Advanced Algorithmic Techniques (COMP523)

Network Flows 2

Recap and plan

• Last lecture:

- Network Flows, Maximum Flow
- Ford Fulkerson
 - Feasibility, termination, running time
- Max-Flow Min-|Cut
- This lecture:
 - Ford Fulkerson
 - Optimality / Correctness
 - Better augmenting paths.
 - Maximum Bipartite Matching

Minimum Cut

- A cut C is a partition of the nodes of G into two sets S and T, such that s is in S and t is in T.
- The capacity c(S,T) of a cut C is the sum of capacities of all edges "out of S"
 - these are edges (u, v) where u is in S and v is in T.

Example

Example

The Max-Flow Min-Cut Theorem

 Theorem: In every flow network, the value of the maximum flow is equal to the capacity of the minimum cut.

 Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then v(f) = f^{out}(S) - fⁱⁿ(S).

 Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then v(f) = f^{out}(S) - fⁱⁿ(S).

 Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then v(f) = f^{out}(S) - fⁱⁿ(S).

- Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then v(f) = f^{out}(S) - fⁱⁿ(S).
 - By definition, v(f) = f^{out}(s).

- Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then v(f) = f^{out}(S) - fⁱⁿ(S).
 - By definition, v(f) = f^{out}(s).
 - By definition $f^{in}(s) = 0$.

- Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then v(f) = f^{out}(S) - fⁱⁿ(S).
 - By definition, v(f) = f^{out}(s).
 - By definition $f^{in}(s) = 0$.
 - Hence, by definition $v(f) = f^{out}(s) f^{in}(s)$.

- Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then v(f) = f^{out}(S) - fⁱⁿ(S).
 - By definition, v(f) = f^{out}(s).
 - By definition fin(s) = 0.
 - Hence, by definition $v(f) = f^{out}(s) f^{in}(s)$.
 - For every other node v, we have that f^{out}(v) fⁱⁿ(v) = 0 (why?)

- Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then v(f) = f^{out}(S) - fⁱⁿ(S).
 - By definition, v(f) = f^{out}(s).
 - By definition fin(s) = 0.

• Therefore we

- Hence, by definition $v(f) = f^{out}(s) f^{in}(s)$.
- For every other node v, we have that f^{out}(v) fⁱⁿ(v) = 0 (why?)

have:
$$v(f) = \sum_{v \in S} \left(f^{out}(v) - f^{in}(v) \right)$$

- Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then v(f) = f^{out}(S) - fⁱⁿ(S).
 - Therefore we have

$$v(f) = \sum_{v \in S} \left(f^{\mathsf{out}}(v) - f^{\mathsf{in}}(v) \right)$$

- Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then v(f) = f^{out}(S) - fⁱⁿ(S).
 - Therefore we have

$$v(f) = \sum_{v \in S} \left(f^{\mathsf{out}}(v) - f^{\mathsf{in}}(v) \right)$$

• Let's recount, using the edges and the flow f(e).

- Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then v(f) = f^{out}(S) - fⁱⁿ(S).
 - Therefore we have

$$v(f) = \sum_{v \in S} \left(f^{\mathsf{out}}(v) - f^{\mathsf{in}}(v) \right)$$

- Let's recount, using the edges and the flow f(e).
 - If an edge has both endpoints in S, it is counted once for "out" and once for "in", so it contributes 0.

- Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then v(f) = f^{out}(S) - fⁱⁿ(S).
 - Therefore we have

$$v(f) = \sum_{v \in S} \left(f^{\mathsf{out}}(v) - f^{\mathsf{in}}(v) \right)$$

- Let's recount, using the edges and the flow f(e).
 - If an edge *has both endpoints in* **S**, it is counted once for "out" and once for "in", so it contributes 0.
 - If an edge has its "tail" in S, it is only counted for "out" and contributes 1.

- Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then v(f) = f^{out}(S) - fⁱⁿ(S).
 - Therefore we have

$$v(f) = \sum_{v \in S} \left(f^{\mathsf{out}}(v) - f^{\mathsf{in}}(v) \right)$$

- Let's recount, using the edges and the flow f(e).
 - If an edge *has both endpoints in* **S**, it is counted once for "out" and once for "in", so it contributes 0.
 - If an edge *has its "tail" in* **S**, it is only counted for "out" and contributes 1.
 - If an edge has its "head" in S, it is only counted for "in" and contributes -1.

- Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then v(f) = f^{out}(S) - fⁱⁿ(S).
 - Therefore we have

$$v(f) = \sum_{v \in S} \left(f^{\mathsf{out}}(v) - f^{\mathsf{in}}(v) \right)$$

- Let's recount, using the edges and the flow f(e).
 - If an edge *has both endpoints in* **S**, it is counted once for "out" and once for "in", so it contributes 0.
 - If an edge *has its "tail" in* **S**, it is only counted for "out" and contributes 1.
 - If an edge has its "head" in S, it is only counted for "in" and contributes -1.
 - Otherwise the edge does not appear in the sum.

- Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then v(f) = f^{out}(S) - fⁱⁿ(S).
 - Therefore we have

$$\psi(f) = \sum_{v \in S} \left(f^{\mathsf{out}}(v) - f^{\mathsf{in}}(v) \right)$$

- Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then v(f) = f^{out}(S) - fⁱⁿ(S).
 - Therefore we have

$$v(f) = \sum_{v \in S} \left(f^{\mathsf{out}}(v) - f^{\mathsf{in}}(v) \right)$$

• We can write

$$v(f) = \sum_{v \in S} \left(f^{\mathsf{out}}(v) - f^{\mathsf{in}}(v) \right) = \sum_{e \text{ out of } S} f(e) - \sum_{e \text{ into } S} f(e) = f^{\mathsf{out}}(S) - f^{\mathsf{in}}(S)$$

 Fact 2: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then v(f) = fⁱⁿ(T) - f^{out}(T).

Straightforward by Fact 1.

Another (s-t) cut

Another (s-t) cut

$$v(f) = f^{out}(S) - f^{in}(S)$$

$$\leq f^{out}(S)$$

$$= \sum_{e \text{ out of } S} f(e)$$

$$\leq \sum_{e \text{ out of } S} c_e$$

$$= c(S, T)$$

$$\begin{aligned} v(f) &= f^{\mathbf{out}}(S) - f^{\mathbf{in}}(S) & \text{by Fact 1} \\ &\leq f^{\mathbf{out}}(S) \\ &= \sum_{e \text{ out of } S} f(e) \\ &\leq \sum_{e \text{ out of } S} c_e \\ &= c(S,T) \end{aligned}$$

$$\begin{split} v(f) &= f^{\mathbf{out}}(S) - f^{\mathbf{in}}(S) & \text{by Fact 1} \\ &\leq f^{\mathbf{out}}(S) & \text{straightforward} \\ &= \sum_{e \text{ out of } S} f(e) \\ &\leq \sum_{e \text{ out of } S} c_e \\ &= c(S,T) \end{split}$$

$$\begin{split} v(f) &= f^{\mathbf{out}}(S) - f^{\mathbf{in}}(S) & \text{by Fact 1} \\ &\leq f^{\mathbf{out}}(S) & \text{straightforward} \\ &= \sum_{e \text{ out of } S} f(e) & \text{by definition} \\ &\leq \sum_{e \text{ out of } S} c_e \\ &= c(S,T) \end{split}$$

$$\begin{aligned} v(f) &= f^{\mathbf{out}}(S) - f^{\mathbf{in}}(S) & \text{by Fact 1} \\ &\leq f^{\mathbf{out}}(S) & \text{straightforward} \\ &= \sum_{e \text{ out of } S} f(e) & \text{by definition} \\ &\leq \sum_{e \text{ out of } S} c_e & \text{by capacity constraint} \\ &= c(S,T) \end{aligned}$$

$$\begin{split} v(f) &= f^{\mathbf{out}}(S) - f^{\mathbf{in}}(S) & \text{by Fact 1} \\ &\leq f^{\mathbf{out}}(S) & \text{straightforward} \\ &= \sum_{e \text{ out of } S} f(e) & \text{by definition} \\ &\leq \sum_{e \text{ out of } S} c_e & \text{by capacity constraint} \\ &= c(S,T) & \text{by definition} \end{split}$$

Comparing facts

• Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then $v(f) \le c(S, T)$.

