Advanced Algorithmic Techniques (COMP523)

Recap and plan

Last lecture:

- Dynamic Programming
- Weighted Interval Scheduling
- This lecture:
 - Subset Sum
 - Knapsack

The subset sum problem

- We are given a set of n items {1, 2, ..., n}.
- Each item *i* has a non-negative weight W_i.
- We are given a bound W.
- Goal: Select a subset S of the items such that

$$\sum_{i \in S} w_i \le W$$

and
$$\sum_{i \in S} w_i$$
 is maximised.

• Ideas?

- Ideas?
- Sort items in terms of *decreasing weight* and put them in S one by one.

- Ideas?
- Sort items in terms of *decreasing weight* and put them in S one by one.
- Sort items in terms of *increasing weight* and put them in S one by one.

 Sort items in terms of *decreasing weight* and put them in S one by one.

- Sort items in terms of *decreasing weight* and put them in S one by one.
- Example where this fails?

- Sort items in terms of *decreasing weight* and put them in S one by one.
- Example where this fails?
 - W = 4, $w_1 = 3$, $w_2 = 2$, $w_3 = 2$.

 Sort items in terms of *increasing weight* and put them in S one by one.

- Sort items in terms of *increasing weight* and put them in S one by one.
- Example where this fails?

- Sort items in terms of *increasing weight* and put them in S one by one.
- Example where this fails?
 - W = 4, $w_1 = 1$, $w_2 = 2$, $w_3 = 2$.

• We need to identify the appropriate subproblems to use in order to solve the main problem.

- We need to identify the appropriate subproblems to use in order to solve the main problem.
- Recall the weighted interval scheduling problem. Similar approach.

- We need to identify the appropriate subproblems to use in order to solve the main problem.
- Recall the weighted interval scheduling problem. Similar approach.
- Let OPT(*i*) be the optimal solution to the subset sum problem, using a subset of {1, 2, ..., *i*}.

- We need to identify the appropriate subproblems to use in order to solve the main problem.
- Recall the weighted interval scheduling problem. Similar approach.
- Let OPT(*i*) be the optimal solution to the subset sum problem, using a subset of {1, 2, ..., *i*}.
 - Let O_i be its value and hence O is O_n .

- We need to identify the appropriate subproblems to use in order to solve the main problem.
- Recall the weighted interval scheduling problem. Similar approach.
- Let OPT(*i*) be the optimal solution to the subset sum problem, using a subset of {1, 2, ..., *i*}.
 - Let O_i be its value and hence O is O_n.
- Should item *n* be in the optimal solution O or not?

- We need to identify the appropriate subproblems to use in order to solve the main problem.
- Recall the weighted interval scheduling problem. Similar approach.
- Let OPT(*i*) be the optimal solution to the subset sum problem, using a subset of {1, 2, ..., *i*}.
 - Let O_i be its value and hence O is O_n.
- Should item n be in the optimal solution O or not?
 - If no, then OPT(n-1) = OPT(n)

- We need to identify the appropriate subproblems to use in order to solve the main problem.
- Recall the weighted interval scheduling problem. Similar approach.
- Let OPT(*i*) be the optimal solution to the subset sum problem, using a subset of {1, 2, ..., *i*}.
 - Let O_i be its value and hence O is O_n.
- Should item n be in the optimal solution O or not?
 - If no, then OPT(n-1) = OPT(n)
 - If yes, ?

• What information do we get about the other items?

- What information do we get about the other items?
- In weighted interval scheduling, we could remove all intervals overlapping with n.

- What information do we get about the other items?
- In weighted interval scheduling, we could remove all intervals overlapping with n.
- Can we do something similar here?

- What information do we get about the other items?
- In weighted interval scheduling, we could remove all intervals overlapping with n.
- Can we do something similar here?
 - There is no reason to a-priori exclude any remaining item, unless adding it would exceed the weight.

- What information do we get about the other items?
- In weighted interval scheduling, we could remove all intervals overlapping with n.
- Can we do something similar here?
 - There is no reason to a-priori exclude any remaining item, unless adding it would exceed the weight.
 - The only information that we really get is that we now have weight W - wn left.

To find the optimal value of OPT(n), we need

- To find the optimal value of OPT(n), we need
 - The optimal value of OPT(*n*-1) if *n* is not in O.

