
Advanced Algorithmic Techniques
(COMP523)
Network Flows 2

Recap and plan
• Last lecture:

• Network Flows, Maximum Flow

• Ford - Fulkerson

• Feasibility, termination, running time

• Max-Flow - Min-|Cut

• This lecture:

• Ford - Fulkerson

• Optimality / Correctness

• Better augmenting paths.

• Maximum Bipartite Matching

Minimum Cut

• A cut C is a partition of the nodes of G into two sets S
and T, such that s is in S and t is in T.

• The capacity c(S,T) of a cut C is the sum of capacities of
all edges “out of S”

• these are edges (u, v) where u is in S and v is in T.

Example
u

v

s t

20

10

10

20

30

Example
u

v

s t

20

10

10

20

30

Example
u

v

s t

20

10

10

20

30

The Max-Flow Min-Cut Theorem

• Theorem: In every flow network, the value of the
maximum flow is equal to the capacity of the minimum
cut.

A series of facts
• Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.

Then v(f) = fout(S) - fin(S).

u

v

s t

10

30

20

10
20

5 5

Fact 1
• Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.

Then v(f) = fout(S) - fin(S).

u

v

s t

10

30

20

10
20

5 5
v

5

5

Fact 1
• Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.

Then v(f) = fout(S) - fin(S).

Fact 1
• Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.

Then v(f) = fout(S) - fin(S).

• By definition, v(f) = fout(s).

Fact 1
• Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.

Then v(f) = fout(S) - fin(S).

• By definition, v(f) = fout(s).

• By definition fin(s) = 0.

Fact 1
• Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.

Then v(f) = fout(S) - fin(S).

• By definition, v(f) = fout(s).

• By definition fin(s) = 0.

• Hence, by definition v(f) = fout(s) - fin(s).

Fact 1
• Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.

Then v(f) = fout(S) - fin(S).

• By definition, v(f) = fout(s).

• By definition fin(s) = 0.

• Hence, by definition v(f) = fout(s) - fin(s).

• For every other node v, we have that fout(v) - fin(v) = 0
(why?)

Fact 1
• Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.

Then v(f) = fout(S) - fin(S).

• By definition, v(f) = fout(s).

• By definition fin(s) = 0.

• Hence, by definition v(f) = fout(s) - fin(s).

• For every other node v, we have that fout(v) - fin(v) = 0
(why?)

• Therefore we have:
v(f) = ∑

v∈S
(f out(v) − f in(v))

Fact 1 - Rewriting the sums
• Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.  

Then v(f) = fout(S) - fin(S).

• Therefore we have v(f) = ∑
v∈S

(f out(v) − f in(v))

Fact 1 - Rewriting the sums
• Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.  

Then v(f) = fout(S) - fin(S).

• Therefore we have

• Let’s recount, using the edges and the flow f(e).

v(f) = ∑
v∈S

(f out(v) − f in(v))

Fact 1 - Rewriting the sums
• Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.  

Then v(f) = fout(S) - fin(S).

• Therefore we have

• Let’s recount, using the edges and the flow f(e).

• If an edge has both endpoints in S, it is counted once for “out” and
once for “in”, so it contributes 0.

v(f) = ∑
v∈S

(f out(v) − f in(v))

Fact 1 - Rewriting the sums
• Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.  

Then v(f) = fout(S) - fin(S).

• Therefore we have

• Let’s recount, using the edges and the flow f(e).

• If an edge has both endpoints in S, it is counted once for “out” and
once for “in”, so it contributes 0.

• If an edge has its “tail” in S, it is only counted for “out” and
contributes 1.

v(f) = ∑
v∈S

(f out(v) − f in(v))

Fact 1 - Rewriting the sums
• Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.  

Then v(f) = fout(S) - fin(S).

• Therefore we have

• Let’s recount, using the edges and the flow f(e).

• If an edge has both endpoints in S, it is counted once for “out” and
once for “in”, so it contributes 0.

• If an edge has its “tail” in S, it is only counted for “out” and
contributes 1.