 Theorem: In every flow network, the value of the maximum flow is equal to the capacity of the minimum cut.

What can we safely say about the maximum flow?
Example

What can we safely say about the maximum flow?

possible flow values

possible cut values

0

 ∞

• How can we prove that a flow f* is maximum?

- How can we prove that a flow f* is maximum?
- Find a cut with capacity $c = f^*$.

- How can we prove that a flow f* is maximum?
- Find a cut with capacity $c = f^*$.

A series of facts

Fact 4: Let f by any (s-t) flow in G such that the residual graph G_f has no *augmenting paths*. Then there is an (s-t) cut C(S*, T*) in G such that c(S*, T*) = v(f).

A series of facts

Fact 4: Let f by any (s-t) flow in G such that the residual graph G_f has no *augmenting paths*. Then there is an (s-t) cut C(S*, T*) in G such that c(S*, T*) = v(f).

 In the residual graph G_f, identify the nodes that are reachable from the source s.

- In the residual graph G_f, identify the nodes that are reachable from the source s.
 - Put these in S*.

- In the residual graph G_f, identify the nodes that are reachable from the source s.
 - Put these in S*.
 - Put the rest in T*.

Example

Example

- In the residual graph G_f, identify the nodes that are reachable from the source s.
 - Put these in S*.
 - Put the rest in T*.

- In the residual graph G_f, identify the nodes that are reachable from the source s.
 - Put these in S*.
 - Put the rest in T*.
- Is this a cut?

- In the residual graph G_f, identify the nodes that are reachable from the source s.
 - Put these in S*.
 - Put the rest in T*.
- Is this a cut?
 - **s** is in **S***.

- In the residual graph G_f, identify the nodes that are reachable from the source s.
 - Put these in S*.
 - Put the rest in T*.
- Is this a cut?
 - **s** is in **S***.
 - t is in T* (why?).

• Claim: in **G**, $f(e) = c_e$ (i.e., e in **G** is saturated by the flow f).

- Claim: in **G**, $f(e) = c_e$ (i.e., e in **G** is saturated by the flow f).
 - If not, e would be a *forward edge* in G_f.

- Claim: in **G**, f(e) = c_e (i.e., e in **G** is saturated by the flow f).
 - If not, e would be a *forward edge* in G_f.
 - There would exist a path (s, v).

• Claim: in **G**, f(e) = 0.

- Claim: in **G**, f(e) = 0.
 - If not, e would generate a *backward edge* e' in G_f.

- Claim: in **G**, f(e) = 0.
 - If not, e would generate a *backward edge* e' in G_f.
 - There would exist a path (s, u').

- What do we get from this?
 - All edges *out of* S* are *saturated* by f.
 - All edges *into* S* *have 0 flow* in f.

- What do we get from this?
 - All edges out of S* are saturated by f.
 - All edges into S* have 0 flow in f.

$$v(f) = f^{out}(S^*) - f^{in}(S^*)$$
$$= \sum_{e \text{ out of } S^*} f(e) - \sum_{e \text{ into } S^*} f(e)$$
$$= \sum_{e \text{ out of } S} c_e - 0$$
$$= c(S^*, T^*)$$

Fact 4: Let f by any (s-t) flow in G such that the residual graph G_f has no *augmenting paths*. Then there is an (s-t) cut C(S*, T*) in G such that c(S*, T*) = v(f).

- Fact 4: Let f by any (s-t) flow in G such that the residual graph G_f has no *augmenting paths*. Then there is an (s-t) cut C(S*, T*) in G such that c(S*, T*) = v(f).
- Ford-Fulkerson stops when there are no augmenting paths in the residual network.

- Fact 4: Let f by any (s-t) flow in G such that the residual graph G_f has no *augmenting paths*. Then there is an (s-t) cut C(S*, T*) in G such that c(S*, T*) = v(f).
- Ford-Fulkerson stops when there are no augmenting paths in the residual network.
- The value of the flow is equal to the capacity of some cut.

- Fact 4: Let f by any (s-t) flow in G such that the residual graph G_f has no *augmenting paths*. Then there is an (s-t) cut C(S*, T*) in G such that c(S*, T*) = v(f).
- Ford-Fulkerson stops when there are no augmenting paths in the residual network.
- The value of the flow is equal to the capacity of some cut.
- This means that the value of the flow is maximum.

