Advanced Algorithmic Techniques
(COMP523)

Network Flows

Recap and plan

 Last 2 lectures:

e Dynamic Programming

* Weighted Interval Scheduling, Subset Sum, Knapsack
* This lecture:

e Network Flows

e Maximum Flow

e The Ford-Fulkerson Algorithm

e Max-Flow - Min-Cut

Flow Networks

e A flow network is a directed graph G=(V, E) with the
following properties:

e Each edge e in E has a nonnegative capacity ce.
* There is a single source node s in V.
* There is a single sink node t in V.

 All other nodes in V - {s, t} are called internal nodes.

Example

Flow Networks

e Further assumptions:
* The source s does not have any incoming edges.
* The sink t does not have any outgoing edges.
e There is at least one edge incident to each node.

e All the capacities are integer numbers.

Flow

* An (s-t) flow is a function f: E =@ R+, mapping each edge e
to a nonnegative real number f(e).

e A (feasible) flow must satisfy the following two properties:
e (Capacity) For each e in E, we have 0 < f(e) < ce

e (Flow Conservation) For each node vinV - {s, t}, we

have that
Y fleo =) flo)

eintov e out of v

Flow

The source s generates flow.
The source t absorbs flow.

Value of flow f, denoted val(f):

 Total flow out of s. v(f) = 2 f(e)

e out of s

Generally, define fout(v) and fin(v) for the flow going out of
(resp. going into) node v.

Similarly, define fou(S) and fin(S) for sets of nodes S.

The maximum flow problem

The maximum flow problem

Given a flow network G, find a flow of maximum possible value.

The maximum flow problem

Given a flow network G, find a flow of maximum possible value.

The maximum flow problem

Given a flow network G, find a flow of maximum possible value.

The maximum flow problem

Given a flow network G, find a flow of maximum possible value.

Let’s try to design an algorithm for that.

An algorithm for max-flow

An algorithm for max-flow

o | et’s start with a feasible solution.

An algorithm for max-flow

o | et’s start with a feasible solution.

 Any suggestions?

An algorithm for max-flow

o | et’s start with a feasible solution.
 Any suggestions?

e f(e)=0foralleinE.

An algorithm for max-flow

o | et’s start with a feasible solution.
 Any suggestions?
e f(e)=0foralleinE.

e This is a feasible flow. But not very good.

An algorithm for max-flow

e |et’s start with a feasible solution.
 Any suggestions?
e f(e)=0foralleinE.
e This is a feasible flow. But not very good.

e | et’s try to increase it.

Increasing the flow

Increasing the flow

e The flow originates from s and goes to .

Increasing the flow

e The flow originates from s and goes to .

e So we have to find an (s-t) path, and route it via this path.

Increasing the flow

e The flow originates from s and goes to .

e So we have to find an (s-t) path, and route it via this path.

e How much flow are we allowed to route through this
path?

Increasing the flow

The flow originates from s and goes to .

So we have to find an (s-t) path, and route it via this path.

How much flow are we allowed to route through this
path?

e As much as the smallest capacity ce of any edge e on
the path.

Example

Example

Example

Is 20 the maximum flow?

Example

What we would like to do

What we would like to do

Flow conservation
violated here!

What we would like to do

“Undo” 10 units of flow on (u,v)

10

10120

165

Flow conservation
violated here!

What we would like to do

Flow conservation
violated here!

“Undo” 10 units of flow on (u,v)

10

10

Flow conservation
violated here!

What we would like to do

Flow conservation
violated here!

“Undo” 10 units of flow on (u,v)

10

10

Flow conservation
violated here!

ldea

We can push flow forward on edges with leftover
capacity.

We can push flow backward on edges that are already
carrying flow.

How to we do that systematically?

The residual graph G

The residual graph G

e The residual graph Grof G (also called the residual network) is defined as
follows:

The residual graph G

e The residual graph Grof G (also called the residual network) is defined as
follows:

e The node set Vsof Gris the same as V.

The residual graph G

e The residual graph Grof G (also called the residual network) is defined as
follows:

e The node set Vsof Gris the same as V.

* For each edge e=(u, v) of E on which f(e) < ce, there are ce - f(e) “leftover”
units of capacity.

The residual graph G

 The residual graph Gsof G (also called the residual network) is defined as
follows:

e The node set Vsof Gris the same as V.

* For each edge e=(u, v) of E on which f(e) < ce, there are ce - f(e) “leftover”
units of capacity.

e We will call this number the residual capacity of the edge e.

