# Advanced Algorithmic Techniques (COMP523) 

Network Flows 2

## Recap and plan

- Last lecture:
- Network Flows, Maximum Flow
- Ford - Fulkerson
- Feasibility, termination, running time
- Max-Flow - Min-|Cut
- This lecture:
- Ford - Fulkerson
- Optimality / Correctness
- Better augmenting paths.
- Maximum Bipartite Matching


## Minimum Cut

- A cut C is a partition of the nodes of $G$ into two sets $S$ and $T$, such that $s$ is in $S$ and $t$ is in $T$.
- The capacity $c(S, T)$ of a cut $C$ is the sum of capacities of all edges "out of S"
- these are edges $(u, v)$ where $u$ is in $S$ and $v$ is in $T$.


## Example



## Example



## Example



## The Max-Flow Min-Cut Theorem

- Theorem: In every flow network, the value of the maximum flow is equal to the capacity of the minimum cut.


## A series of facts

 Then $v(f)=$ fout $(S)-f i n(S)$.


## Fact 1

- Fact 1: Let f by any (s-t) flow and ( $\mathrm{S}, \mathrm{T}$ ) be any ( $(\mathrm{s}-\mathrm{t})$ cut. Then $v(f)=$ fout $(S)-f i n(S)$.



## Fact 1

- Fact 1: Let f by any (s-t) flow and ( $\mathrm{S}, \mathrm{T}$ ) be any ( $(\mathrm{s}-\mathrm{t})$ cut. Then $v(f)=$ fout $(S)-f i n(S)$.


## Fact 1

- Fact 1: Let f by any ( $\mathrm{s}-\mathrm{t}$ ) flow and ( $\mathrm{S}, \mathrm{T}$ ) be any ( $\mathrm{s}-\mathrm{t}$ ) cut. Then $v(f)=$ fout $(S)-f i n(S)$.
- By definition, $v(f)=$ fout $(s)$.


## Fact 1

- Fact 1: Let f by any ( $s-t$ ) flow and $(S, T)$ be any ( $s-t$ ) cut. Then $v(f)=$ fout $(S)-f i n(S)$.
- By definition, $v(f)=$ fout $(s)$.
- By definition fin $(\mathrm{s})=0$.


## Fact 1

- Fact 1 : Let f by any ( $s-t$ ) flow and $(S, T)$ be any ( $s-t$ ) cut. Then $v(f)=$ fout $(S)-f i n(S)$.
- By definition, $v(f)=$ fout $(s)$.
- By definition fin $(\mathrm{s})=0$.
- Hence, by definition $v(f)=$ fout $(s)-f i n(s)$.


## Fact 1

- Fact 1: Let f by any ( $s-t$ ) flow and $(S, T)$ be any ( $s-t$ ) cut. Then $v(f)=$ fout $(S)-f i n(S)$.
- By definition, $v(f)=$ fout $(s)$.
- By definition fin $(s)=0$.
- Hence, by definition $v(f)=$ fout $(s)-f i n(s)$.
- For every other node $v$, we have that fout $(v)-f_{\text {fin }}(v)=0$ (why?)


## Fact 1

- Fact 1: Let f by any ( $s-t$ ) flow and $(S, T)$ be any ( $s-t$ ) cut. Then $v(f)=$ fout $(S)-f i n(S)$.
- By definition, $v(f)=$ fout $(s)$.
- By definition fin $(\mathrm{s})=0$.
- Hence, by definition $v(f)=$ fout $(s)-f i n(s)$.
- For every other node $v$, we have that fout $^{(v)}$ - $\operatorname{fin}(v)=0$ (why?)
- Therefore we have:

$$
v(f)=\sum_{v \in S}\left(f^{\mathrm{out}}(v)-f^{\mathrm{in}}(v)\right)
$$

## Fact 1 - Rewriting the sums

- Fact 1: Let f by any ( $\mathrm{s}-\mathrm{t}$ ) flow and ( $\mathrm{S}, \mathrm{T}$ ) be any ( $\mathrm{s}-\mathrm{t}$ ) cut.

