
Advanced Algorithmic Techniques
(COMP523)
Network Flows

Recap and plan
• Last 2 lectures:

• Dynamic Programming

• Weighted Interval Scheduling, Subset Sum, Knapsack

• This lecture:

• Network Flows

• Maximum Flow

• The Ford-Fulkerson Algorithm

• Max-Flow - Min-Cut

Flow Networks

• A flow network is a directed graph G=(V, E) with the
following properties:

• Each edge e in E has a nonnegative capacity ce.

• There is a single source node s in V.

• There is a single sink node t in V.

• All other nodes in V - {s, t} are called internal nodes.

Example
u

v

s t

20

10

10

20

30

Flow Networks

• Further assumptions:

• The source s does not have any incoming edges.

• The sink t does not have any outgoing edges.

• There is at least one edge incident to each node.

• All the capacities are integer numbers.

Flow
• An (s-t) flow is a function f: E → R+, mapping each edge e

to a nonnegative real number f(e).

• A (feasible) flow must satisfy the following two properties:

• (Capacity) For each e in E, we have 0 ≤ f(e) ≤ ce

• (Flow Conservation) For each node v in V - {s, t}, we
have that  
 

∑
e into v

f(e) = ∑
e out of v

f(e)

Flow
• The source s generates flow.

• The source t absorbs flow.

• Value of flow f, denoted val(f):

• Total flow out of s.

• Generally, define fout(v) and fin(v) for the flow going out of
(resp. going into) node v.

• Similarly, define fout(S) and fin(S) for sets of nodes S.

v(f) = ∑
e out of s

f(e)

The maximum flow problem

The maximum flow problem

Given a flow network G, find a flow of maximum possible value.

The maximum flow problem

Given a flow network G, find a flow of maximum possible value.

The maximum flow problem

Given a flow network G, find a flow of maximum possible value.

The maximum flow problem

Given a flow network G, find a flow of maximum possible value.

Let’s try to design an algorithm for that.

An algorithm for max-flow

An algorithm for max-flow

• Let’s start with a feasible solution.

An algorithm for max-flow

• Let’s start with a feasible solution.

• Any suggestions?

An algorithm for max-flow

• Let’s start with a feasible solution.

• Any suggestions?

• f(e) = 0 for all e in E.

An algorithm for max-flow

• Let’s start with a feasible solution.

• Any suggestions?

• f(e) = 0 for all e in E.

• This is a feasible flow. But not very good.

An algorithm for max-flow

• Let’s start with a feasible solution.

• Any suggestions?

• f(e) = 0 for all e in E.

• This is a feasible flow. But not very good.

• Let’s try to increase it.

Increasing the flow

Increasing the flow

• The flow originates from s and goes to t.

Increasing the flow

• The flow originates from s and goes to t.

• So we have to find an (s-t) path, and route it via this path.

Increasing the flow

• The flow originates from s and goes to t.

• So we have to find an (s-t) path, and route it via this path.

• How much flow are we allowed to route through this
path?

Increasing the flow

• The flow originates from s and goes to t.

• So we have to find an (s-t) path, and route it via this path.

• How much flow are we allowed to route through this
path?

• As much as the smallest capacity ce of any edge e on
the path.

Example
u

v

s t

20

10

10

20

30

Example
u

v

s t

20

10

10

20

30

Example
u

v

s t

20

10

10

20

30

Is 20 the maximum flow?

Example
u

v

s t

0

10

10

0

10

Example
u

v

s t

0

10

10

0

10

We are stuck!

What we would like to do

u

v

s t

0

10

10

0

10

20

20

20

What we would like to do

u

v

s t

0

10

10

0

10

Flow conservation 
violated here!

20

20

20

What we would like to do

u

v

s t

0

10

10

0

10

Flow conservation 
violated here!

10

“Undo” 10 units of flow on (u,v)

20

20

20

What we would like to do

u

v

s t

0

10

10

0

10

Flow conservation 
violated here!

10

“Undo” 10 units of flow on (u,v)
Flow conservation 

violated here!