The residual graph G

 The residual graph Gsof G (also called the residual network) is defined as
follows:

e The node set Vsof Gris the same as V.

* For each edge e=(u, v) of E on which f(e) < ce, there are ce - f(e) “leftover”
units of capacity.

e We will call this number the residual capacity of the edge e.

 We will call the edge e a forward edge.

The residual graph G

 The residual graph Gsof G (also called the residual network) is defined as
follows:

e The node set Vsof Gris the same as V.

* For each edge e=(u, v) of E on which f(e) < ce, there are ce - f(e) “leftover”
units of capacity.

e We will call this number the residual capacity of the edge e.
 We will call the edge e a forward edge.

 For each edge e=(u, v) of E on which f(e) > 0, there is an edge e’=(u, V) in
Es with a capacity of f(e).

The residual graph G

 The residual graph Gsof G (also called the residual network) is defined as
follows:

e The node set Vsof Gris the same as V.

* For each edge e=(u, v) of E on which f(e) < ce, there are ce - f(e) “leftover”
units of capacity.

e We will call this number the residual capacity of the edge e.
 We will call the edge e a forward edge.

 For each edge e=(u, v) of E on which f(e) > 0, there is an edge e’=(u, V) in
Es with a capacity of f(e).

 We will call the edge e’ a backward edge.

Example

Increasing the flow

 The flow originates from s and goes to .

e So we have to find an (s-t) path, and route it via this path.

Increasing the flow

 The flow originates from s and goes to .
e So we have to find an (s-t) path, and route it via this path.

e We will use paths in the residual graph Gs.

Working with the residual graph

 Find an (s-t) path P in the residual graph.
e We will call this an augmenting path.
e Define the bottleneck of P,

e denoted hottleneck(P, f)

e to be the minimum residual capacity on any edge on P.
e Define the augmentation of flow f into flow f’

e denoted augment(f, P)

Augmenting the flow

augment(f, P)

Let b = hottleneck(P, f)

For each edge e=(u, v) in P
If e is a forward edge then
Increase f(e) in G by b
Else (e is a backward edge, and let €’ = (v, u))
Decrease f(e’) in G by b
Endlf
EndFor

Return(f);

Feasibility

e Let f’ = augment(f, P)

e |sf aflow?
e Suffices to only check edges e in P (why?)

 Consider an arbitrary edge e = (u, v) of P.

Feasibility (capacity)

Feasibility (capacity)

e Consider an arbitrary edge e = (u, v) of P.

Feasibility (capacity)

e Consider an arbitrary edge e = (u, v) of P.

e Suppose that e is a forward edge.

Feasibility (capacity)

e Consider an arbitrary edge e = (u, v) of P.

e Suppose that e is a forward edge.

e D<f(e) <f(e)="1(e) + b <f(e) + (ce- f(e)) = ce

Feasibility (capacity)

e Consider an arbitrary edge e = (u, v) of P.
e Suppose that e is a forward edge.
e D<f(e) <f(e)="1(e) + b <f(e) + (ce- f(e)) = ce

 Suppose that e is a backward edge.

Feasibility (capacity)

e Consider an arbitrary edge e = (u, v) of P.
e Suppose that e is a forward edge.
e D<f(e) <f(e)="1(e) + b <f(e) + (ce- f(e)) = ce

 Suppose that e is a backward edge.

Feasibility (capacity)

e Consider an arbitrary edge e = (u, v) of P.

e Suppose that e is a forward edge.
e D<f(e) <f(e)="1(e) + b <f(e) + (ce- f(e)) = ce

 Suppose that e is a backward edge.

e The capacity condition holds.

Feasibility (flow conservation)

0 > forward , forward

backward , forward

-
0 backward , backward

forward , backward

The Ford-Fulkerson Algorithm

The Ford-Fulkerson Algorithm

e Start with a O flow f on all edges.

The Ford-Fulkerson Algorithm

e Start with a O flow f on all edges.

 Find an (s-t) path in the residual graph Gr and consider it
as the augmenting path.

The Ford-Fulkerson Algorithm

e Start with a O flow f on all edges.

 Find an (s-t) path in the residual graph Gr and consider it
as the augmenting path.

e Augment the flow f on this path to obtain new flow f’.

The Ford-Fulkerson Algorithm

e Start with a O flow f on all edges.

 Find an (s-t) path in the residual graph Gr and consider it
as the augmenting path.

e Augment the flow f on this path to obtain new flow f’.

e Update the residual graph to Gr'.

