Advanced Algorithmic Techniques
(COMP523)

Network Flows 2



Recap and plan

* Last lecture:
e Network Flows, Maximum Flow
* Ford - Fulkerson
* Feasibility, termination, running time
e Max-Flow - Min-|Cut
e This lecture:
e Ford - Fulkerson
e Optimality / Correctness
e Better augmenting paths.

* Maximum Bipartite Matching



Minimum Cut

e A cut C is a partition of the nodes of G into two sets S
and T, suchthatsisinSandtisinT.

e The capacity c(S,T) of a cut C is the sum of capacities of
all edges “out of S”

e these are edges (u, v) whereuisinSand visin T.
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The Max-Flow Min-Cut Theorem

e Theorem: In every flow network, the value of the
maximum flow is equal to the capacity of the minimum
cut.



A series of facts

e Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.

Then v(f) = fout(S) - fin(S).
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W)=Y (o) - )

e Therefore we have: =
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Fact 1 - Rewriting the sums

e Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) = fou(S) - fin(S).

e Therefore we have  V(f) = Z (f Uy) —f in(V)>

vES
e |et’s recount, using the edges and the flow f(e).

e If an edge has both endpoints in S, it is counted once for “out” and
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e If an edge has its “tail” in S, it is only counted for “out” and
contributes 1.

e If an edge has its “head” in S, it is only counted for “in” and
contributes -1.

* Otherwise the edge does not appear in the sum.
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Fact 1 - Rewriting the sums

e Fact 1: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) = fou(S) - fin(S).

e Therefore we have V)= Z (f W ~f in(v)>

VES

e \We can write

W= (U= = Y fe= Y fle)=1S) - FS)

vesS e out of S e into §



A series of facts

e Fact 2: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) = fin(T) - fout(T).

Straightforward by Fact 1.
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A series of facts
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Comparing facts

e Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut.
Then v(f) < c(S, T).

e Theorem: In every flow network, the value of the

maximum flow is equal to the capacity of the minimum
cut.
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e Fact 4: Let f by any (s-t) flow in G such that the residual
graph Gr has no augmenting paths. Then there is an (s-t) cut
C(S*, TY) in G such that c(S*, T%) = v(f).
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In the residual graph Gs, identify the nodes that are
reachable from the source s.

e Putthese in S”.
e Puttherestin T".
Is this a cut?

e Sis in S

e tisin T* (why?).
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Proving Fact 4

e

e Claim:in G, f(e) = ce (i.e., e in G is saturated by the flow f).
* If not, e would be a forward edge in Gt.

e There would exist a path (s, v).
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Proving Fact 4

e Claim:in G, f(e) =0.

* If not, e would generate a backward edge e’ in Gs.

e There would exist a path (s, u’).



Proving Fact 4

e What do we get from this?
* All edges out of S* are saturated by f.

* All edges into S* have O flow In f.
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e What do we get from this?
* All edges out of S* are saturated by f.

* All edges into S* have O flow In f.
o(f) = fOU(S™) — f(S7)

= >, fle— )  f(e

e out of S* e into S*

— Z Ce — 0

e out of S

= c(S™,T")
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Putting everything together

e Fact 4: Let f by any (s-t) flow in G such that the residual
graph Gr has no augmenting paths. Then there is an (s-t)
cut C(S*, T%) in G such that c(S*, T*) = v(f).

e Ford-Fulkerson stops when there are no augmenting
paths in the residual network.

* The value of the flow is equal to the capacity of some cut.

e This means that the value of the flow Is maximum.
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Related question

How do we find the value of the minimum cut in a flow
network?

e Run Ford-Fulkerson and output the value of the
computed flow.

How do we find a minimum cut in a flow network?
e Run Ford-Fulkerson and look at the final residual graph.

 Put the nodes reachable from s to S and the remaining
nodes to T.



The Max-Flow Min-Cut Theorem

e Theorem: In every flow network, the value of the

maximum flow is equal to the capacity of the minimum
cut.

e The proof of the theorem follows from the proof of
optimality for Ford-Fulkerson!



Ford-Fulkerson analysis

* Feasibility
e Does the algorithm produce a flow if it terminates?
* Termination
* Does the algorithm always terminate?
e Running Time
 What is the running time of the algorithm?
e Optimality / Correctness

* Does the algorithm produce a maximum flow?
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Integer-Valued Flows

e Fact 5: If all the capacities in the flow network are
integers, there is maximum flow for which every flow
value f(e) is an integer.

e This follows from the properties of the Ford-Fulkerson
algorithm.

e |t produces a maximum flow.

e The capacities and flows are integers in every step of
the execution.
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Back to the running time

* The running time of FF is O(mF), where F is the value of
the maximum flow.

e |s this a polynomial time algorithm?
* |t runs in pseudo-polynomial time.
e Should we be happy about this?

e |s this problem NP-hard?



The Ford-Fulkerson Algorithm

Max-Flow

Initially set f(e) = 0 for all e in E.
While there exists an s-t path in the residual graph Gf

Choose such a path P
f* = augment(f, P)

Update f to be f’
Update the residual graph to be Gf’

Endwhile

Return (1)
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Max-Flow Iin polynomial time

e We made the algorithm must faster by simply selecting
the shortest path with available capacity.

e Can we always hope to do that?
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The Edmonds-Karp Algorithm

Max-Flow

Initially set f(e) = 0 for all e in E.
While there exists an s-t path in the residual graph Gf

Choose the shortest such path P
f* = augment(f, P)

Update f to be f’
Update the residual graph to be Gf’

Endwhile

Return (1)



The Edmonds-Karp Algorithm

e The Edmonds-Karp version of the Ford-Fulkerson
algorithm runs in time O(nm2).

e The shortest path can be found using a BFS search.