 How do we find the value of the minimum cut in a flow network?

- How do we find the value of the minimum cut in a flow network?
 - Run Ford-Fulkerson and output the value of the computed flow.

- How do we find the value of the minimum cut in a flow network?
 - Run Ford-Fulkerson and output the value of the computed flow.
- How do we find *a minimum cut* in a flow network?
Related question

- How do we find the value of the minimum cut in a flow network?
 - Run Ford-Fulkerson and output the value of the computed flow.
- How do we find a *minimum cut* in a flow network?
 - Run Ford-Fulkerson and look at the final residual graph.

Related question

- How do we find the value of the minimum cut in a flow network?
 - Run Ford-Fulkerson and output the value of the computed flow.
- How do we find a *minimum cut* in a flow network?
 - Run Ford-Fulkerson and look at the final residual graph.
 - Put the nodes reachable from s to S and the remaining nodes to T.

The Max-Flow Min-Cut Theorem

- Theorem: In every flow network, the value of the maximum flow is equal to the capacity of the minimum cut.
 - The proof of the theorem follows from the proof of optimality for Ford-Fulkerson!

Ford-Fulkerson analysis

• Feasibility

• Does the algorithm produce a flow if it terminates?

• Termination

• Does the algorithm always terminate?

Running Time

- What is the running time of the algorithm?
- Optimality / Correctness
 - Does the algorithm produce a maximum flow?

 Fact 5: If all the capacities in the flow network are integers, there is maximum flow for which every flow value f(e) is an integer.

- Fact 5: If all the capacities in the flow network are integers, there is maximum flow for which every flow value f(e) is an integer.
 - This follows from the properties of the Ford-Fulkerson algorithm.

- Fact 5: If all the capacities in the flow network are integers, there is maximum flow for which every flow value f(e) is an integer.
 - This follows from the properties of the Ford-Fulkerson algorithm.
 - It produces a maximum flow.

- Fact 5: If all the capacities in the flow network are integers, there is maximum flow for which every flow value f(e) is an integer.
 - This follows from the properties of the Ford-Fulkerson algorithm.
 - It produces a maximum flow.
 - The capacities and flows are integers in every step of the execution.

- The running time of FF is O(mF), where F is the value of the maximum flow.
- Is this a polynomial time algorithm?

- The running time of FF is O(mF), where F is the value of the maximum flow.
- Is this a polynomial time algorithm?
 - It runs in *pseudo-polynomial* time.

- The running time of FF is O(mF), where F is the value of the maximum flow.
- Is this a polynomial time algorithm?
 - It runs in *pseudo-polynomial* time.
 - Should we be happy about this?

- The running time of FF is O(mF), where F is the value of the maximum flow.
- Is this a polynomial time algorithm?
 - It runs in *pseudo-polynomial* time.
 - Should we be happy about this?
 - Is this problem NP-hard?

The Ford-Fulkerson Algorithm

Max-Flow

```
Initially set f(e) = 0 for all e in E.
```

While there exists an s-t path in the residual graph Gf

```
Choose such a path P
f' = augment(f, P)
Update f to be f'
Update the residual graph to be Gf'
```

Endwhile

Return (f)

Max-Flow in polynomial time

- We made the algorithm must faster by simply selecting the shortest path with available capacity.
- Can we always hope to do that?

The Ford-Fulkerson Algorithm

Max-Flow

```
Initially set f(e) = 0 for all e in E.
```

While there exists an s-t path in the residual graph Gf

```
Choose such a path P
f' = augment(f, P)
Update f to be f'
Update the residual graph to be Gf'
```

Endwhile

Return (f)

The Edmonds-Karp Algorithm

Max-Flow

```
Initially set f(e) = 0 for all e in E.
```

While there exists an s-t path in the residual graph Gf

```
Choose the shortest such path P
f' = augment(f, P)
Update f to be f'
Update the residual graph to be Gf'
```

Endwhile

Return (f)

The Edmonds-Karp Algorithm

- The Edmonds-Karp version of the Ford-Fulkerson algorithm runs in time O(nm²).
- The shortest path can be found using a BFS search.