
Advanced Algorithmic Techniques  
(COMP523)
Network Flows



Recap and plan
• Last 2 lectures: 

• Dynamic Programming


• Weighted Interval Scheduling, Subset Sum, Knapsack


• This lecture: 

• Network Flows


• Maximum Flow


• The Ford-Fulkerson Algorithm


• Max-Flow - Min-Cut



Flow Networks

• A flow network is a directed graph G=(V, E) with the 
following properties:


• Each edge e in E has a nonnegative capacity ce.


• There is a single source node s in V.


• There is a single sink node t in V.


• All other nodes in V - {s, t} are called internal nodes.
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Flow Networks

• Further assumptions:


• The source s does not have any incoming edges.


• The sink t does not have any outgoing edges. 


• There is at least one edge incident to each node.


• All the capacities are integer numbers.



Flow
• An (s-t) flow is a function f: E → R+, mapping each edge e 

to a nonnegative real number f(e).


• A (feasible) flow must satisfy the following two properties:


• (Capacity) For each e in E, we have 0 ≤ f(e) ≤ ce


• (Flow Conservation) For each node v in V - {s, t}, we 
have that  
 

∑
e into v

f(e) = ∑
e out of v

f(e)



Flow
• The source s generates flow.


• The source t absorbs flow.


• Value of flow f, denoted val(f):


• Total flow out of s.


• Generally, define fout(v) and fin(v) for the flow going out of 
(resp. going into) node v.


• Similarly, define fout(S) and fin(S) for sets of nodes S.

v( f ) = ∑
e out of s

f(e)
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The maximum flow problem

Given a flow network G, find a flow of maximum possible value.

Let’s try to design an algorithm for that.
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An algorithm for max-flow

• Let’s start with a feasible solution.

• Any suggestions?

• f(e) = 0 for all e in E.

• This is a feasible flow. But not very good.

• Let’s try to increase it.
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Increasing the flow

• The flow originates from s and goes to t.

• So we have to find an (s-t) path, and route it via this path.

• How much flow are we allowed to route through this 
path?

• As much as the smallest capacity ce of any edge e on 
the path.
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Idea

• We can push flow forward on edges with leftover 
capacity.


• We can push flow backward on edges that are already 
carrying flow.


• How to we do that systematically?
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The residual graph Gf

• The residual graph Gf of G (also called the residual network) is defined as 
follows:

• The node set Vf of Gf is the same as V.

• For each edge e=(u, v) of E on which f(e) < ce, there are ce - f(e) “leftover” 
units of capacity. 

• We will call this number the residual capacity of the edge e.

• We will call the edge e a forward edge.

• For each edge e=(u, v) of E on which f(e) > 0, there is an edge e’=(u, v) in 
Ef with a capacity of f(e).

• We will call the edge e’ a backward edge.
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Increasing the flow

• The flow originates from s and goes to t.

• So we have to find an (s-t) path, and route it via this path.

• We will use paths in the residual graph Gf.



Working with the residual graph

• Find an (s-t) path P in the residual graph.


• We will call this an augmenting path.


• Define the bottleneck of P,


• denoted bottleneck(P, f)


• to be the minimum residual capacity on any edge on P.


• Define the augmentation of flow f into flow f’


• denoted augment(f, P)



Augmenting the flow
augment(f, P) 
 
      Let b = bottleneck(P, f) 
      For each edge e=(u, v) in P 
             If e is a forward edge then 
                 Increase f(e) in G by b 
             Else (e is a backward edge, and let e’ = (v, u)) 
                 Decrease f(e’) in G by b 
             EndIf 
       EndFor 
     
      Return( f ); 
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Feasibility

• Let f’ = augment(f, P)


• Is f’ a flow?


• Suffices to only check edges e in P (why?)


• Consider an arbitrary edge e = (u, v) of P.
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Feasibility (capacity)
• Consider an arbitrary edge e = (u, v) of P.

• Suppose that e is a forward edge.