• If an edge has its “head” in S, it is only counted for “in” and
contributes -1.

v(f) = ∑
v∈S

(f out(v) − f in(v))

Fact 1 - Rewriting the sums
• Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.  

Then v(f) = fout(S) - fin(S).

• Therefore we have

• Let’s recount, using the edges and the flow f(e).

• If an edge has both endpoints in S, it is counted once for “out” and
once for “in”, so it contributes 0.

• If an edge has its “tail” in S, it is only counted for “out” and
contributes 1.

• If an edge has its “head” in S, it is only counted for “in” and
contributes -1.

• Otherwise the edge does not appear in the sum.

v(f) = ∑
v∈S

(f out(v) − f in(v))

Fact 1 - Rewriting the sums

• Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.  
Then v(f) = fout(S) - fin(S).

• Therefore we have v(f) = ∑
v∈S

(f out(v) − f in(v))

Fact 1 - Rewriting the sums

• Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.  
Then v(f) = fout(S) - fin(S).

• Therefore we have

• We can write

v(f) = ∑
v∈S

(f out(v) − f in(v))

v(f) = ∑
v∈S

(f out(v) − f in(v)) = ∑
e out of S

f(e) − ∑
e into S

f(e) = f out(S) − f in(S)

A series of facts
• Fact 2: Let f by any (s-t) flow and (S, T) be any (s-t) cut.  

Then v(f) = fin(T) - fout(T).

u

v

s t

10

30

20

10
20

5 5

Straightforward by Fact 1.

A series of facts
• Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut.

Then v(f) ≤ c(S, T).

u

v

s t

10

30

20

10
20

5 5

Another (s-t) cut
u

v

s t

20

10

10

20

30

5 5

Another (s-t) cut
u

v

s t

20

10

10

20

30

10 10

A series of facts
• Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut.

Then v(f) ≤ c(S, T).

A series of facts
• Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut.

Then v(f) ≤ c(S, T).

v(f) = fout(S)� f in(S)

 fout(S)

=
X

e out of S

f(e)


X

e out of S

ce

= c(S, T)
<latexit sha1_base64="z8bM8Wdun/1oAs528KBdEfmJzZ4=">AAACkHicfVFNb9NAEF27fJRAIZQjlxERlSNBZLeV2kMjClwQp6I0baU4WOvNuF117TW744rI8u/h/3Dj37BxUlRaxEgrPb33Znb3TVoqaSkMf3n+2r37Dx6uP+o8frLx9Fn3+eaJ1ZUROBZaaXOWcotKFjgmSQrPSoM8TxWeppcfF/rpFRordXFM8xKnOT8vZCYFJ0cl3R9XQdaHrSFkX+uY8DulWa0rappg1Ie3jr0mZdFScdzZgljhtxvSwv9HG0JsqzypEVq5BqeCzqCBUQNZgEtbO+E/RpHg9TgRjN4c95NuLxyEbcFdEK1Aj63qKOn+jGdaVDkWJBS3dhKFJU1rbkgKhU0nriyWXFzyc5w4WPAc7bRuA23gtWNmkGnjTkHQsjc7ap5bO89T58w5Xdjb2oL8lzapKNufuizLirAQy4uySgFpWGwHZtKgIDV3gAsj3VtBXHDDBbkddlwI0e0v3wUn24NoZ7D9Zbd3+GEVxzp7yV6xgEVsjx2yT+yIjZnwNrwd78Ab+pv+vv/Of7+0+t6q5wX7q/zPvwHYmcDh</latexit>

A series of facts
• Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut.