The Ford-Fulkerson Algorithm

e Start with a O flow f on all edges.

 Find an (s-t) path in the residual graph Gr and consider it
as the augmenting path.

e Augment the flow f on this path to obtain new flow f’.
e Update the residual graph to Gr'.

e Repeat the same process for flow f* and graph Gs'.

The Ford-Fulkerson Algorithm

e Start with a O flow f on all edges.

 Find an (s-t) path in the residual graph Gr and consider it
as the augmenting path.

e Augment the flow f on this path to obtain new flow f’.
e Update the residual graph to Gr'.
e Repeat the same process for flow f* and graph Gs'.

e Until the residual graph has no more (s-t) paths.

The Ford-Fulkerson Algorithm

Max-Flow

Initially set f(e) = 0 for all e in E.
While there exists an s-t path in the residual graph Gf

Choose such a path P
f* = augment(f, P)

Update f to be f’
Update the residual graph to be Gf’

Endwhile

Return (1)

Ford-Fulkerson analysis

Ford-Fulkerson analysis

* Feasibility

Ford-Fulkerson analysis

* Feasibility

e Does the algorithm produce a flow if it terminates?

Ford-Fulkerson analysis

* Feasibility
e Does the algorithm produce a flow if it terminates?

e Termination

Ford-Fulkerson analysis

* Feasibility
e Does the algorithm produce a flow if it terminates?
* Termination

* Does the algorithm always terminate?

Ford-Fulkerson analysis

* Feasibility

e Does the algorithm produce a flow if it terminates?
* Termination

* Does the algorithm always terminate?

e Running Time

Ford-Fulkerson analysis

* Feasibility

e Does the algorithm produce a flow if it terminates?
* Termination

* Does the algorithm always terminate?
e Running Time

 What is the running time of the algorithm?

Ford-Fulkerson analysis

* Feasibility

e Does the algorithm produce a flow if it terminates?
* Termination

* Does the algorithm always terminate?
e Running Time

 What is the running time of the algorithm?

e Optimality / Correctness

Ford-Fulkerson analysis

* Feasibility
e Does the algorithm produce a flow if it terminates?
* Termination
* Does the algorithm always terminate?
e Running Time
 What is the running time of the algorithm?
e Optimality / Correctness

* Does the algorithm produce a maximum flow?

Feasibility

Feasibility

e We start from the O flow.

Feasibility

e We start from the O flow.

e Obviously feasible.

Feasibility

e \We start from the 0 flow.
e Obviously feasible.

e In each call f* = augment(f, P) , where f is a feasible flow we
get a feasible flow f.

Feasibility

e We start from the O flow.

e Obviously feasible.

e In each call f* = augment(f, P) , where f is a feasible flow we

get a feasible flow f.

* This is what we established in the previous slides.

Feasibility

e We start from the O flow.

e Obviously feasible.

e In each call f* = augment(f, P) , where f is a feasible flow we
get a feasible flow f.

* This is what we established in the previous slides.

* We never, at any step, produce an infeasible flow.

Termination

Termination

e Simple fact: At every step of the algorithm, all the residual capacities
and flow values are integers.

Termination

e Simple fact: At every step of the algorithm, all the residual capacities
and flow values are integers.

e Claim: The value of the flow strictly increases in each augmentation
step.

Termination

e Simple fact: At every step of the algorithm, all the residual capacities
and flow values are integers.

e Claim: The value of the flow strictly increases in each augmentation
step.

* Take the first edge e on the augmenting path P in the residual graph.

Termination

e Simple fact: At every step of the algorithm, all the residual capacities
and flow values are integers.

e Claim: The value of the flow strictly increases in each augmentation
step.

* Take the first edge e on the augmenting path P in the residual graph.

* The edge e must be incident to s. It must also be a forward edge.

Termination

e Simple fact: At every step of the algorithm, all the residual capacities
and flow values are integers.

e Claim: The value of the flow strictly increases in each augmentation
step.

* Take the first edge e on the augmenting path P in the residual graph.
* The edge e must be incident to s. It must also be a forward edge.

 We increase the previous flow by hottleneck(P, f) and we don’t change
the flow on any other edge incident to s.

Termination

e Simple fact: At every step of the algorithm, all the residual capacities
and flow values are integers.

e Claim: The value of the flow strictly increases in each augmentation
step.

* Take the first edge e on the augmenting path P in the residual graph.
* The edge e must be incident to s. It must also be a forward edge.

