
Advanced Algorithmic Techniques  
(COMP523)
Network Flows 2



Recap and plan
• Last lecture: 

• Network Flows, Maximum Flow


• Ford - Fulkerson


• Feasibility, termination, running time


• Max-Flow - Min-|Cut


• This lecture: 

• Ford - Fulkerson


• Optimality / Correctness


• Better augmenting paths.


• Maximum Bipartite Matching



Minimum Cut

• A cut C is a partition of the nodes of G into two sets S 
and T, such that s is in S and t is in T.


• The capacity c(S,T) of a cut C is the sum of capacities of 
all edges “out of S”


• these are edges (u, v) where u is in S and v is in T.
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The Max-Flow Min-Cut Theorem

• Theorem: In every flow network, the value of the 
maximum flow is equal to the capacity of the minimum 
cut.



A series of facts
• Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut. 

Then v(f) = fout(S) - fin(S).
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Fact 1
• Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut. 

Then v(f) = fout(S) - fin(S).

• By definition, v(f) = fout(s).

• By definition fin(s) = 0.

• Hence, by definition v(f) = fout(s) - fin(s).

• For every other node v, we have that fout(v) - fin(v) = 0 
(why?)

• Therefore we have: 
v( f ) = ∑

v∈S
(f out(v) − f in(v))
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Fact 1 - Rewriting the sums
• Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.  

Then v(f) = fout(S) - fin(S).

• Therefore we have 

• Let’s recount, using the edges and the flow f(e).

• If an edge has both endpoints in S, it is counted once for “out” and 
once for “in”, so it contributes 0.

• If an edge has its “tail” in S, it is only counted for “out” and 
contributes 1.

• If an edge has its “head” in S, it is only counted for “in” and 
contributes -1.

• Otherwise the edge does not appear in the sum.

v( f ) = ∑
v∈S

(f out(v) − f in(v))



Fact 1 - Rewriting the sums

• Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.  
Then v(f) = fout(S) - fin(S).

• Therefore we have v( f ) = ∑
v∈S

(f out(v) − f in(v))



Fact 1 - Rewriting the sums

• Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.  
Then v(f) = fout(S) - fin(S).

• Therefore we have 

• We can write 

v( f ) = ∑
v∈S

(f out(v) − f in(v))

v( f ) = ∑
v∈S

(f out(v) − f in(v)) = ∑
e out of S

f(e) − ∑
e into S

f(e) = f out(S) − f in(S)



A series of facts
• Fact 2: Let f by any (s-t) flow and (S, T) be any (s-t) cut.  

Then v(f) = fin(T) - fout(T).
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A series of facts
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Comparing facts

• Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut. 
Then v(f) ≤ c(S, T).


• Theorem: In every flow network, the value of the 
maximum flow is equal to the capacity of the minimum 
cut.
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A series of facts
• Fact 4: Let f by any (s-t) flow in G such that the residual 

graph Gf has no augmenting paths. Then there is an (s-t) cut 
C(S*, T*) in G such that c(S*, T*) = v(f).
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Proving Fact 4
• In the residual graph Gf, identify the nodes that are 

reachable from the source s.

• Put these in S*.

• Put the rest in T*.

• Is this a cut?

• s is  in S*.

• t is in T* (why?).
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• Claim: in G , f(e) = ce (i.e., e in G is saturated by the flow f).

• If not, e would be a forward edge in Gf.

• There would exist a path (s, v).
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s v’
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• Claim: in G , f(e) = 0.

• If not, e would generate a backward edge e’ in Gf.

• There would exist a path (s, u’).

e’



Proving Fact 4
• What do we get from this?


• All edges out of S* are saturated by f.


• All edges into S* have 0 flow in f.



Proving Fact 4
• What do we get from this?


• All edges out of S* are saturated by f.


