Advanced Algorithmic Techniques
(COMP523)

Network Flows 2

Recap and plan

* Last lecture:
e Network Flows, Maximum Flow
* Ford - Fulkerson
* Feasibility, termination, running time
e Max-Flow - Min-|Cut
e This lecture:
e Ford - Fulkerson
e Optimality / Correctness
e Better augmenting paths.

* Maximum Bipartite Matching

Minimum Cut

e A cut C is a partition of the nodes of G into two sets S
and T, suchthatsisinSandtisinT.

e The capacity c(S,T) of a cut C is the sum of capacities of
all edges “out of S”

e these are edges (u, v) whereuisinSand visin T.

Example

Example

Example

The Max-Flow Min-Cut Theorem

e Theorem: In every flow network, the value of the
maximum flow is equal to the capacity of the minimum
cut.

A series of facts

e Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.

Then v(f) = fout(S) - fin(S).

Fact 1

e Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) = fout(S) - fin(S).

Fact 1

e Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) = fou(S) - fin(S).

Fact 1

e Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) = fou(S) - fin(S).

e By definition, v(f) = fout(s).

Fact 1

e Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) = fou(S) - fin(S).

e By definition, v(f) = fout(s).

e By definition fin(s) = 0.

Fact 1

e Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) = fou(S) - fin(S).

e By definition, v(f) = fout(s).

e By definition fin(s) = 0.

e Hence, by definition v(f) = foui(s) - fin(s),

Fact 1

e Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) = fou(S) - fin(S).

e By definition, v(f) = fout(s).

e By definition fin(s) = 0.

e Hence, by definition v(f) = foui(s) - fin(s),

e For every other node v, we have that fout(v) - fin(v) = 0
(why?)

Fact 1

e Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) = fou(S) - fin(S).

e By definition, v(f) = foui(s).

e By definition fin(s) = 0.

e Hence, by definition v(f) = foui(s) - fin(s),

e For every other node v, we have that fout(v) - fin(v) = 0
(why?)

W)=Y (o) -)

e Therefore we have: =

Fact 1 - Rewriting the sums

e Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) = fou(S) - fin(S).

e Therefore we have V(f) = Z (f Uy) —f in(V)>

vES

Fact 1 - Rewriting the sums

e Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) = fou(S) - fin(S).

e Therefore we have V(f) = Z (f Uy) —f in(V)>

vES
e |et’s recount, using the edges and the flow f(e).

Fact 1 - Rewriting the sums

e Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) = fou(S) - fin(S).

e Therefore we have V(f) = Z (f Uy) —f in(V)>

vES
e |et’s recount, using the edges and the flow f(e).

e If an edge has both endpoints in S, it is counted once for “out” and
once for “in”, so it contributes O.

Fact 1 - Rewriting the sums

e Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) = fou(S) - fin(S).

e Therefore we have V(f) = Z (f Uy) —f in(V)>

vES
e |et’s recount, using the edges and the flow f(e).

e If an edge has both endpoints in S, it is counted once for “out” and
once for “in”, so it contributes O.

e If an edge has its “tail” in S, it is only counted for “out” and
contributes 1.

Fact 1 - Rewriting the sums

e Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) = fou(S) - fin(S).

e Therefore we have V(f) = Z (f Uy) —f in(V)>

vES
e |et’s recount, using the edges and the flow f(e).

e If an edge has both endpoints in S, it is counted once for “out” and
once for “in”, so it contributes O.

e If an edge has its “tail” in S, it is only counted for “out” and
contributes 1.

e If an edge has its “head” in S, it is only counted for “in” and
contributes -1.

Fact 1 - Rewriting the sums

e Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) = fou(S) - fin(S).

e Therefore we have V(f) = Z (f Uy) —f in(V)>

vES
e |et’s recount, using the edges and the flow f(e).

e If an edge has both endpoints in S, it is counted once for “out” and
once for “in”, so it contributes O.

e If an edge has its “tail” in S, it is only counted for “out” and
contributes 1.

e If an edge has its “head” in S, it is only counted for “in” and
contributes -1.

* Otherwise the edge does not appear in the sum.

Fact 1 - Rewriting the sums

e Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) = fou(S) - fin(S).

e Therefore we have V)= Z (f W ~f in(v)>

VES

Fact 1 - Rewriting the sums

e Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) = fou(S) - fin(S).

e Therefore we have V)= Z (f W ~f in(v)>

VES

e \We can write

W= (U= = Y fe= Y fle)=1S) - FS)

vesS e out of S e into §

A series of facts

e Fact 2: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) = fin(T) - fout(T).

Straightforward by Fact 1.

10
30

A series of facts

e Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut.

Then v(f) < c(S, T).

Another (s-t) cut

Another (s-t) cut

A series of facts

e Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) < c(S, T).

A series of facts

e Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) < c(S, T).

o(f) = foE(S) — f7(S)
out(S)

> f(e

e out of S

2.«

e out of S

= ¢(S5,T)

I/\ ||

VAN

A series of facts

e Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) < c(S, T).

