Advanced Algorithmic Techniques (COMP523)

Network Flows 3

Recap and plan

- Last 2 lectures:
- Maximum Flow.
- The Ford-Fulkerson Algorithm.
- The Max-Flow - Min - Cut theorem.
- The Edmonds-Karp algorithm.
- This lecture:
- Modelling with flows.
- Maximum Bipartite Matching.
- Baseball Elimination.
- Open-pit mining.

Bipartite Matching

- Maximum Bipartite Matching or Maximum matching on a bipartite graph G.

Bipartite graphs

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite if any only if it can be partitioned into sets A and B such that each edge has one endpoint in A and one endpoint in B.
- Often, we write $G=(A \cup B, E)$.

Bipartite Matching

- Maximum Bipartite Matching or Maximum matching on a bipartite graph G.
- Matching: A subset M of the edges E such that each node v of V appears in at most one edge e in E.
- Maximum matching: A matching with maximum cardinality.(i.e., $|\mathrm{M}|$ is maximised).

Example

A maximal matching

From matchings to flows

From matchings to flows

From matchings to flows

(1)

From matchings to flows

t

From matchings to flows

t

From matchings to flows

From matchings to flows

All capacities are set to 1 .

From matchings to flows

- Claim: Assume that there is a matching M of size k on G . Then there is a flow f of value k in G^{f}.

From matchings to flows

- Claim: Assume that there is a matching M of size k on G . Then there is a flow f of value k in G^{f}.
- Consider the matching

$$
M=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{k}, v_{k}\right)\right\}
$$

From matchings to flows

- Claim: Assume that there is a matching M of size k on G . Then there is a flow f of value k in G^{f}.
- Consider the matching

$$
M=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{k}, v_{k}\right)\right\}
$$

- Consider the flow such that

$$
f\left(s, u_{i}\right)=f\left(u_{i}, v_{i}\right)=f\left(v_{i}, t\right)=1 \text { for all } i=1, \ldots, k
$$

$$
f(e)=0 \text {, otherwise }
$$

From matchings to flows

- Claim: Assume that there is a matching M of size k on G . Then there is a flow f of value k in G^{f}.
- Consider the matching

$$
M=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{k}, v_{k}\right)\right\}
$$

- Consider the flow such that
$f\left(s, u_{i}\right)=f\left(u_{i}, v_{i}\right)=f\left(v_{i}, t\right)=1$ for all $i=1, \ldots, k$ $f(e)=0$, otherwise
- This is a feasible flow and obviously has value k.

From matchings to flows

All capacities are set to 1 .

From matchings to flows

All capacities are set to 1 .

From flows to matchings

- Claim: Assume that there is a a flow f of value k in G^{f}. Then there is a matching M of size k on G .

From flows to matchings

- Claim: Assume that there is a a flow f of value k in G^{f}. Then there is a matching M of size k on G .
- For an edge e, $f(e)$ is either 0 or 1 . (why?)

From flows to matchings

- Claim: Assume that there is a a flow f of value k in G^{f}. Then there is a matching M of size k on G .
- For an edge e, $f(e)$ is either 0 or 1. (why?)
- Consider the set M' of edges with $f(e)=1$.

From flows to matchings

- Consider the set M' of edges with $f(e)=1$.

From flows to matchings

- Consider the set M' of edges with $f(e)=1$.
- Claim: $\left|\mathrm{M}^{\prime}\right|=\mathrm{k}$.

From flows to matchings

- Consider the set M' of edges with $f(e)=1$.
- Claim: $\left|\mathrm{M}^{\prime}\right|=\mathrm{k}$.

All capacities are set to 1 .

From flows to matchings

- Consider the set M' of edges with $f(e)=1$.
- Claim: $\left|\mathrm{M}^{\prime}\right|=\mathrm{k}$.

All capacities are set to 1 .

From flows to matchings

- Consider the set M' of edges with $f(e)=1$.
- Claim: M^{\prime} is a matching.

All capacities are set to 1 .

From flows to matchings

- Consider the set M' of edges with $f(e)=1$.
- Claim: M^{\prime} is a matching.

All capacities are set to 1 .

Maximum Flow and Maximum matching

- The size of the maximum matching M in G is equal to the value of the maximum flow f in G^{f}.
- The edges of M are the edges that carry flow from A to B in Gf.

Maximum Flow and Maximum matching

- The size of the maximum matching M in G is equal to the value of the maximum flow f in G^{f}.
- The edges of M are the edges that carry flow from A to B in G .
- What was the crucial part, that allows us to establish this?

