0, for each w = 0, 1 , … , W
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From values to solutions

• Very similar idea to weighted interval scheduling

Is j in O ?

yes no

OPT(j,w)  = wj + OPT(j-1,w-wj). OPT(j,w) = OPT(j-1,w)
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Running Time
• Similar to weighted interval scheduling.

• We are building up a table M of solutions (instead of an 
array).

• We compute each value M(i, w) of the table in O(1) time 
using the previous values.

• What is the running time overall?

• How many entries does the table M have?
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Running Time
• SubsetSum(n,W) runs in time O(nW).

• Is this a polynomial time algorithm?

• No, because it depends on W.

• It is pseudopolynomial, as it runs in time polynomial in 
n and W.

• It is fairly efficient, if in the number involved in the input 
are reasonably small.
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Should we be happy?
• Pseudopolynomial is good in some cases.

• But why not polynomial?

• How hard is it to design a polynomial time algorithm for 
subset sum?

• Hard enough to justify a reward of 1 million dollars!

• Subset sum is NP-hard!

• More about that later on in the module.



The subset sum problem

• We are given a set of n items {1, 2, … , n}.


• Each item i has a non-negative weight wi.
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The knapsack problem

• We are given a set of n items {1, 2, … , n}.


• Each item i has a non-negative weight wi and a non-
negative value vi.


• We are given a bound W.


• Goal: Select a subset S of the items such that  
 
and             is maximised.

∑
i∈S

wi ≤ W

∑
i∈S

vi



The knapsack problem

• The subset sum problem is a specific instance of the 
knapsack problem (why?)


• You have actually seen this problem before!



The fractional knapsack problem

• We are given a set of n items {1, 2, … , n}.


• Each item i has a non-negative weight wi and a non-
negative value vi.


• We are given a bound W.


• Goal: Select a fraction xi from each item i to maximise 
               
                  such that ∑
i∈n

xi ⋅ vi ∑
i∈n

xi ⋅ wi ≤ W



A greedy solution

• Sort the items in terms of their “bang-per-buck” value  
vi / wi :  v1 / w1, v2 / w2,  … ,  vn / wn.


• Put as much as possible from the first item in the 
knapsack, then as much as possible from the second 
item, … and so on.


• This algorithm solves the fractional knapsack problem 
optimally.
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The 0/1 knapsack problem
• Could the greedy algorithm solve the 0/1 knapsack 

problem optimally?

• Counter-example:

300 190
180

100 95 90

W = 190



7 minute exercise

Algorithm SubsetSum(n,W)


       Array M=[0 … n, 0 … W] 
       Initialise M[0, w] = 0, for each w = 0, 1 , … , W


       For i = 1, 2, … , n 
            For w = 0 , … , W 
               If (wi > w)  
                   M[i, w] = M[i-1, w] 
               Else 
                   M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi ]} 
               EndIf


        Return M[n, W]

Design a dynamic programming algorithm for 0/1 knapsack.