() out (S) () by Fact 1
out (S)

> f(e

e out of S

2.«

e out of S

= ¢(S5,T)

I/\ ||

VAN

A series of facts

e Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) < c(S, T).

() out (S) () by Fact 1

Out (9) straightforward

). [l
e out of S

2.«

e out of S

c(S,T)

I/\ ||

VAN

A series of facts

e Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) < c(S, T).

() out (S) () by Fact 1

Out (9) straightforward

E f by definition
t

e out of S

2.«

e out of S

c(S,T)

I/\ ||

VAN

A series of facts

e Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) < c(S, T).

() out (S) () by Fact 1

Out (9) straightforward

E f by definition
t

e out of S

E Ce by capacity constraint
e out of S

c(S,T)

I/\ ||

VAN

A series of facts

e Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) < c(S, T).

() OUt(S) () by Fact 1

< f OUt (S) straightforward

— § f by definition
e out of S

< Co by capacity constraint
e out of S

f
C(,) by definition

Comparing facts

e Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) < c(S, T).

e Theorem: In every flow network, the value of the

maximum flow is equal to the capacity of the minimum
cut.

Example

What can we safely say about the maximum flow?

Example

What can we safely say about the maximum flow?

Proof idea

possible flow values

Proof idea

possible flow values

e How can we prove that a flow f* is maximum?

Proof idea

possible flow values

e How can we prove that a flow f* is maximum?

e Find a cut with capacity c = f”.

Proof idea

possible flow values

e How can we prove that a flow f* is maximum?

e Find a cut with capacity c = f”.

A series of facts

e Fact 4: Let f by any (s-t) flow in G such that the residual
graph Gr has no augmenting paths. Then there is an (s-t) cut
C(S*, TY) in G such that c(S*, T%) = v(f).

A series of facts

e Fact 4: Let f by any (s-t) flow in G such that the residual
graph Gr has no augmenting paths. Then there is an (s-t) cut
C(S*, TY) in G such that c(S*, T%) = v(f).

possible flow values

Constructing the cut

Constructing the cut

e In the residual graph Gs, identify the nodes that are
reachable from the source s.

Constructing the cut

e In the residual graph Gs, identify the nodes that are
reachable from the source s.

e Put these in S*.

Constructing the cut

e In the residual graph Gs, identify the nodes that are
reachable from the source s.

e Put these in S*.

e Puttherestin T".

Proving Fact 4

e In the residual graph Gs, identify the nodes that are
reachable from the source s.

e Put these in S*.

e Puttherestin T

Proving Fact 4

In the residual graph Gs, identify the nodes that are
reachable from the source s.

e Put these in S*.
e Puttherestin T

|s this a cut?

Proving Fact 4

In the residual graph Gs, identify the nodes that are
reachable from the source s.

e Put these in S*.
e Puttherestin T~
|s this a cut?

e Sis inS".

Proving Fact 4

In the residual graph Gs, identify the nodes that are
reachable from the source s.

e Putthese in S”.
e Puttherestin T".
Is this a cut?

e Sis in S

e tisin T* (why?).

Proving Fact 4

Proving Fact 4

Proving Fact 4

e Claim:in G, f(e) = ce (i.e., e in G is saturated by the flow f).

Proving Fact 4

e Claim:in G, f(e) = ce (i.e., e in G is saturated by the flow f).

* If not, e would be a forward edge in Gt.

Proving Fact 4

e

e Claim:in G, f(e) = ce (i.e., e in G is saturated by the flow f).
* If not, e would be a forward edge in Gt.

e There would exist a path (s, v).

Proving Fact 4

Proving Fact 4

Proving Fact 4

e Claim:in G, f(e) =0.

* If not, e would generate a backward edge e’ in Gs.

Proving Fact 4

e Claim:in G, f(e) =0.

* If not, e would generate a backward edge e’ in Gs.

e There would exist a path (s, u’).

Proving Fact 4

e What do we get from this?
* All edges out of S* are saturated by f.

* All edges into S* have O flow In f.

Proving Fact 4

e What do we get from this?
* All edges out of S* are saturated by f.

* All edges into S* have O flow In f.
o(f) = fOU(S™) — f(S7)

= >, fle—) f(e

e out of S* e into S*

— Z Ce — 0

e out of S

= c(S™,T")

Putting everything together

e Fact 4: Let f by any (s-t) flow in G such that the residual

graph Gr has no augmenting paths. Then there is an (s-t)
cut C(S*, T%) in G such that c(S*, T*) = v(f).

Putting everything together

e Fact 4: Let f by any (s-t) flow in G such that the residual

graph Gr has no augmenting paths. Then there is an (s-t)
cut C(S*, T%) in G such that c(S*, T*) = v(f).

e Ford-Fulkerson stops when there are no augmenting
paths in the residual network.

Putting everything together

e Fact 4: Let f by any (s-t) flow in G such that the residual
graph Gr has no augmenting paths. Then there is an (s-t)
cut C(S*, T%) in G such that c(S*, T*) = v(f).

e Ford-Fulkerson stops when there are no augmenting
paths in the residual network.