Then $v(f)=$ fout $(S)-f i n(S)$.

- Therefore we have $\quad v(f)=\sum_{v \in S}\left(f^{\text {out }}(v)-f^{\mathbf{i n}}(v)\right)$


## Fact 1 - Rewriting the sums

- Fact 1: Let f by any ( $\mathrm{s}-\mathrm{t}$ ) flow and ( $\mathrm{S}, \mathrm{T}$ ) be any ( $\mathrm{s}-\mathrm{t}$ ) cut. Then $v(f)=$ fout $(S)-f i n(S)$.
- Therefore we have $v(f)=\sum_{v \in S}\left(f^{\text {out }}(v)-f^{\mathbf{i n}}(v)\right)$
- Let's recount, using the edges and the flow $f(e)$.


## Fact 1 - Rewriting the sums

- Fact 1: Let $f$ by any ( $s-t)$ flow and ( $\mathrm{S}, \mathrm{T}$ ) be any ( $\mathrm{s}-\mathrm{t}$ ) cut.

Then $v(f)=$ fout $(S)-\operatorname{fin}^{(S)}$.

- Therefore we have

$$
v(f)=\sum_{v \in S}\left(f^{\mathrm{out}}(v)-f^{\mathrm{in}}(v)\right)
$$

- Let's recount, using the edges and the flow $f(e)$.
- If an edge has both endpoints in S, it is counted once for "out" and once for "in", so it contributes 0 .


## Fact 1 - Rewriting the sums

- Fact 1: Let $f$ by any ( $s-t)$ flow and ( $\mathrm{S}, \mathrm{T}$ ) be any ( $\mathrm{s}-\mathrm{t}$ ) cut.

Then $v(f)=$ fout $(S)-f i n(S)$.

- Therefore we have

$$
v(f)=\sum_{v \in S}\left(f^{\text {out }}(v)-f^{\mathrm{in}}(v)\right)
$$

- Let's recount, using the edges and the flow f(e).
- If an edge has both endpoints in S, it is counted once for "out" and once for "in", so it contributes 0 .
- If an edge has its "tail" in S, it is only counted for "out" and contributes 1 .


## Fact 1 - Rewriting the sums

- Fact 1: Let $f$ by any (s-t) flow and ( $\mathrm{S}, \mathrm{T}$ ) be any ( $\mathrm{s}-\mathrm{t}$ ) cut.

Then $v(f)=$ fout $(S)-\operatorname{fin}^{(S)}$.

- Therefore we have

$$
v(f)=\sum_{v \in S}\left(f^{\text {out }}(v)-f^{\mathrm{in}}(v)\right)
$$

- Let's recount, using the edges and the flow f(e).
- If an edge has both endpoints in S, it is counted once for "out" and once for "in", so it contributes 0 .
- If an edge has its "tail" in S, it is only counted for "out" and contributes 1.
- If an edge has its "head" in S, it is only counted for "in" and contributes -1 .


## Fact 1 - Rewriting the sums

- Fact 1: Let $f$ by any (s-t) flow and ( $\mathrm{S}, \mathrm{T}$ ) be any ( $\mathrm{s}-\mathrm{t}$ ) cut.

Then $v(f)=$ fout $(S)-f i n(S)$.

- Therefore we have

$$
v(f)=\sum_{v \in S}\left(f^{\text {out }}(v)-f^{\mathrm{in}}(v)\right)
$$

- Let's recount, using the edges and the flow f(e).
- If an edge has both endpoints in S, it is counted once for "out" and once for "in", so it contributes 0 .
- If an edge has its "tail" in S, it is only counted for "out" and contributes 1 .
- If an edge has its "head" in S, it is only counted for "in" and contributes -1 .
- Otherwise the edge does not appear in the sum.