Maximum Flow and Maximum matching

- The size of the maximum matching M in G is equal to the value of the maximum flow f in G^{f}.
- The edges of M are the edges that carry flow from A to B in G .
- What was the crucial part, that allows us to establish this?
- The integrality theorem.

Running time

- What is the running time of the algorithm?
- By Edmonds - Karp, we get $\mathbf{O}\left(\mathrm{nm}^{2}\right)$.

Running time

- What is the running time of the algorithm?
- By Ford-Fulkerson, we get $\mathbf{O}(\mathrm{mF})$.

Running time

- What is the running time of the algorithm?
- By Ford-Fulkerson, we get $\mathbf{O}(\mathrm{mF})$.
- How large is F here?

Running time

- What is the running time of the algorithm?
- By Ford-Fulkerson, we get $\mathbf{O}(\mathrm{mF})$.
- How large is F here?
- It is at most max $\{|A|,|B|\}$.

Running time

- What is the running time of the algorithm?
- By Ford-Fulkerson, we get $\mathbf{O}(\mathrm{mF})$.
- How large is F here?
- It is at most max $\{|A|,|B|\}$.
- Running time $\mathbf{O}(\mathrm{nm})$.

Baseball Elimination

- In the baseball league, there are 4 teams with the following number of wins:'

New York 92
Baltimore 91
Toronto 91
Boston 90

- There are five games left in the season.
- NY vs BLT, NY vs TOR, BLT vs TOR, BLT vs BOS, TOR vs BOS
- Question: Can Boston finish (possibly tied for) first?

Baseball Elimination

- In the baseball league, there are 4 teams with the following number of wins:

Assume Boston wins all
New York 92 remaining games.

Baltimore 91
Toronto 91
Boston 90

- There are five games left in the season.
- NY vs BLT, NY vs TOR, BLT vs TOR, BLT vs BOS, TOR vs BOS
- Question: Can Boston finish (possibly tied for) first?

Baseball Elimination

- In the baseball league, there are 4 teams with the following number of wins:

Assume Boston wins all
New York 92
Baltimore 91
Toronto 91
Boston 90

- There are five games left in the season.
- NY vs BLT, NY vs TOR, BLT vs TOR, BLT vs BOS, TOR vs BOS
- Question: Can Boston finish (possibly tied for) first?

Baseball Elimination

- In the baseball league, there are 4 teams with the following number of wins:

Assume Boston wins all Baltimore and Toronto must
New York 92
Baltimore 91
Toronto 91 remaining games. win one game each.
New York must lose all remaining games.

- There are five games left in the season.
- NY vs BLT, NY vs TOR, BLT vs TOR, BLT vs BOS, TOR vs BOS
- Question: Can Boston finish (possibly tied for) first?

Baseball Elimination

- In the baseball league, there are 4 teams with the following number of wins:'

New York 92
Baltimore 91
Toronto 91
Boston 90

Assume Boston wins all Baltimore and Toronto must remaining games. win one game each.

New York must lose all Baltimore or Toronto must remaining games. win one more game (BLT vs TOR).

- There are five games left in the season.
- NY vs BLT, NY vs TOR, BLT vs TOR, BLT vs BOS, TOR vs BOS
- Question: Can Boston finish (possibly tied for) first?

Baseball Elimination

- In the baseball league, there are 4 teams with the following number of wins:'

New York 92
Baltimore 91
Toronto 91
Boston 90

Assume Boston wins all Baltimore and Toronto must remaining games. win one game each.

New York must lose all Baltimore or Toronto must remaining games. win one more game (BLT vs TOR).

- There are five games left in the season.
- NY vs BLT, NY vs TOR, BLT vs TOR, BLT vs BOS, TOR vs BOS
- Question: Can Boston finish (possibly tied for) first?

The answer is no.

Baseball Elimination

- In the baseball league, there are 4 teams with the following number of wins:"

New York	90
Baltimore	88
Toronto	87
Boston	79

- There are five games left in the season.
- NY vs BLT
- NY vs TOR 6 games
- BLT vs TOR
- BOS vs ANY 4 games (12 games total)
- Question: Can Boston finish (possibly tied for) first?

Baseball elimination

- Generally:
- We have a set S of teams.
- For each team x in S, the current number of wins is w_{x}.
- For teams x and y in S, they still have to play $g_{x y}$ games against each other.
- We are given a designated team z.
- Can z win the tournament (possibly in a tie?)

From baseball to flows

From baseball to flows

- Observation: If there is a way for z to be first, there is a way for z to be first when winning all remaining games.
- Suppose that in the end, team z has m wins.
-What are we looking for?
- Is there an allocation of all the remaining g^{*} games (between the other teams) such that no team ends up with more than m wins?