20

20

20

What we would like to do

u

v

s t

0

10

10

0

10

Flow conservation 
violated here!

10

“Undo” 10 units of flow on (u,v)
Flow conservation 

violated here!

20

20

20

Idea

• We can push flow forward on edges with leftover
capacity.

• We can push flow backward on edges that are already
carrying flow.

• How to we do that systematically?

The residual graph Gf

The residual graph Gf

• The residual graph Gf of G (also called the residual network) is defined as
follows:

The residual graph Gf

• The residual graph Gf of G (also called the residual network) is defined as
follows:

• The node set Vf of Gf is the same as V.

The residual graph Gf

• The residual graph Gf of G (also called the residual network) is defined as
follows:

• The node set Vf of Gf is the same as V.

• For each edge e=(u, v) of E on which f(e) < ce, there are ce - f(e) “leftover”
units of capacity.

The residual graph Gf

• The residual graph Gf of G (also called the residual network) is defined as
follows:

• The node set Vf of Gf is the same as V.

• For each edge e=(u, v) of E on which f(e) < ce, there are ce - f(e) “leftover”
units of capacity.

• We will call this number the residual capacity of the edge e.

The residual graph Gf

• The residual graph Gf of G (also called the residual network) is defined as
follows:

• The node set Vf of Gf is the same as V.

• For each edge e=(u, v) of E on which f(e) < ce, there are ce - f(e) “leftover”
units of capacity.

• We will call this number the residual capacity of the edge e.

• We will call the edge e a forward edge.

The residual graph Gf

• The residual graph Gf of G (also called the residual network) is defined as
follows:

• The node set Vf of Gf is the same as V.

• For each edge e=(u, v) of E on which f(e) < ce, there are ce - f(e) “leftover”
units of capacity.

• We will call this number the residual capacity of the edge e.

• We will call the edge e a forward edge.

• For each edge e=(u, v) of E on which f(e) > 0, there is an edge e’=(u, v) in
Ef with a capacity of f(e).

The residual graph Gf

• The residual graph Gf of G (also called the residual network) is defined as
follows:

• The node set Vf of Gf is the same as V.

• For each edge e=(u, v) of E on which f(e) < ce, there are ce - f(e) “leftover”
units of capacity.

• We will call this number the residual capacity of the edge e.

• We will call the edge e a forward edge.

• For each edge e=(u, v) of E on which f(e) > 0, there is an edge e’=(u, v) in
Ef with a capacity of f(e).

• We will call the edge e’ a backward edge.

Example
u

v

s t

20

10

10

20

30

u

v

s t

20

10

10

20

1020

Example
u

v

s t

20

10

10

20

30

u

v

s t

20

10

10

20

1020

0

0

Increasing the flow

• The flow originates from s and goes to t.

• So we have to find an (s-t) path, and route it via this path.

Increasing the flow

• The flow originates from s and goes to t.

• So we have to find an (s-t) path, and route it via this path.

• We will use paths in the residual graph Gf.

Working with the residual graph

• Find an (s-t) path P in the residual graph.

• We will call this an augmenting path.

• Define the bottleneck of P,

• denoted bottleneck(P, f)

• to be the minimum residual capacity on any edge on P.

• Define the augmentation of flow f into flow f’

• denoted augment(f, P)

Augmenting the flow
augment(f, P) 
 
 Let b = bottleneck(P, f) 
 For each edge e=(u, v) in P 
 If e is a forward edge then 
 Increase f(e) in G by b 
 Else (e is a backward edge, and let e’ = (v, u)) 
 Decrease f(e’) in G by b 
 EndIf 
 EndFor 
  
 Return(f);

Example
u

v

s t

20

20

20

u

v

s t

20

10

10

20

1020

0

0

Example
u

v

s t

20

20

20

u

v

s t

20

10

10

20

1020

0

0

Example
u

v

s t

20

20

10

u

v

s t

20

10

10

20

1020

0

0

10

10

Example
u

v

s t

20

10

10

20

2010

0

0

u

v

s t

20

20

10

10

10

Feasibility

• Let f’ = augment(f, P)

• Is f’ a flow?