Then v(f) ≤ c(S, T).

v(f) = fout(S)� f in(S)

 fout(S)

=
X

e out of S

f(e)


X

e out of S

ce

= c(S, T)
<latexit sha1_base64="z8bM8Wdun/1oAs528KBdEfmJzZ4=">AAACkHicfVFNb9NAEF27fJRAIZQjlxERlSNBZLeV2kMjClwQp6I0baU4WOvNuF117TW744rI8u/h/3Dj37BxUlRaxEgrPb33Znb3TVoqaSkMf3n+2r37Dx6uP+o8frLx9Fn3+eaJ1ZUROBZaaXOWcotKFjgmSQrPSoM8TxWeppcfF/rpFRordXFM8xKnOT8vZCYFJ0cl3R9XQdaHrSFkX+uY8DulWa0rappg1Ie3jr0mZdFScdzZgljhtxvSwv9HG0JsqzypEVq5BqeCzqCBUQNZgEtbO+E/RpHg9TgRjN4c95NuLxyEbcFdEK1Aj63qKOn+jGdaVDkWJBS3dhKFJU1rbkgKhU0nriyWXFzyc5w4WPAc7bRuA23gtWNmkGnjTkHQsjc7ap5bO89T58w5Xdjb2oL8lzapKNufuizLirAQy4uySgFpWGwHZtKgIDV3gAsj3VtBXHDDBbkddlwI0e0v3wUn24NoZ7D9Zbd3+GEVxzp7yV6xgEVsjx2yT+yIjZnwNrwd78Ab+pv+vv/Of7+0+t6q5wX7q/zPvwHYmcDh</latexit>

by Fact 1

A series of facts
• Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut.

Then v(f) ≤ c(S, T).

v(f) = fout(S)� f in(S)

 fout(S)

=
X

e out of S

f(e)


X

e out of S

ce

= c(S, T)
<latexit sha1_base64="z8bM8Wdun/1oAs528KBdEfmJzZ4=">AAACkHicfVFNb9NAEF27fJRAIZQjlxERlSNBZLeV2kMjClwQp6I0baU4WOvNuF117TW744rI8u/h/3Dj37BxUlRaxEgrPb33Znb3TVoqaSkMf3n+2r37Dx6uP+o8frLx9Fn3+eaJ1ZUROBZaaXOWcotKFjgmSQrPSoM8TxWeppcfF/rpFRordXFM8xKnOT8vZCYFJ0cl3R9XQdaHrSFkX+uY8DulWa0rappg1Ie3jr0mZdFScdzZgljhtxvSwv9HG0JsqzypEVq5BqeCzqCBUQNZgEtbO+E/RpHg9TgRjN4c95NuLxyEbcFdEK1Aj63qKOn+jGdaVDkWJBS3dhKFJU1rbkgKhU0nriyWXFzyc5w4WPAc7bRuA23gtWNmkGnjTkHQsjc7ap5bO89T58w5Xdjb2oL8lzapKNufuizLirAQy4uySgFpWGwHZtKgIDV3gAsj3VtBXHDDBbkddlwI0e0v3wUn24NoZ7D9Zbd3+GEVxzp7yV6xgEVsjx2yT+yIjZnwNrwd78Ab+pv+vv/Of7+0+t6q5wX7q/zPvwHYmcDh</latexit>

by Fact 1

straightforward

A series of facts
• Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut.

Then v(f) ≤ c(S, T).

v(f) = fout(S)� f in(S)

 fout(S)

=
X

e out of S

f(e)


X

e out of S

ce

= c(S, T)
<latexit sha1_base64="z8bM8Wdun/1oAs528KBdEfmJzZ4=">AAACkHicfVFNb9NAEF27fJRAIZQjlxERlSNBZLeV2kMjClwQp6I0baU4WOvNuF117TW744rI8u/h/3Dj37BxUlRaxEgrPb33Znb3TVoqaSkMf3n+2r37Dx6uP+o8frLx9Fn3+eaJ1ZUROBZaaXOWcotKFjgmSQrPSoM8TxWeppcfF/rpFRordXFM8xKnOT8vZCYFJ0cl3R9XQdaHrSFkX+uY8DulWa0rappg1Ie3jr0mZdFScdzZgljhtxvSwv9HG0JsqzypEVq5BqeCzqCBUQNZgEtbO+E/RpHg9TgRjN4c95NuLxyEbcFdEK1Aj63qKOn+jGdaVDkWJBS3dhKFJU1rbkgKhU0nriyWXFzyc5w4WPAc7bRuA23gtWNmkGnjTkHQsjc7ap5bO89T58w5Xdjb2oL8lzapKNufuizLirAQy4uySgFpWGwHZtKgIDV3gAsj3VtBXHDDBbkddlwI0e0v3wUn24NoZ7D9Zbd3+GEVxzp7yV6xgEVsjx2yT+yIjZnwNrwd78Ab+pv+vv/Of7+0+t6q5wX7q/zPvwHYmcDh</latexit>

by Fact 1

straightforward

by definition

A series of facts
• Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut.