From baseball to flows

From baseball to flows

A pair of teams

From baseball to flows

From baseball to flows

From baseball to flows

From baseball to flows

Two edges if teams in p_{j} still have games to play between them.

From baseball to flows

Let $\mathrm{p}_{\mathrm{j}}=(\mathrm{x}, \mathrm{y})$

From baseball to flows

Let $\mathrm{p}_{\mathrm{j}}=(\mathrm{x}, \mathrm{y})$

From baseball to flows

From baseball to flows

Infinite capacity, no constraint.

From baseball to flows

Why does this work?

Why does this work?

- Assume that the algorithm says yes.

Why does this work?

- Assume that the algorithm says yes.
- The value of the flow is equal to the number of remaining games. (why?)

Why does this work?

- Assume that the algorithm says yes.
- The value of the flow is equal to the number of remaining games. (why?)
- Flow conservation implies:

Why does this work?

- Assume that the algorithm says yes.
- The value of the flow is equal to the number of remaining games. (why?)
- Flow conservation implies:
- A pair (x, y) will play exactly g_{xy} games.

Why does this work?

- Assume that the algorithm says yes.
- The value of the flow is equal to the number of remaining games. (why?)
- Flow conservation implies:
- A pair (x, y) will play exactly g_{xy} games.
- A team x will win at most $m-w_{x}$ games.

Why does this work?

- Assume that the algorithm says yes.
- The value of the flow is equal to the number of remaining games. (why?)
- Flow conservation implies:
- A pair (x, y) will play exactly g_{xy} games.
- A team x will win at most $m-w_{x}$ games.
- Team z can win.

Why does this work?

Why does this work?

- Assume that the algorithm says no.

Why does this work?

- Assume that the algorithm says no.
- The maximum flow has value $\leq g^{*}$.

Why does this work?

- Assume that the algorithm says no.
- The maximum flow has value $\leq g^{*}$.
- It is not possible to play all the remaining games without giving some team \times more than $m-w_{x}$ points.

Why does this work?

- Assume that the algorithm says no.
- The maximum flow has value $\leq \mathrm{g}^{*}$.
- It is not possible to play all the remaining games without giving some team x more than $m-w_{x}$ points.
- Team z cannot win.

Example

- In the baseball league, there are 4 teams with the following number of wins:

New York	90
Baltimore	88
Toronto	87
Boston	79

- There are five games left in the season.
- NY vs BLT
- NY vs TOR 6 games
- BLT vs TOR
- BOS vs ANY 4 games (12 games total)
- Question: Can Boston finish (possibly tied for) first?

Example

$$
m=91
$$

Open pit mining

- We extract blocks of earth from the surface, trying to find gold.
- Each block z that we mine has
- a value p_{z}
- a mining cost C_{z}
- Constraint: We can not mine a block z unless we mine the two blocks x and y on top of it.
- We want to earn as much money as possible.

Open pit mining

From pits to flows

 -

From pits to flows

t
 Is $\mathrm{p}_{\mathrm{z}}-\mathrm{c}_{\mathrm{z}}>0$?

From pits to flows

Yes

From pits to flows

From pits to flows

From pits to flows

From pits to cuts

From pits to cuts

From pits to cuts

- Consider an (S, T) cut C.

From pits to cuts

- Consider an (S, T) cut C.
- If C is minimum, S or T must contain all nodes that are connected with an infinite capacity edge.

From pits to cuts

- Consider an (S, T) cut C.
- If C is minimum, S or T must contain all nodes that are connected with an infinite capacity edge.
- If it contains z, it must contain x and y.

From pits to cuts

- Consider an (S, T) cut C.
- If C is minimum, S or T must contain all nodes that are connected with an infinite capacity edge.
- If it contains z, it must contain x and y.
- We will mine S - $\{s\}$.

From pits to cuts

- Consider an (S, T) cut C.
- If C is minimum, S or T must contain all nodes that are connected with an infinite capacity edge.
- If it contains z, it must contain x and y.
- We will mine S - $\{\mathrm{s}\}$.
- Feasibility guaranteed by the above fact.

From pits to cuts

- Consider an (S, T) cut C.
- If C is minimum, S or T must contain all nodes that are connected with an infinite capacity edge.
- If it contains z, it must contain x and y.
- We will mine S - $\{s\}$.
- Feasibility guaranteed by the above fact.
- Optimality?

Optimality of our mining set.

$$
c(S, T)=\sum_{z \in T: p_{z}-c_{z}>0}\left(p_{z}-c_{z}\right)+\sum_{z \in S: p_{z}-c_{z}<0}\left(c_{z}-p_{z}\right)
$$

From pits to cuts

From pits to cuts

From pits to cuts

$$
c(S, T)=\sum_{z \in T: p_{z}-c_{z}>0}\left(p_{z}-c_{z}\right)+\sum_{z \in S: p_{z}-c_{z}<0}\left(c_{z}-p_{z}\right)
$$

Sum of capacities of red edges crossing the cut.