## Fact 1 - Rewriting the sums

- Fact 1: Let f by any (s-t) flow and ( $\mathrm{S}, \mathrm{T}$ ) be any ( $(\mathrm{s}-\mathrm{t})$ cut. Then $v(f)=$ fout $(S)-f i n(S)$.
- Therefore we have

$$
v(f)=\sum_{v \in S}\left(f^{\text {out }}(v)-f^{\mathrm{in}}(v)\right)
$$

## Fact 1 - Rewriting the sums

- Fact 1: Let $f$ by any ( $s-t$ ) flow and $(S, T)$ be any $(s-t)$ cut. Then $v(f)=$ fout $(S)-f i n(S)$.
- Therefore we have

$$
v(f)=\sum_{v \in S}\left(f^{\text {out }}(v)-f^{\text {in }}(v)\right)
$$

- We can write

$$
v(f)=\sum_{v \in S}\left(f^{\text {out }}(v)-f^{\text {in }}(v)\right)=\sum_{e \text { out of } S} f(e)-\sum_{e \text { into } S} f(e)=f^{\text {out }_{( }(S)-f^{\text {in }}(S)}
$$

## A series of facts

- Fact 2: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then $v(f)=\operatorname{fin}(T)-\operatorname{fout}(T)$.

Straightforward by Fact 1.


## A series of facts

- Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then $v(f) \leq c(S, T)$.



## Another (s-t) cut



## Another (s-t) cut



## A series of facts

- Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then $v(f) \leq c(S, T)$.


## A series of facts

- Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then $v(f) \leq c(S, T)$.

$$
\begin{aligned}
v(f) & =f^{\text {out }}(S)-f^{\text {in }}(S) \\
& \leq f^{\text {out }}(S) \\
& =\sum_{e \text { out of } S} f(e) \\
& \leq \sum_{e \text { out of } S} c_{e} \\
& =c(S, T)
\end{aligned}
$$

## A series of facts

- Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then $v(f) \leq c(S, T)$.

$$
\begin{aligned}
v(f) & =f^{\text {out }}(S)-f^{\text {in }}(S) \quad \text { by Fact } 1 \\
& \leq f^{\text {out }}(S) \\
& =\sum_{e \text { out of } S} f(e) \\
& \leq \sum_{e \text { out of } S} c_{e} \\
& =c(S, T)
\end{aligned}
$$

## A series of facts

- Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then $v(f) \leq c(S, T)$.

$$
\begin{array}{rlr}
v(f) & =f^{\text {out }}(S)-f^{\text {in }}(S) \quad \text { by Fact } 1 \\
& \leq f^{\text {out }}(S) \\
& =\sum_{e \text { out of } S} f(e) \\
& \leq \sum_{e \text { out of } S} c_{e} \\
& =c(S, T)
\end{array}
$$

## A series of facts

- Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then $v(f) \leq c(S, T)$.

$$
\begin{array}{rlr}
v(f) & =f^{\text {out }}(S)-f^{\text {in }}(S) & \\
& \text { by Fact } 1 \\
& \leq f^{\text {out }}(S) & \text { straightforward } \\
& =\sum_{e \text { out of } S} f(e) & \\
& \leq \text { by definition } c_{e} & \\
& =c(S, T) &
\end{array}
$$

## A series of facts

- Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then $v(f) \leq c(S, T)$.

$$
\begin{array}{rlr}
v(f) & =f^{\text {out }}(S)-f^{\text {in }}(S) & \text { by Fact } 1 \\
& \leq f^{\text {out }}(S) & \text { straightforward } \\
& =\sum_{e \text { out of } S} f(e) & \text { by definition } \\
& \leq \sum_{e \text { out of } S} c_{e} & \text { by capacity constraint } \\
& =c(S, T) &
\end{array}
$$

## A series of facts

- Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then $v(f) \leq c(S, T)$.