• All edges into S* have 0 flow in f.

v(f) = fout(S⇤)� f in(S⇤)

=
X

e out of S⇤

f(e)�
X

e into S⇤

f(e)

=
X

e out of S

ce � 0

= c(S⇤, T ⇤)
<latexit sha1_base64="x+WvCgK+fLz+ylBVNxomrOJSLfc="></latexit>
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Putting everything together

• Fact 4: Let f by any (s-t) flow in G such that the residual 
graph Gf has no augmenting paths. Then there is an (s-t) 
cut C(S*, T*) in G such that c(S*, T*) = v(f).

• Ford-Fulkerson stops when there are no augmenting 
paths in the residual network.

• The value of the flow is equal to the capacity of some cut.

• This means that the value of the flow is maximum.
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Related question
• How do we find the value of the minimum cut in a flow 

network?

• Run Ford-Fulkerson and output the value of the 
computed flow.

• How do we find a minimum cut in a flow network?

• Run Ford-Fulkerson and look at the final residual graph.

• Put the nodes reachable from s to S and the remaining 
nodes to T.



The Max-Flow Min-Cut Theorem

• Theorem: In every flow network, the value of the 
maximum flow is equal to the capacity of the minimum 
cut.


• The proof of the theorem follows from the proof of 
optimality for Ford-Fulkerson!



Ford-Fulkerson analysis
• Feasibility 


• Does the algorithm produce a flow if it terminates?


• Termination 

• Does the algorithm always terminate?


• Running Time 

• What is the running time of the algorithm?


• Optimality / Correctness 

• Does the algorithm produce a maximum flow?



Integer-Valued Flows
• Fact 5: If all the capacities in the flow network are 

integers, there is maximum flow for which every flow 
value f(e) is an integer.



Integer-Valued Flows
• Fact 5: If all the capacities in the flow network are 

integers, there is maximum flow for which every flow 
value f(e) is an integer.

• This follows from the properties of the Ford-Fulkerson 
algorithm.



Integer-Valued Flows
• Fact 5: If all the capacities in the flow network are 

integers, there is maximum flow for which every flow 
value f(e) is an integer.

• This follows from the properties of the Ford-Fulkerson 
algorithm.

• It produces a maximum flow.



Integer-Valued Flows
• Fact 5: If all the capacities in the flow network are 

integers, there is maximum flow for which every flow 
value f(e) is an integer.

• This follows from the properties of the Ford-Fulkerson 
algorithm.

• It produces a maximum flow.

• The capacities and flows are integers in every step of 
the execution.
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Back to the running time

• The running time of FF is O(mF), where F is the value of 
the maximum flow.

• Is this a polynomial time algorithm?

• It runs in pseudo-polynomial time.

• Should we be happy about this?

• Is this problem NP-hard?



The Ford-Fulkerson Algorithm
Max-Flow 

      Initially set f(e) = 0 for all e in E. 
       
      While there exists an s-t path in the residual graph Gf 
           
          Choose such a path P 
          f’ = augment(f, P) 
          Update f to be f’ 
          Update the residual graph to be Gf’ 
       
      Endwhile 
 
      Return ( f )
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Max-Flow in polynomial time

• We made the algorithm must faster by simply selecting 
the shortest path with available capacity.


• Can we always hope to do that?



The Ford-Fulkerson Algorithm
Max-Flow 

      Initially set f(e) = 0 for all e in E. 
       
      While there exists an s-t path in the residual graph Gf 
           
          Choose such a path P 
          f’ = augment(f, P) 
          Update f to be f’ 
          Update the residual graph to be Gf’ 
       
      Endwhile 
 
      Return ( f )


 



The Edmonds-Karp Algorithm
Max-Flow 

      Initially set f(e) = 0 for all e in E. 
       
      While there exists an s-t path in the residual graph Gf 
           
          Choose the shortest such path P 
          f’ = augment(f, P) 
          Update f to be f’ 
          Update the residual graph to be Gf’ 
       
      Endwhile 
 
      Return ( f )


 



The Edmonds-Karp Algorithm

• The Edmonds-Karp version of the Ford-Fulkerson 
algorithm runs in time O(nm2). 

• The shortest path can be found using a BFS search.