From pits to cuts
 Sum of capacities

of green edges crossing the cut

$$
c(S, T)=\sum_{z \in T: p_{z}-c_{z}>0}\left(p_{z}-c_{z}\right)+\sum_{z \in S: p_{z}-c_{z}<0}\left(c_{z}-p_{z}\right)
$$

Optimality of our mining set.

$$
c(S, T)=\sum_{z \in T: p_{z}-c_{z}>0}\left(p_{z}-c_{z}\right)+\sum_{z \in S: p_{z}-c_{z}<0}\left(c_{z}-p_{z}\right)
$$

Optimality of our mining set.

$$
\begin{aligned}
& c(S, T)=\sum_{z \in T: p_{z}-c_{z}>0}\left(p_{z}-c_{z}\right)+\sum_{z \in S: p_{z}-c_{z}<0}\left(c_{z}-p_{z}\right) \\
& c(S, T)=\sum_{z \in T: p_{z}-c_{z}>0}\left(p_{z}-c_{z}\right)-\sum_{z \in S: p_{z}-c_{z}<0}\left(p_{z}-c_{z}\right)
\end{aligned}
$$

Optimality of our mining set.

$$
\begin{aligned}
& c(S, T)=\sum_{z \in T: p_{z}-c_{z}>0}\left(p_{z}-c_{z}\right)+\sum_{z \in S: p_{z}-c_{z}<0}\left(c_{z}-p_{z}\right) \\
& c(S, T)=\sum_{z \in T: p_{z}-c_{z}>0}\left(p_{z}-c_{z}\right)-\sum_{z \in S: p_{z}-c_{z}<0}\left(p_{z}-c_{z}\right)
\end{aligned}
$$

Add and subtract this: $\quad c(S, T)=\sum_{z \in S: p_{z}-c_{z}>0}\left(p_{z}-c_{z}\right)$

Optimality of our mining set.

$$
\begin{aligned}
& c(S, T)=\sum_{z \in T: p_{z}-c_{z}>0}\left(p_{z}-c_{z}\right)+\sum_{z \in S: p_{z}-c_{z}<0}\left(c_{z}-p_{z}\right) \\
& c(S, T)=\sum_{z \in T: p_{z}-c_{z}>0}\left(p_{z}-c_{z}\right)-\sum_{z \in S: p_{z}-c_{z}<0}\left(p_{z}-c_{z}\right)
\end{aligned}
$$

Add and subtract this: $\quad c(S, T)=\sum_{z \in S: p_{z}-c_{z}>0}\left(p_{z}-c_{z}\right)$

$$
c(S, T)=\sum_{z \in V: p_{z}-c_{z}>0}\left(p_{z}-c_{z}\right)-\sum_{z \in S}\left(p_{z}-c_{z}\right)
$$

Optimality of our mining set.

$$
\begin{aligned}
& c(S, T)=\sum_{z \in T: p_{z}-c_{z}>0}\left(p_{z}-c_{z}\right)+\sum_{z \in S: p_{z}-c_{z}<0}\left(c_{z}-p_{z}\right) \\
& c(S, T)=\sum_{z \in T: p_{z}-c_{z}>0}\left(p_{z}-c_{z}\right)-\sum_{z \in S: p_{z}-c_{z}<0}\left(p_{z}-c_{z}\right)
\end{aligned}
$$

Add and subtract this: $\quad c(S, T)=\sum_{z \in S: p_{z}-c_{z}>0}\left(p_{z}-c_{z}\right)$

Optimality of our mining set.

$$
\begin{aligned}
& c(S, T)=\sum_{z \in T: p_{z}-c_{z}>0}\left(p_{z}-c_{z}\right)+\sum_{z \in S: p_{z}-c_{z}<0}\left(c_{z}-p_{z}\right) \\
& c(S, T)=\sum_{z \in T: p_{z}-c_{z}>0}\left(p_{z}-c_{z}\right)-\sum_{z \in S: p_{z}-c_{z}<0}\left(p_{z}-c_{z}\right)
\end{aligned}
$$

Add and subtract this: $\quad c(S, T)=\sum_{z \in S: p_{z}-c_{z}>0}\left(p_{z}-c_{z}\right)$

Open-pit mining Summarising

- Construct the flow network.
- Run Ford-Fulkerson to find a maximum flow.
- Find a minimum cut using the final residual graph.
- Mine the blocks in the S part of the cut.