$$
\begin{array}{rlr}
v(f) & =f^{\text {out }}(S)-f^{\text {in }}(S) & \text { by Fact } 1 \\
& \leq f^{\text {out }}(S) & \text { straightforward } \\
& =\sum_{e \text { out of } S} f(e) & \text { by definition } \\
& \leq \sum_{e \text { out of } S} c_{e} & \text { by capacity constraint } \\
& =c(S, T) & \text { by definition }
\end{array}
$$

## Comparing facts

- Fact 3: Let f by any (s-t) flow and ( $\mathrm{S}, \mathrm{T}$ ) be any ( $(\mathrm{s}-\mathrm{t})$ cut. Then $v(f) \leq c(S, T)$.
- Theorem: In every flow network, the value of the maximum flow is equal to the capacity of the minimum cut.


## Example



What can we safely say about the maximum flow?

## Example



What can we safely say about the maximum flow?

## Proof idea

| possible flow values |
| :--- |
| 0 |

## Proof idea



- How can we prove that a flow $f^{\star}$ is maximum?


## Proof idea



- How can we prove that a flow $f^{\star}$ is maximum?
- Find a cut with capacity $c=f^{*}$.


## Proof idea



- How can we prove that a flow $f^{*}$ is maximum?
- Find a cut with capacity $c=f^{*}$.


## A series of facts

- Fact 4: Let f by any ( $\mathrm{s}-\mathrm{t}$ ) flow in G such that the residual graph $\mathrm{G}_{\mathrm{f}}$ has no augmenting paths. Then there is an (s-t) cut $C\left(S^{*}, T^{*}\right)$ in $G$ such that $c\left(S^{*}, T^{*}\right)=v(f)$.


## A series of facts

- Fact 4: Let f by any (s-t) flow in G such that the residual graph $\mathrm{G}_{f}$ has no augmenting paths. Then there is an (s-t) cut $C\left(S^{*}, T^{*}\right)$ in $G$ such that $c\left(S^{*}, T^{*}\right)=v(f)$.


Constructing the cut

## Constructing the cut

- In the residual graph $G_{f}$, identify the nodes that are reachable from the source s.


## Constructing the cut

- In the residual graph $G_{f}$, identify the nodes that are reachable from the source s.
- Put these in $\mathrm{S}^{*}$.


## Constructing the cut

- In the residual graph $G_{f}$, identify the nodes that are reachable from the source s.
- Put these in $\mathrm{S}^{*}$.
- Put the rest in $\mathrm{T}^{*}$.


## Example



## Example



## Proving Fact 4

- In the residual graph $G_{f}$, identify the nodes that are reachable from the source $s$.
- Put these in S*.
- Put the rest in $\mathrm{T}^{*}$.


## Proving Fact 4

- In the residual graph $G_{f}$, identify the nodes that are reachable from the source $s$.
- Put these in S*.
- Put the rest in $\mathrm{T}^{*}$.
- Is this a cut?


## Proving Fact 4

- In the residual graph $G_{f}$, identify the nodes that are reachable from the source $s$.
- Put these in S*.
- Put the rest in $\mathrm{T}^{*}$.
- Is this a cut?
- $s$ is in $S^{*}$.


## Proving Fact 4

- In the residual graph $G_{f}$, identify the nodes that are reachable from the source $s$.
- Put these in S*.
- Put the rest in $\mathrm{T}^{*}$.
- Is this a cut?
- $s$ is in $S^{*}$.
- t is in $\mathrm{T}^{*}$ (why?).


## Proving Fact 4



## Proving Fact 4



## Proving Fact 4



- Claim: in $G$, $f(e)=C_{e}$ (i.e., $e$ in $G$ is saturated by the flow $f$ ).


## Proving Fact 4



- Claim: in $G, f(e)=c_{e}$ (i.e., $e$ in $G$ is saturated by the flow $f$ ).
- If not, e would be a forward edge in $\mathrm{G}_{\mathrm{f}}$.