Then v(f) ≤ c(S, T).

v(f) = fout(S)� f in(S)

 fout(S)

=
X

e out of S

f(e)


X

e out of S

ce

= c(S, T)
<latexit sha1_base64="z8bM8Wdun/1oAs528KBdEfmJzZ4=">AAACkHicfVFNb9NAEF27fJRAIZQjlxERlSNBZLeV2kMjClwQp6I0baU4WOvNuF117TW744rI8u/h/3Dj37BxUlRaxEgrPb33Znb3TVoqaSkMf3n+2r37Dx6uP+o8frLx9Fn3+eaJ1ZUROBZaaXOWcotKFjgmSQrPSoM8TxWeppcfF/rpFRordXFM8xKnOT8vZCYFJ0cl3R9XQdaHrSFkX+uY8DulWa0rappg1Ie3jr0mZdFScdzZgljhtxvSwv9HG0JsqzypEVq5BqeCzqCBUQNZgEtbO+E/RpHg9TgRjN4c95NuLxyEbcFdEK1Aj63qKOn+jGdaVDkWJBS3dhKFJU1rbkgKhU0nriyWXFzyc5w4WPAc7bRuA23gtWNmkGnjTkHQsjc7ap5bO89T58w5Xdjb2oL8lzapKNufuizLirAQy4uySgFpWGwHZtKgIDV3gAsj3VtBXHDDBbkddlwI0e0v3wUn24NoZ7D9Zbd3+GEVxzp7yV6xgEVsjx2yT+yIjZnwNrwd78Ab+pv+vv/Of7+0+t6q5wX7q/zPvwHYmcDh</latexit>

by Fact 1

straightforward

by definition

by capacity constraint

A series of facts
• Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut.

Then v(f) ≤ c(S, T).

v(f) = fout(S)� f in(S)

 fout(S)

=
X

e out of S

f(e)


X

e out of S

ce

= c(S, T)
<latexit sha1_base64="z8bM8Wdun/1oAs528KBdEfmJzZ4=">AAACkHicfVFNb9NAEF27fJRAIZQjlxERlSNBZLeV2kMjClwQp6I0baU4WOvNuF117TW744rI8u/h/3Dj37BxUlRaxEgrPb33Znb3TVoqaSkMf3n+2r37Dx6uP+o8frLx9Fn3+eaJ1ZUROBZaaXOWcotKFjgmSQrPSoM8TxWeppcfF/rpFRordXFM8xKnOT8vZCYFJ0cl3R9XQdaHrSFkX+uY8DulWa0rappg1Ie3jr0mZdFScdzZgljhtxvSwv9HG0JsqzypEVq5BqeCzqCBUQNZgEtbO+E/RpHg9TgRjN4c95NuLxyEbcFdEK1Aj63qKOn+jGdaVDkWJBS3dhKFJU1rbkgKhU0nriyWXFzyc5w4WPAc7bRuA23gtWNmkGnjTkHQsjc7ap5bO89T58w5Xdjb2oL8lzapKNufuizLirAQy4uySgFpWGwHZtKgIDV3gAsj3VtBXHDDBbkddlwI0e0v3wUn24NoZ7D9Zbd3+GEVxzp7yV6xgEVsjx2yT+yIjZnwNrwd78Ab+pv+vv/Of7+0+t6q5wX7q/zPvwHYmcDh</latexit>

by Fact 1

straightforward

by definition

by capacity constraint

by definition

Comparing facts

• Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) ≤ c(S, T).