• Suffices to only check edges e in P (why?)

• Consider an arbitrary edge e = (u, v) of P.

Feasibility (capacity)

Feasibility (capacity)
• Consider an arbitrary edge e = (u, v) of P.

Feasibility (capacity)
• Consider an arbitrary edge e = (u, v) of P.

• Suppose that e is a forward edge.

Feasibility (capacity)
• Consider an arbitrary edge e = (u, v) of P.

• Suppose that e is a forward edge.

• 0 ≤ f(e) ≤ f’(e) = f(e) + b ≤ f(e) + (ce - f(e)) = ce

Feasibility (capacity)
• Consider an arbitrary edge e = (u, v) of P.

• Suppose that e is a forward edge.

• 0 ≤ f(e) ≤ f’(e) = f(e) + b ≤ f(e) + (ce - f(e)) = ce

• Suppose that e is a backward edge.

Feasibility (capacity)
• Consider an arbitrary edge e = (u, v) of P.

• Suppose that e is a forward edge.

• 0 ≤ f(e) ≤ f’(e) = f(e) + b ≤ f(e) + (ce - f(e)) = ce

• Suppose that e is a backward edge.

• ce ≥ f(e) ≥ f’(e) = f(e) - b ≥ f(e) - f(e) = 0

Feasibility (capacity)
• Consider an arbitrary edge e = (u, v) of P.

• Suppose that e is a forward edge.

• 0 ≤ f(e) ≤ f’(e) = f(e) + b ≤ f(e) + (ce - f(e)) = ce

• Suppose that e is a backward edge.

• ce ≥ f(e) ≥ f’(e) = f(e) - b ≥ f(e) - f(e) = 0

• The capacity condition holds.

Example
u

v

s t

20

20

20

u

v

s t

20

10

10

20

1020

0

0

Feasibility (flow conservation)

v

v

v

v

forward , forward

backward , forward

backward , backward

forward , backward

The Ford-Fulkerson Algorithm

The Ford-Fulkerson Algorithm

• Start with a 0 flow f on all edges.

The Ford-Fulkerson Algorithm

• Start with a 0 flow f on all edges.

• Find an (s-t) path in the residual graph Gf and consider it
as the augmenting path.

The Ford-Fulkerson Algorithm

• Start with a 0 flow f on all edges.

• Find an (s-t) path in the residual graph Gf and consider it
as the augmenting path.

• Augment the flow f on this path to obtain new flow f’.

The Ford-Fulkerson Algorithm

• Start with a 0 flow f on all edges.

• Find an (s-t) path in the residual graph Gf and consider it
as the augmenting path.

• Augment the flow f on this path to obtain new flow f’.

• Update the residual graph to Gf’.

The Ford-Fulkerson Algorithm

• Start with a 0 flow f on all edges.

• Find an (s-t) path in the residual graph Gf and consider it
as the augmenting path.

• Augment the flow f on this path to obtain new flow f’.

• Update the residual graph to Gf’.

• Repeat the same process for flow f’ and graph Gf’.

The Ford-Fulkerson Algorithm

• Start with a 0 flow f on all edges.

• Find an (s-t) path in the residual graph Gf and consider it
as the augmenting path.

• Augment the flow f on this path to obtain new flow f’.

• Update the residual graph to Gf’.

• Repeat the same process for flow f’ and graph Gf’.

• Until the residual graph has no more (s-t) paths.

The Ford-Fulkerson Algorithm
Max-Flow

 Initially set f(e) = 0 for all e in E. 
  
 While there exists an s-t path in the residual graph Gf 
  
 Choose such a path P 
 f’ = augment(f, P) 
 Update f to be f’ 
 Update the residual graph to be Gf’ 
  
 Endwhile 
 
 Return (f)

Ford-Fulkerson analysis

Ford-Fulkerson analysis
• Feasibility

Ford-Fulkerson analysis
• Feasibility

• Does the algorithm produce a flow if it terminates?