## Proving Fact 4



- Claim: in $G, f(e)=c_{e}$ (i.e., e in $G$ is saturated by the flow f).
- If not, e would be a forward edge in Gf.
- There would exist a path $(\mathrm{s}, \mathrm{v})$.


## Proving Fact 4



## Proving Fact 4



- Claim: in $G, f(e)=0$.


## Proving Fact 4



- Claim: in $G, f(e)=0$.
- If not, e would generate a backward edge e' in $\mathrm{G}_{\mathrm{f}}$.


## Proving Fact 4



- Claim: in $G, f(e)=0$.
- If not, e would generate a backward edge e' in Gf.
- There would exist a path (s, u').


## Proving Fact 4

- What do we get from this?
- All edges out of $\mathrm{S}^{*}$ are saturated by f .
- All edges into $\mathrm{S}^{*}$ have 0 flow in f .


## Proving Fact 4

- What do we get from this?
- All edges out of $S^{*}$ are saturated by $f$.
- All edges into $\mathrm{S}^{*}$ have 0 flow in f.

$$
\begin{aligned}
v(f) & =f^{\text {out }}\left(S^{*}\right)-f^{\text {in }}\left(S^{*}\right) \\
& =\sum_{e \text { out of } S^{*}} f(e)-\sum_{e \text { into } S^{*}} f(e) \\
& =\sum_{e \text { out of } S} c_{e}-0 \\
& =c\left(S^{*}, T^{*}\right)
\end{aligned}
$$

## Putting everything together

- Fact 4: Let f by any (s-t) flow in G such that the residual graph $\mathrm{G}_{\mathrm{f}}$ has no augmenting paths. Then there is an (s-t) cut $C\left(S^{*}, T^{*}\right)$ in $G$ such that $c\left(S^{*}, T^{*}\right)=v(f)$.


## Putting everything together

- Fact 4: Let f by any (s-t) flow in G such that the residual graph $\mathrm{G}_{\mathrm{f}}$ has no augmenting paths. Then there is an (s-t) cut $C\left(S^{*}, T^{*}\right)$ in $G$ such that $c\left(S^{*}, T^{*}\right)=v(f)$.
- Ford-Fulkerson stops when there are no augmenting paths in the residual network.


## Putting everything together

- Fact 4: Let f by any (s-t) flow in G such that the residual graph $\mathrm{G}_{\mathrm{f}}$ has no augmenting paths. Then there is an (s-t) cut $C\left(S^{*}, T^{*}\right)$ in $G$ such that $c\left(S^{*}, T^{*}\right)=v(f)$.
- Ford-Fulkerson stops when there are no augmenting paths in the residual network.
- The value of the flow is equal to the capacity of some cut.


## Putting everything together

- Fact 4: Let f by any (s-t) flow in G such that the residual graph $\mathrm{G}_{\mathrm{f}}$ has no augmenting paths. Then there is an (s-t) cut $C\left(S^{*}, T^{*}\right)$ in $G$ such that $c\left(S^{*}, T^{*}\right)=v(f)$.
- Ford-Fulkerson stops when there are no augmenting paths in the residual network.
- The value of the flow is equal to the capacity of some cut.
- This means that the value of the flow is maximum.


## Related question

## Related question

- How do we find the value of the minimum cut in a flow network?


## Related question

- How do we find the value of the minimum cut in a flow network?
- Run Ford-Fulkerson and output the value of the computed flow.


## Related question

- How do we find the value of the minimum cut in a flow network?
- Run Ford-Fulkerson and output the value of the computed flow.
- How do we find a minimum cut in a flow network?


## Related question

- How do we find the value of the minimum cut in a flow network?
- Run Ford-Fulkerson and output the value of the computed flow.
- How do we find a minimum cut in a flow network?
- Run Ford-Fulkerson and look at the final residual graph.


## Related question

- How do we find the value of the minimum cut in a flow network?
- Run Ford-Fulkerson and output the value of the computed flow.
- How do we find a minimum cut in a flow network?
- Run Ford-Fulkerson and look at the final residual graph.
- Put the nodes reachable from s to $S$ and the remaining nodes to $T$.