- To find the optimal value of OPT(n), we need
 - The optimal value of OPT(*n*-1) if *n* is not in O.
 - The optimal value of the solution on input $\{1, 2, ..., n-1\}$ and $w = W w_n$.

- To find the optimal value of OPT(n), we need
 - The optimal value of OPT(*n*-1) if *n* is not in O.
 - The optimal value of the solution on input $\{1, 2, ..., n-1\}$ and $w = W w_n$.
- How many subproblems do we need?

- To find the optimal value of OPT(n), we need
 - The optimal value of OPT(*n*-1) if *n* is not in O.
 - The optimal value of the solution on input $\{1, 2, ..., n-1\}$ and $w = W w_n$.
- How many subproblems do we need?
 - One for each initial set {1, 2, ..., i} of items and each possible value for the remaining weight w.

Subproblems

Subproblems

• Assumptions:

Subproblems

- Assumptions:
 - W is an integer.
- Assumptions:
 - W is an integer.
 - Every w_i is an integer.

- Assumptions:
 - W is an integer.
 - Every w_i is an integer.
- We will have one subproblem for each *i*=0,1, ...,*n* and each integer 0 ≤ w ≤ W.

- Assumptions:
 - W is an integer.
 - Every w_i is an integer.
- We will have one subproblem for each *i*=0,1, ...,*n* and each integer 0 ≤ w ≤ W.
- Let OPT(*i*, w) be the value of the optimal solution on subset {1, 2, ..., *i*} and maximum allowed weight w.

• Using this notation, what are we looking for?

- Using this notation, what are we looking for?
 - OPT(*n*,W)

- Using this notation, what are we looking for?
 - OPT(*n*, W)
- Should item *n* be in the optimal solution O or not?

- Using this notation, what are we looking for?
 - OPT(*n*,**W**)
- Should item n be in the optimal solution O or not?
 - If no, then OPT(n, W) = OPT(n-1, W).

- Using this notation, what are we looking for?
 - OPT(*n*, W)
- Should item n be in the optimal solution O or not?
 - If no, then OPT(n, W) = OPT(n-1, W).
 - If yes, then $OPT(n,W) = w_n + OPT(n-1,W-w_n)$.

Algorithm

Algorithm SubsetSum(n,W)

```
Array M = [0 ... n, 0 ... W]
Initialise M[0, w] = 0, for each w = 0, 1, ..., W
```

```
For i = 1, 2, ..., n

For w = 0, ..., W

If (w<sub>i</sub> > w)

M[i, w] = M[i-1, w]

Else

M[i, w] = max\{M[i-1, w], w_i + M[i-1, w-w_i]\}

EndIf
```

Return M[n, W]

Two dimensional array

• n=3, W=6, w₁ = w₂ = 2 and w₃ = 3.

Array $M = [0 \dots n, 0 \dots W]$ Initialise M[0, w] = 0, for each $w = 0, 1, \dots, W$

• n=3, W=6, w₁ = w₂ = 2 and w₃ = 3.

• n=3, W=6, w₁ = w₂ = 2 and w₃ = 3.

For
$$w = 0$$
, ..., W
If $(w_i > w)$
 $M[i, w] = M[i-1, w]$
Else
 $M[i, w] = max\{M[i-1, w], w_i + M[i-1, w-w_i]\}$
EndIf

For
$$w = 0$$
, ..., W
If $(w_i > w)$
 $M[i, w] = M[i-1, w]$
Else
 $M[i, w] = max\{M[i-1, w], w_i + M[i-1, w-w_i]\}$
EndIf

For
$$w = 0, ..., W$$

If $(w_i > w)$
 $M[i, w] = M[i-1, w]$
Else
 $M[i, w] = max\{M[i-1, w], w_i + M[i-1, w-w_i]\}$
EndIf

For
$$w = 0, ..., W$$

If $(w_i > w)$
 $M[i, w] = M[i-1, w]$
Else
 $M[i, w] = max\{M[i-1, w], w_i + M[i-1, w-w_i]\}$
EndIf

For
$$w = 0, ..., W$$

If $(w_i > w)$
 $M[i, w] = M[i-1, w]$
Else
 $M[i, w] = max\{M[i-1, w], w_i + M[i-1, w-w_i]\}$
EndIf