* The value of the flow is equal to the capacity of some cut.

Putting everything together

e Fact 4: Let f by any (s-t) flow in G such that the residual
graph Gr has no augmenting paths. Then there is an (s-t)
cut C(S*, T%) in G such that c(S*, T*) = v(f).

e Ford-Fulkerson stops when there are no augmenting
paths in the residual network.

* The value of the flow is equal to the capacity of some cut.

e This means that the value of the flow Is maximum.

Related question

Related question

e How do we find the value of the minimum cut in a flow
network?

Related question

e How do we find the value of the minimum cut in a flow
network?

e Run Ford-Fulkerson and output the value of the
computed flow.

Related question

e How do we find the value of the minimum cut in a flow
network?

e Run Ford-Fulkerson and output the value of the
computed flow.

e How do we find a minimum cut in a flow network?

Related question

How do we find the value of the minimum cut in a flow
network?

e Run Ford-Fulkerson and output the value of the
computed flow.

How do we find a minimum cut in a flow network?

e Run Ford-Fulkerson and look at the final residual graph.

Related question

How do we find the value of the minimum cut in a flow
network?

e Run Ford-Fulkerson and output the value of the
computed flow.

How do we find a minimum cut in a flow network?
e Run Ford-Fulkerson and look at the final residual graph.

 Put the nodes reachable from s to S and the remaining
nodes to T.

The Max-Flow Min-Cut Theorem

e Theorem: In every flow network, the value of the

maximum flow is equal to the capacity of the minimum
cut.

e The proof of the theorem follows from the proof of
optimality for Ford-Fulkerson!

Ford-Fulkerson analysis

* Feasibility
e Does the algorithm produce a flow if it terminates?
* Termination
* Does the algorithm always terminate?
e Running Time
 What is the running time of the algorithm?
e Optimality / Correctness

* Does the algorithm produce a maximum flow?

Integer-Valued Flows

e Fact 5: If all the capacities in the flow network are
integers, there is maximum flow for which every flow
value f(e) is an integer.

Integer-Valued Flows

e Fact 5: If all the capacities in the flow network are
integers, there is maximum flow for which every flow
value f(e) is an integer.

e This follows from the properties of the Ford-Fulkerson
algorithm.

Integer-Valued Flows

e Fact 5: If all the capacities in the flow network are
integers, there is maximum flow for which every flow
value f(e) is an integer.

e This follows from the properties of the Ford-Fulkerson
algorithm.

e |t produces a maximum flow.

Integer-Valued Flows

e Fact 5: If all the capacities in the flow network are
integers, there is maximum flow for which every flow
value f(e) is an integer.

e This follows from the properties of the Ford-Fulkerson
algorithm.

e |t produces a maximum flow.

e The capacities and flows are integers in every step of
the execution.

Back to the running time

* The running time of FF is O(mF), where F is the value of
the maximum flow.

e |s this a polynomial time algorithm?

Back to the running time

* The running time of FF is O(mF), where F is the value of
the maximum flow.

e |s this a polynomial time algorithm?

* |t runs in pseudo-polynomial time.

Back to the running time

* The running time of FF is O(mF), where F is the value of
the maximum flow.

e |s this a polynomial time algorithm?
* |t runs in pseudo-polynomial time.

e Should we be happy about this?

Back to the running time

* The running time of FF is O(mF), where F is the value of
the maximum flow.

e |s this a polynomial time algorithm?
* |t runs in pseudo-polynomial time.
e Should we be happy about this?

e |s this problem NP-hard?

The Ford-Fulkerson Algorithm

Max-Flow

Initially set f(e) = 0 for all e in E.
While there exists an s-t path in the residual graph Gf

Choose such a path P
f* = augment(f, P)

Update f to be f’
Update the residual graph to be Gf’

Endwhile

Return (1)

Example

Example

Example

Example

Example

Example

100 100

100 100

Example

100 100

100 100

Example

Example

100 100

100 } 100

Max-Flow Iin polynomial time

e We made the algorithm must faster by simply selecting
the shortest path with available capacity.

e Can we always hope to do that?

The Ford-Fulkerson Algorithm

Max-Flow

Initially set f(e) = 0 for all e in E.
While there exists an s-t path in the residual graph Gf

Choose such a path P
f* = augment(f, P)

Update f to be f’
Update the residual graph to be Gf’

Endwhile

Return (1)

The Edmonds-Karp Algorithm

Max-Flow

Initially set f(e) = 0 for all e in E.
While there exists an s-t path in the residual graph Gf

Choose the shortest such path P
f* = augment(f, P)

Update f to be f’
Update the residual graph to be Gf’

Endwhile

Return (1)

The Edmonds-Karp Algorithm

e The Edmonds-Karp version of the Ford-Fulkerson
algorithm runs in time O(nm2).

e The shortest path can be found using a BFS search.