## The Max-Flow Min-Cut Theorem

- Theorem: In every flow network, the value of the maximum flow is equal to the capacity of the minimum cut.
- The proof of the theorem follows from the proof of optimality for Ford-Fulkerson!


## Ford-Fulkerson analysis

- Feasibility
- Does the algorithm produce a flow if it terminates?
- Termination
- Does the algorithm always terminate?
- Running Time
- What is the running time of the algorithm?
- Optimality / Correctness
- Does the algorithm produce a maximum flow?


## Integer-Valued Flows

- Fact 5: If all the capacities in the flow network are integers, there is maximum flow for which every flow value $f(e)$ is an integer.


## Integer-Valued Flows

- Fact 5: If all the capacities in the flow network are integers, there is maximum flow for which every flow value $f(e)$ is an integer.
- This follows from the properties of the Ford-Fulkerson algorithm.


## Integer-Valued Flows

- Fact 5: If all the capacities in the flow network are integers, there is maximum flow for which every flow value $f(e)$ is an integer.
- This follows from the properties of the Ford-Fulkerson algorithm.
- It produces a maximum flow.


## Integer-Valued Flows

- Fact 5: If all the capacities in the flow network are integers, there is maximum flow for which every flow value $f(e)$ is an integer.
- This follows from the properties of the Ford-Fulkerson algorithm.
- It produces a maximum flow.
- The capacities and flows are integers in every step of the execution.


## Back to the running time

- The running time of $F F$ is $\mathbf{O}(m F)$, where F is the value of the maximum flow.
- Is this a polynomial time algorithm?


## Back to the running time

- The running time of $F F$ is $\mathbf{O}(m F)$, where F is the value of the maximum flow.
- Is this a polynomial time algorithm?
- It runs in pseudo-polynomial time.


## Back to the running time

- The running time of $F F$ is $\mathbf{O}(m F)$, where F is the value of the maximum flow.
- Is this a polynomial time algorithm?
- It runs in pseudo-polynomial time.
- Should we be happy about this?


## Back to the running time

- The running time of $F F$ is $\mathbf{O}(m F)$, where F is the value of the maximum flow.
- Is this a polynomial time algorithm?
- It runs in pseudo-polynomial time.
- Should we be happy about this?
- Is this problem NP-hard?


## The Ford-Fulkerson Algorithm

Max-Flow

Initially set $f(e)=0$ for all e in $E$.
While there exists an s-t path in the residual graph Gf
Choose such a path $P$
$\mathrm{f}^{\prime}=\operatorname{augment}(\mathrm{f}, \mathrm{P})$
Update $f$ to be f'
Update the residual graph to be Gf'

Endwhile

Return (f)

## Example



## Max-Flow in polynomial time

- We made the algorithm must faster by simply selecting the shortest path with available capacity.
- Can we always hope to do that?


## The Ford-Fulkerson Algorithm

Max-Flow

Initially set $f(e)=0$ for all e in $E$.
While there exists an s-t path in the residual graph Gf
Choose such a path $P$
$\mathrm{f}^{\prime}=\operatorname{augment}(\mathrm{f}, \mathrm{P})$
Update $f$ to be f'
Update the residual graph to be Gf'

Endwhile

Return (f)

## The Edmonds-Karp Algorithm

Max-Flow

Initially set $f(e)=0$ for all e in E .
While there exists an s-t path in the residual graph Gf
Choose the shortest such path $P$
$\mathrm{f}^{\prime}=\operatorname{augment}(\mathrm{f}, \mathrm{P})$
Update f to be f'
Update the residual graph to be Gf'

Endwhile

Return (f)

## The Edmonds-Karp Algorithm

- The Edmonds-Karp version of the Ford-Fulkerson algorithm runs in time $\mathbf{O}\left(\mathrm{nm}^{2}\right)$.
- The shortest path can be found using a BFS search.