For
$$w = 0$$
, ..., W
If $(w_i > w)$
 $M[i, w] = M[i-1, w]$
Else
 $M[i, w] = max\{M[i-1, w], w_i + M[i-1, w-w_i]\}$
EndIf

For
$$w = 0, ..., W$$

If $(w_i > w)$
 $M[i, w] = M[i-1, w]$
Else
 $M[i, w] = max\{M[i-1, w], w_i + M[i-1, w-w_i]\}$
EndIf

For w = 0, ..., W
If
$$(w_i > w)$$

 $M[i, w] = M[i-1, w]$
Else
 $M[i, w] = max\{M[i-1, w], w_i + M[i-1, w-w_i]\}$
EndIf

For w = 0 , ... , W
If
$$(w_i > w)$$

 $M[i, w] = M[i-1, w]$
Else
 $M[i, w] = max\{M[i-1, w], w_i + M[i-1, w-w_i]\}$
EndIf

3							
2	0	0	2	2	4	4	4
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

For w = 0, ..., W
If
$$(w_i > w)$$

 $M[i, w] = M[i-1, w]$
Else
 $M[i, w] = max\{M[i-1, w], w_i + M[i-1, w-w_i]\}$
EndIf

3							
2	0	0	2	2	4	4	4
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

For w = 0, ..., W
If
$$(w_i > w)$$

 $M[i, w] = M[i-1, w]$
Else
 $M[i, w] = max\{M[i-1, w], w_i + M[i-1, w-w_i]\}$
EndIf

3							
2	0	0	2	2	4	4	4
 1	0	0	2	2	2	2	2
 0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

For w = 0, ..., W
If
$$(w_i > w)$$

 $M[i, w] = M[i-1, w]$
Else
 $M[i, w] = max\{M[i-1, w], w_i + M[i-1, w-w_i]\}$
EndIf

3	0	0	2				
2	0	0	2	2	4	4	4
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

For
$$w = 0, ..., W$$

If $(w_i > w)$
 $M[i, w] = M[i-1, w]$
Else
 $M[i, w] = max\{M[i-1, w], w_i + M[i-1, w-w_i]\}$
EndIf

• n=3, W=6, w₁ = w₂ = 2 and w₃ = 3.

3	0	0	2	3			
2	0	0	2	2	4	4	4
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

For
$$w = 0$$
, ..., W
If $(w_i > w)$
 $M[i, w] = M[i-1, w]$
Else
 $M[i, w] = max\{M[i-1, w], w_i + M[i-1, w-w_i]\}$
EndIf

3	0	0	2	3	4		
2	0	0	2	2	4	4	4
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

For w = 0, ..., W
If (w_i > w)

$$M[i, w] = M[i-1, w]$$

Else
 $M[i, w] = max\{M[i-1, w], w_i + M[i-1, w-w_i]\}$
EndIf

3	0	0	2	3	4	5	
2	0	0	2	2	4	4	4
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

For
$$w = 0, ..., W$$

If $(w_i > w)$
 $M[i, w] = M[i-1, w]$
Else
 $M[i, w] = max\{M[i-1, w], w_i + M[i-1, w-w_i]\}$
EndIf

• n=3, W=6, $w_1 = w_2 = 2$ and $w_3 = 3$.

3	0	0	2	3	4	5	5
2	0	0	2	2	4	4	4
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

M[*i*-1, w-w_i]}

For
$$w = 0$$
, ..., W
If $(w_i > w)$
 $M[i, w] = M[i-1, w]$
Else
 $M[i, w] = max\{M[i-1, w], w_i + w\}$

Endlf
Example

• n=3, W=6, $w_1 = w_2 = 2$ and $w_3 = 3$.

Optimal value 0 2 3

Else

```
M[i, w] = max\{M[i-1, w], w_i + M[i-1, w-w_i]\}
EndIf
```

From values to solutions

Very similar idea to weighted interval scheduling

• Similar to weighted interval scheduling.

- Similar to weighted interval scheduling.
- We are building up a table M of solutions (instead of an array).

- Similar to weighted interval scheduling.
- We are building up a table M of solutions (instead of an array).
- We compute each value M(*i*, w) of the table in O(1) time using the previous values.