• Theorem: In every flow network, the value of the
maximum flow is equal to the capacity of the minimum
cut.

Example
u

v

s t

20

10

10

20

30

What can we safely say about the maximum flow?

Example
u

v

s t

20

10

10

20

30

What can we safely say about the maximum flow?

Proof idea

0 ∞

possible flow values possible cut values

Proof idea

• How can we prove that a flow f* is maximum?

0 ∞

possible flow values possible cut values

Proof idea

• How can we prove that a flow f* is maximum?

• Find a cut with capacity c = f*.

0 ∞

possible flow values possible cut values

Proof idea

• How can we prove that a flow f* is maximum?

• Find a cut with capacity c = f*.

0 ∞

possible flow values possible cut values

A series of facts
• Fact 4: Let f by any (s-t) flow in G such that the residual

graph Gf has no augmenting paths. Then there is an (s-t) cut
C(S*, T*) in G such that c(S*, T*) = v(f).

A series of facts
• Fact 4: Let f by any (s-t) flow in G such that the residual

graph Gf has no augmenting paths. Then there is an (s-t) cut
C(S*, T*) in G such that c(S*, T*) = v(f).

0 ∞

possible flow values possible cut values

Constructing the cut

Constructing the cut

• In the residual graph Gf, identify the nodes that are
reachable from the source s.

Constructing the cut

• In the residual graph Gf, identify the nodes that are
reachable from the source s.

• Put these in S*.

Constructing the cut

• In the residual graph Gf, identify the nodes that are
reachable from the source s.

• Put these in S*.

• Put the rest in T*.

Example
u

v

s t

20

10

10

20

2010

0

0

u

v

s t

20

20

30

10

10

Example
u

v

s t

20

10

10

20

2010

0

0

u

v

s t

20

20

30

10

10

Proving Fact 4
• In the residual graph Gf, identify the nodes that are

reachable from the source s.

• Put these in S*.

• Put the rest in T*.

Proving Fact 4
• In the residual graph Gf, identify the nodes that are

reachable from the source s.

• Put these in S*.

• Put the rest in T*.

• Is this a cut?

Proving Fact 4
• In the residual graph Gf, identify the nodes that are

reachable from the source s.

• Put these in S*.

• Put the rest in T*.

• Is this a cut?

• s is in S*.

Proving Fact 4
• In the residual graph Gf, identify the nodes that are

reachable from the source s.

• Put these in S*.

• Put the rest in T*.

• Is this a cut?

• s is in S*.

• t is in T* (why?).

Proving Fact 4

s

t

S T

Proving Fact 4

s v’

u v

u’

t

S T
e

Proving Fact 4

s v’

u v

u’

t

S T
e

• Claim: in G , f(e) = ce (i.e., e in G is saturated by the flow f).

Proving Fact 4

s v’

u v

u’

t

S T
e

• Claim: in G , f(e) = ce (i.e., e in G is saturated by the flow f).

• If not, e would be a forward edge in Gf.

Proving Fact 4

s v’

u v

u’

t

S T
e

• Claim: in G , f(e) = ce (i.e., e in G is saturated by the flow f).

• If not, e would be a forward edge in Gf.

• There would exist a path (s, v).

Proving Fact 4

s v’

u v

u’

t

S T

e

Proving Fact 4

s v’

u v

u’

t

S T

e

• Claim: in G , f(e) = 0.

Proving Fact 4

s v’

u v

u’

t

S T

e

• Claim: in G , f(e) = 0.

• If not, e would generate a backward edge e’ in Gf.

e’

Proving Fact 4

s v’

u v

u’

t

S T

e

• Claim: in G , f(e) = 0.

• If not, e would generate a backward edge e’ in Gf.

• There would exist a path (s, u’).

e’

Proving Fact 4
• What do we get from this?

• All edges out of S* are saturated by f.

• All edges into S* have 0 flow in f.

Proving Fact 4
• What do we get from this?

• All edges out of S* are saturated by f.