Ford-Fulkerson analysis
• Feasibility

• Does the algorithm produce a flow if it terminates?

• Termination

Ford-Fulkerson analysis
• Feasibility

• Does the algorithm produce a flow if it terminates?

• Termination

• Does the algorithm always terminate?

Ford-Fulkerson analysis
• Feasibility

• Does the algorithm produce a flow if it terminates?

• Termination

• Does the algorithm always terminate?

• Running Time

Ford-Fulkerson analysis
• Feasibility

• Does the algorithm produce a flow if it terminates?

• Termination

• Does the algorithm always terminate?

• Running Time

• What is the running time of the algorithm?

Ford-Fulkerson analysis
• Feasibility

• Does the algorithm produce a flow if it terminates?

• Termination

• Does the algorithm always terminate?

• Running Time

• What is the running time of the algorithm?

• Optimality / Correctness

Ford-Fulkerson analysis
• Feasibility

• Does the algorithm produce a flow if it terminates?

• Termination

• Does the algorithm always terminate?

• Running Time

• What is the running time of the algorithm?

• Optimality / Correctness

• Does the algorithm produce a maximum flow?

Feasibility

Feasibility

• We start from the 0 flow.

Feasibility

• We start from the 0 flow.

• Obviously feasible.

Feasibility

• We start from the 0 flow.

• Obviously feasible.

• In each call f’ = augment(f, P) , where f is a feasible flow we
get a feasible flow f’.

Feasibility

• We start from the 0 flow.

• Obviously feasible.

• In each call f’ = augment(f, P) , where f is a feasible flow we
get a feasible flow f’.

• This is what we established in the previous slides.

Feasibility

• We start from the 0 flow.

• Obviously feasible.

• In each call f’ = augment(f, P) , where f is a feasible flow we
get a feasible flow f’.

• This is what we established in the previous slides.

• We never, at any step, produce an infeasible flow.

Termination

Termination
• Simple fact: At every step of the algorithm, all the residual capacities

and flow values are integers.

Termination
• Simple fact: At every step of the algorithm, all the residual capacities

and flow values are integers.

• Claim: The value of the flow strictly increases in each augmentation
step.

Termination
• Simple fact: At every step of the algorithm, all the residual capacities

and flow values are integers.

• Claim: The value of the flow strictly increases in each augmentation
step.

• Take the first edge e on the augmenting path P in the residual graph.

Termination
• Simple fact: At every step of the algorithm, all the residual capacities

and flow values are integers.

• Claim: The value of the flow strictly increases in each augmentation
step.

• Take the first edge e on the augmenting path P in the residual graph.

• The edge e must be incident to s. It must also be a forward edge.

Termination
• Simple fact: At every step of the algorithm, all the residual capacities

and flow values are integers.

• Claim: The value of the flow strictly increases in each augmentation
step.

• Take the first edge e on the augmenting path P in the residual graph.

• The edge e must be incident to s. It must also be a forward edge.

• We increase the previous flow by bottleneck(P, f) and we don’t change
the flow on any other edge incident to s.

Termination
• Simple fact: At every step of the algorithm, all the residual capacities

and flow values are integers.

• Claim: The value of the flow strictly increases in each augmentation
step.

• Take the first edge e on the augmenting path P in the residual graph.

• The edge e must be incident to s. It must also be a forward edge.

• We increase the previous flow by bottleneck(P, f) and we don’t change
the flow on any other edge incident to s.

• Therefore f’ is larger than f by bottleneck(P, f), which is strictly positive.

Example
u

v

s t

20

20

20

u

v

s t

20

10

10

20

1020

0

0

Termination

Termination

• In every augmentation step of the algorithm, the value of
the flow will strictly increase.

Termination

• In every augmentation step of the algorithm, the value of
the flow will strictly increase.

• The algorithm will not “cycle” through the values.

Termination

• In every augmentation step of the algorithm, the value of
the flow will strictly increase.