 We increase the previous flow by hottleneck(P, f) and we don’t change
the flow on any other edge incident to s.

e Therefore f’ is larger than f by bottleneck(P, f), which is strictly positive.

Termination

Termination

e In every augmentation step of the algorithm, the value of
the flow will strictly increase.

Termination

e In every augmentation step of the algorithm, the value of
the flow will strictly increase.

e The algorithm will not “cycle” through the values.

Termination

e In every augmentation step of the algorithm, the value of
the flow will strictly increase.

e The algorithm will not “cycle” through the values.

e So the algorithm will terminate.

Termination

e In every augmentation step of the algorithm, the value of
the flow will strictly increase.

e The algorithm will not “cycle” through the values.
e So the algorithm will terminate.

e Not necessarily!

Termination

e In every augmentation step of the algorithm, the value of
the flow will strictly increase.

e The algorithm will not “cycle” through the values.
e So the algorithm will terminate.

e Not necessarily!

e The maximum flow has to be bounded!

Termination

Termination

e \What can we use as a bound for the maximum flow?

Termination

e \What can we use as a bound for the maximum flow?

 We can use the total capacity ¢ out of s. 2 Ce

e out of s

Termination

e \What can we use as a bound for the maximum flow?

 We can use the total capacity ¢ out of s. 2 Ce

e out of s

* So the algorithm will terminate in at most ¢ steps.

Termination

e \What can we use as a bound for the maximum flow?

 We can use the total capacity ¢ out of s. 2 Ce
e out of s

* So the algorithm will terminate in at most ¢ steps.

e |s this true?

Integer Capacities

Integer Capacities

* Since the capacities are integers, the flow will increase by
at least 1 in each augmentation step.

Integer Capacities

* Since the capacities are integers, the flow will increase by
at least 1 in each augmentation step.

e SO0 yes, it is true for integer capacities?

Integer Capacities

* Since the capacities are integers, the flow will increase by
at least 1 in each augmentation step.

e SO0 yes, it is true for integer capacities?

e |s it true for capacities which are real numbers?

Integer Capacities

Since the capacities are integers, the flow will increase by
at least 1 in each augmentation step.

So yes, it is true for integer capacities?
Is it true for capacities which are real numbers?

e No - tutorial on Friday.

Running Time

Running Time

 \We have assumed that every node is incident to at least on edge in the
graph.

Running Time

 \We have assumed that every node is incident to at least on edge in the
graph.

 This means that O(m+n) = O(m).

Running Time

 \We have assumed that every node is incident to at least on edge in the
graph.

 This means that O(m+n) = O(m).

* The termination analysis already hinted at the running time.

Running Time

 \We have assumed that every node is incident to at least on edge in the
graph.

 This means that O(m+n) = O(m).
* The termination analysis already hinted at the running time.

* In each step, we need to find an augmenting path and compute the
residual graph.

Running Time

 \We have assumed that every node is incident to at least on edge in the
graph.

 This means that O(m+n) = O(m).
* The termination analysis already hinted at the running time.

* In each step, we need to find an augmenting path and compute the
residual graph.

e How do we do that?

Running Time

 \We have assumed that every node is incident to at least on edge in the
graph.

 This means that O(m+n) = O(m).
* The termination analysis already hinted at the running time.

* In each step, we need to find an augmenting path and compute the
residual graph.

e How do we do that?

e How many iterations do we have?

Running Time

 \We have assumed that every node is incident to at least on edge in the
graph.

 This means that O(m+n) = O(m).
* The termination analysis already hinted at the running time.

* In each step, we need to find an augmenting path and compute the
residual graph.

e How do we do that?
e How many iterations do we have?

 The running time of FF is O(mF), where F is the value of the maximum flow.

Running Time

Running Time

* The running time of FF is O(mF), where F is the value of
the maximum flow.

Running Time

* The running time of FF is O(mF), where F is the value of
the maximum flow.

e |s this a polynomial time algorithm?

Minimum Cut

e A cut C is a partition of the nodes of G into two sets S
and T, suchthatsisinSandtisinT.

e The capacity c(S,T) of a cut C is the sum of capacities of
all edges “out of S”

e these are edges (u, v) whereuisinSand visin T.

Example

Example

Example

The Max-Flow Min-Cut Theorem

e Theorem: In every flow network, the value of the
maximum flow is equal to the capacity of the minimum
cut.

Optimality / Correctness

e Next Lecture!