• All edges into S* have 0 flow in f.

v(f) = fout(S⇤)� f in(S⇤)

=
X

e out of S⇤

f(e)�
X

e into S⇤

f(e)

=
X

e out of S

ce � 0

= c(S⇤, T ⇤)
<latexit sha1_base64="x+WvCgK+fLz+ylBVNxomrOJSLfc=">AAACr3ichVFdb9MwFHXC1yhfZXvk5YoK1KFRJQOJvUya4IXHAes6qWmD415v1hw7im8mqih/jx/AG/8GJ+0QdEhcydLROedeXx9nhVaOouhnEN66fefuva37vQcPHz1+0n+6fepsVQocC6tteZZxh1oZHJMijWdFiTzPNE6yyw+tPrnC0ilrTmhZ4Czn50ZJJTh5Ku1/vxrKXXgJhyDndUL4jTJZ24qaZvhlXr9qduG1V64FZX7TSdJruxJX5WmN0Dlq8J1gJTTQuRqQQ2wnbLiUIbvh+d+4BkSKflJ07RSrRfZOunXS/iAaRV3BTRCvwYCt6zjt/0gWVlQ5GhKaOzeNo4JmNS9JCY1NL6kcFlxc8nOcemh4jm5Wd3k38MIzC5C29McQdOyfHTXPnVvmmXfmnC7cptaS/9KmFcmDmU+5qAiNWF0kKw0+rvbzYKFKFKSXHnBRKr8riAteckH+i3s+hHjzyTfB6f4ofjPa//R2cPR+HccWe8aesyGL2Tt2xD6yYzZmItgLPgfTIAnjcBLOw68raxise3bYXxWqX3J1y8g=</latexit>

Putting everything together

• Fact 4: Let f by any (s-t) flow in G such that the residual
graph Gf has no augmenting paths. Then there is an (s-t)
cut C(S*, T*) in G such that c(S*, T*) = v(f).

Putting everything together

• Fact 4: Let f by any (s-t) flow in G such that the residual
graph Gf has no augmenting paths. Then there is an (s-t)
cut C(S*, T*) in G such that c(S*, T*) = v(f).

• Ford-Fulkerson stops when there are no augmenting
paths in the residual network.

Putting everything together

• Fact 4: Let f by any (s-t) flow in G such that the residual
graph Gf has no augmenting paths. Then there is an (s-t)
cut C(S*, T*) in G such that c(S*, T*) = v(f).

• Ford-Fulkerson stops when there are no augmenting
paths in the residual network.

• The value of the flow is equal to the capacity of some cut.

Putting everything together

• Fact 4: Let f by any (s-t) flow in G such that the residual
graph Gf has no augmenting paths. Then there is an (s-t)
cut C(S*, T*) in G such that c(S*, T*) = v(f).

• Ford-Fulkerson stops when there are no augmenting
paths in the residual network.

• The value of the flow is equal to the capacity of some cut.

• This means that the value of the flow is maximum.

Related question

Related question
• How do we find the value of the minimum cut in a flow

network?

Related question
• How do we find the value of the minimum cut in a flow

network?

• Run Ford-Fulkerson and output the value of the
computed flow.

Related question
• How do we find the value of the minimum cut in a flow

network?

• Run Ford-Fulkerson and output the value of the
computed flow.

• How do we find a minimum cut in a flow network?

Related question
• How do we find the value of the minimum cut in a flow

network?

• Run Ford-Fulkerson and output the value of the
computed flow.

• How do we find a minimum cut in a flow network?

• Run Ford-Fulkerson and look at the final residual graph.

Related question
• How do we find the value of the minimum cut in a flow

network?

• Run Ford-Fulkerson and output the value of the
computed flow.

• How do we find a minimum cut in a flow network?

• Run Ford-Fulkerson and look at the final residual graph.

• Put the nodes reachable from s to S and the remaining
nodes to T.

The Max-Flow Min-Cut Theorem

• Theorem: In every flow network, the value of the
maximum flow is equal to the capacity of the minimum
cut.