- Similar to weighted interval scheduling.
- We are building up a table M of solutions (instead of an array).
- We compute each value M(i, w) of the table in O(1) time using the previous values.
- What is the running time overall?

- Similar to weighted interval scheduling.
- We are building up a table M of solutions (instead of an array).
- We compute each value M(*i*, w) of the table in O(1) time using the previous values.
- What is the running time overall?
 - How many entries does the table M have?

• **SubsetSum**(*n*,W) runs in time O(*n*W).

- **SubsetSum**(*n*,W) runs in time O(*n*W).
- Is this a polynomial time algorithm?

- **SubsetSum**(*n*,W) runs in time O(*n*W).
- Is this a polynomial time algorithm?
 - No, because it depends on W.

- **SubsetSum**(*n*,W) runs in time O(*n*W).
- Is this a polynomial time algorithm?
 - No, because it depends on W.
 - It is *pseudopolynomial*, as it runs in time polynomial in *n* and W.

- **SubsetSum**(*n*,W) runs in time O(*n*W).
- Is this a polynomial time algorithm?
 - No, because it depends on W.
 - It is *pseudopolynomial*, as it runs in time polynomial in *n* and W.
 - It is fairly efficient, if in the number involved in the input are reasonably small.

• Pseudopolynomial is good in some cases.

- Pseudopolynomial is good in some cases.
- But why not polynomial?

- Pseudopolynomial is good in some cases.
- But why not polynomial?
- How hard is it to design a polynomial time algorithm for subset sum?

- Pseudopolynomial is good in some cases.
- But why not polynomial?
- How hard is it to design a polynomial time algorithm for subset sum?
 - Hard enough to justify a reward of 1 million dollars!

- Pseudopolynomial is good in some cases.
- But why not polynomial?
- How hard is it to design a polynomial time algorithm for subset sum?
 - Hard enough to justify a reward of 1 million dollars!
 - Subset sum is NP-hard!

- Pseudopolynomial is good in some cases.
- But why not polynomial?
- How hard is it to design a polynomial time algorithm for subset sum?
 - Hard enough to justify a reward of 1 million dollars!
 - Subset sum is NP-hard!
 - More about that later on in the module.

The subset sum problem

- We are given a set of n items {1, 2, ..., n}.
- Each item *i* has a non-negative weight W_i.
- We are given a bound W.
- Goal: Select a subset S of the items such that

$$\sum_{i \in S} w_i \le W$$

and
$$\sum_{i \in S} w_i$$
 is maximised.

- We are given a set of n items {1, 2, ..., n}.
- Each item *i* has a non-negative weight w_i and a non-negative value v_i.
- We are given a bound W.
- Goal: Select a subset S of the items such that $\sum w_i \leq W$

- The subset sum problem is a specific instance of the knapsack problem (why?)
- You have actually seen this problem before!

The fractional knapsack problem

- We are given a set of n items {1, 2, ..., n}.
- Each item *i* has a non-negative weight w_i and a non-negative value v_i.
- We are given a bound W.
- Goal: Select a fraction x_i from each item i to maximise

$$\sum_{i \in n} x_i \cdot v_i \quad \text{such that} \quad \sum_{i \in n} x_i \cdot w_i \le W$$

A greedy solution

- Sort the items in terms of their "bang-per-buck" value v_i / w_i: v₁ / w₁, v₂ / w₂, ..., v_n / w_n.
- Put as much as possible from the first item in the knapsack, then as much as possible from the second item, ... and so on.
- This algorithm solves the fractional knapsack problem optimally.

 Could the greedy algorithm solve the 0/1 knapsack problem optimally?

- Could the greedy algorithm solve the 0/1 knapsack problem optimally?
- Counter-example:

- Could the greedy algorithm solve the 0/1 knapsack problem optimally?
- Counter-example:

7 minute exercise

Design a dynamic programming algorithm for 0/1 knapsack.

Algorithm SubsetSum(n,W)

```
Array M=[0 ... n, 0 ... W]

Initialise M[0, w] = 0, for each w = 0, 1, ..., W

For i = 1, 2, ..., n

For w = 0, ..., W

If (w_i > w)

M[i, w] = M[i-1, w]

Else

M[i, w] = max\{M[i-1, w], w_i + M[i-1, w-w_i]\}

EndIf
```

Return M[n, W]