• The algorithm will not “cycle” through the values.

• So the algorithm will terminate.

Termination

• In every augmentation step of the algorithm, the value of
the flow will strictly increase.

• The algorithm will not “cycle” through the values.

• So the algorithm will terminate.

• Not necessarily!

Termination

• In every augmentation step of the algorithm, the value of
the flow will strictly increase.

• The algorithm will not “cycle” through the values.

• So the algorithm will terminate.

• Not necessarily!

• The maximum flow has to be bounded!

Termination

Termination

• What can we use as a bound for the maximum flow?

Termination

• What can we use as a bound for the maximum flow?

• We can use the total capacity C out of s. ∑
e out of s

ce

Termination

• What can we use as a bound for the maximum flow?

• We can use the total capacity C out of s.

• So the algorithm will terminate in at most C steps.

∑
e out of s

ce

Termination

• What can we use as a bound for the maximum flow?

• We can use the total capacity C out of s.

• So the algorithm will terminate in at most C steps.

• Is this true?

∑
e out of s

ce

Integer Capacities

Integer Capacities

• Since the capacities are integers, the flow will increase by
at least 1 in each augmentation step.

Integer Capacities

• Since the capacities are integers, the flow will increase by
at least 1 in each augmentation step.

• So yes, it is true for integer capacities?

Integer Capacities

• Since the capacities are integers, the flow will increase by
at least 1 in each augmentation step.

• So yes, it is true for integer capacities?

• Is it true for capacities which are real numbers?

Integer Capacities

• Since the capacities are integers, the flow will increase by
at least 1 in each augmentation step.

• So yes, it is true for integer capacities?

• Is it true for capacities which are real numbers?

• No - tutorial on Friday.

Running Time

Running Time
• We have assumed that every node is incident to at least on edge in the

graph.

Running Time
• We have assumed that every node is incident to at least on edge in the

graph.

• This means that O(m+n) = O(m).

Running Time
• We have assumed that every node is incident to at least on edge in the

graph.

• This means that O(m+n) = O(m).

• The termination analysis already hinted at the running time.

Running Time
• We have assumed that every node is incident to at least on edge in the

graph.

• This means that O(m+n) = O(m).

• The termination analysis already hinted at the running time.

• In each step, we need to find an augmenting path and compute the
residual graph.

Running Time
• We have assumed that every node is incident to at least on edge in the

graph.

• This means that O(m+n) = O(m).

• The termination analysis already hinted at the running time.

• In each step, we need to find an augmenting path and compute the
residual graph.

• How do we do that?

Running Time
• We have assumed that every node is incident to at least on edge in the

graph.

• This means that O(m+n) = O(m).

• The termination analysis already hinted at the running time.

• In each step, we need to find an augmenting path and compute the
residual graph.

• How do we do that?

• How many iterations do we have?

Running Time
• We have assumed that every node is incident to at least on edge in the

graph.

• This means that O(m+n) = O(m).

• The termination analysis already hinted at the running time.

• In each step, we need to find an augmenting path and compute the
residual graph.

• How do we do that?

• How many iterations do we have?

• The running time of FF is O(mF), where F is the value of the maximum flow.

Running Time

Running Time

• The running time of FF is O(mF), where F is the value of
the maximum flow.

Running Time

• The running time of FF is O(mF), where F is the value of
the maximum flow.

• Is this a polynomial time algorithm?

Minimum Cut

• A cut C is a partition of the nodes of G into two sets S
and T, such that s is in S and t is in T.

• The capacity c(S,T) of a cut C is the sum of capacities of
all edges “out of S”

• these are edges (u, v) where u is in S and v is in T.

Example
u

v

s t

20

10

10

20

30

Example
u

v

s t

20

10

10

20

30

Example
u

v

s t

20

10

10

20

30

The Max-Flow Min-Cut Theorem

• Theorem: In every flow network, the value of the
maximum flow is equal to the capacity of the minimum
cut.

Optimality / Correctness

• Next Lecture!