• The proof of the theorem follows from the proof of
optimality for Ford-Fulkerson!

Ford-Fulkerson analysis
• Feasibility

• Does the algorithm produce a flow if it terminates?

• Termination

• Does the algorithm always terminate?

• Running Time

• What is the running time of the algorithm?

• Optimality / Correctness

• Does the algorithm produce a maximum flow?

Integer-Valued Flows
• Fact 5: If all the capacities in the flow network are

integers, there is maximum flow for which every flow
value f(e) is an integer.

Integer-Valued Flows
• Fact 5: If all the capacities in the flow network are

integers, there is maximum flow for which every flow
value f(e) is an integer.

• This follows from the properties of the Ford-Fulkerson
algorithm.

Integer-Valued Flows
• Fact 5: If all the capacities in the flow network are

integers, there is maximum flow for which every flow
value f(e) is an integer.

• This follows from the properties of the Ford-Fulkerson
algorithm.

• It produces a maximum flow.

Integer-Valued Flows
• Fact 5: If all the capacities in the flow network are

integers, there is maximum flow for which every flow
value f(e) is an integer.

• This follows from the properties of the Ford-Fulkerson
algorithm.

• It produces a maximum flow.

• The capacities and flows are integers in every step of
the execution.

Back to the running time

• The running time of FF is O(mF), where F is the value of
the maximum flow.

• Is this a polynomial time algorithm?

Back to the running time

• The running time of FF is O(mF), where F is the value of
the maximum flow.

• Is this a polynomial time algorithm?

• It runs in pseudo-polynomial time.

Back to the running time

• The running time of FF is O(mF), where F is the value of
the maximum flow.

• Is this a polynomial time algorithm?

• It runs in pseudo-polynomial time.

• Should we be happy about this?

Back to the running time

• The running time of FF is O(mF), where F is the value of
the maximum flow.

• Is this a polynomial time algorithm?

• It runs in pseudo-polynomial time.

• Should we be happy about this?

• Is this problem NP-hard?

The Ford-Fulkerson Algorithm
Max-Flow

 Initially set f(e) = 0 for all e in E. 
  
 While there exists an s-t path in the residual graph Gf 
  
 Choose such a path P 
 f’ = augment(f, P) 
 Update f to be f’ 
 Update the residual graph to be Gf’ 
  
 Endwhile 
 
 Return (f)

Example
u

v

s t

100

100

100

100

1

Example
u

v

s t

100

100

100

100

1

Example
u

v

s t

99

100

100

99

1

1

1

Example
u

v

s t

99

100

100

99

1

1

1

Example
u

v

s t

99

99

99

99

1

1

1

1

1

Example
u

v

s t

99

99

99

99

1

1

1

1

1

Example
u

v

s t

100

100

100

100

1

Example
u

v

s t

100

100

100

100

1

Example
u

v

s t

100

100

100

100

1

Example
u

v

s t

100

100

100

100

1

Example
u

v

s t

100

100

100

100

1

Example
u

v

s t

100

100

100

100

1

Max-Flow in polynomial time

• We made the algorithm must faster by simply selecting
the shortest path with available capacity.

• Can we always hope to do that?

The Ford-Fulkerson Algorithm
Max-Flow

 Initially set f(e) = 0 for all e in E. 
  
 While there exists an s-t path in the residual graph Gf 
  
 Choose such a path P 
 f’ = augment(f, P) 
 Update f to be f’ 
 Update the residual graph to be Gf’ 
  
 Endwhile 
 
 Return (f)

The Edmonds-Karp Algorithm
Max-Flow

 Initially set f(e) = 0 for all e in E. 
  
 While there exists an s-t path in the residual graph Gf 
  
 Choose the shortest such path P 
 f’ = augment(f, P) 
 Update f to be f’ 
 Update the residual graph to be Gf’ 
  
 Endwhile 
 
 Return (f)

The Edmonds-Karp Algorithm

• The Edmonds-Karp version of the Ford-Fulkerson
algorithm runs in time O(nm2).

• The shortest path can be found using a BFS search.