• 0 ≤ f(e) ≤ f’(e) = f(e) + b ≤ f(e) + (ce - f(e)) = ce

• Suppose that e is a backward edge.

• ce  ≥ f(e) ≥ f’(e) = f(e) - b ≥ f(e) - f(e) = 0



Feasibility (capacity)
• Consider an arbitrary edge e = (u, v) of P.

• Suppose that e is a forward edge.

• 0 ≤ f(e) ≤ f’(e) = f(e) + b ≤ f(e) + (ce - f(e)) = ce

• Suppose that e is a backward edge.

• ce  ≥ f(e) ≥ f’(e) = f(e) - b ≥ f(e) - f(e) = 0

• The capacity condition holds.



Example
u

v

s t

20

20

20

u

v

s t

20

10

10

20

1020

0

0



Feasibility (flow conservation)

v

v

v

v

forward , forward 

backward , forward 

backward , backward 

forward , backward 
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The Ford-Fulkerson Algorithm

• Start with a 0 flow f on all edges.

• Find an (s-t) path in the residual graph Gf and consider it 
as the augmenting path.

• Augment the flow f on this path to obtain new flow f’.

• Update the residual graph to Gf’.

• Repeat the same process for flow f’ and graph Gf’.

• Until the residual graph has no more (s-t) paths.



The Ford-Fulkerson Algorithm
Max-Flow 

      Initially set f(e) = 0 for all e in E. 
       
      While there exists an s-t path in the residual graph Gf 
           
          Choose such a path P 
          f’ = augment(f, P) 
          Update f to be f’ 
          Update the residual graph to be Gf’ 
       
      Endwhile 
 
      Return ( f )
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Ford-Fulkerson analysis
• Feasibility 

• Does the algorithm produce a flow if it terminates?

• Termination

• Does the algorithm always terminate?

• Running Time

• What is the running time of the algorithm?

• Optimality / Correctness

• Does the algorithm produce a maximum flow?
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Feasibility

• We start from the 0 flow.

• Obviously feasible.

• In each call f’ = augment(f, P) , where f is a feasible flow we 
get a feasible flow f’.

• This is what we established in the previous slides.

• We never, at any step, produce an infeasible flow.
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Termination
• Simple fact: At every step of the algorithm, all the residual capacities 

and flow values are integers.

• Claim: The value of the flow strictly increases in each augmentation 
step.

• Take the first edge e on the augmenting path P in the residual graph.

• The edge e must be incident to s. It must also be a forward edge.

• We increase the previous flow by bottleneck(P, f) and we don’t change 
the flow on any other edge incident to s.

• Therefore f’ is larger than f by bottleneck(P, f), which is strictly positive.
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Termination

• In every augmentation step of the algorithm, the value of 
the flow will strictly increase.

• The algorithm will not “cycle” through the values.

• So the algorithm will terminate.

• Not necessarily!

• The maximum flow has to be bounded!
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Termination

• What can we use as a bound for the maximum flow?

• We can use the total capacity C out of s.

• So the algorithm will terminate in at most C steps.

• Is this true?

∑
e out of s

ce
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Integer Capacities

• Since the capacities are integers, the flow will increase by 
at least 1 in each augmentation step.

• So yes, it is true for integer capacities?

• Is it true for capacities which are real numbers?

• No - tutorial on Friday.
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Running Time

• The running time of FF is O(mF), where F is the value of 
the maximum flow.

• Is this a polynomial time algorithm?



Minimum Cut

• A cut C is a partition of the nodes of G into two sets S 
and T, such that s is in S and t is in T.


• The capacity c(S,T) of a cut C is the sum of capacities of 
all edges “out of S”


• these are edges (u, v) where u is in S and v is in T.
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The Max-Flow Min-Cut Theorem

• Theorem: In every flow network, the value of the 
maximum flow is equal to the capacity of the minimum 
cut.



Optimality / Correctness

• Next Lecture!


