Advanced Algorithmic Techniques (COMP523)

Network Flows 3

Recap and plan

• Last 2 lectures:

- Maximum Flow.
- The Ford-Fulkerson Algorithm.
- The Max-Flow Min Cut theorem.
- The Edmonds-Karp algorithm.

• This lecture:

- Modelling with flows.
- Maximum Bipartite Matching.
- Baseball Elimination.
- Open-pit mining.

Bipartite Matching

• Maximum Bipartite Matching or Maximum matching on a bipartite graph G.

Bipartite graphs

- A graph G=(V,E) is bipartite *if any only if* it can be partitioned into sets A and B such that each edge has one endpoint in A and one endpoint in B.
 - Often, we write G=(A U B,E).

Bipartite Matching

- *Maximum Bipartite Matching* or Maximum matching on a bipartite graph G.
 - Matching: A subset M of the edges E such that each node v of V appears in at most one edge e in E.
 - Maximum matching: A matching with maximum cardinality.(i.e., |M| is maximised).

Example

A maximum matching

A maximal matching

S

S

t

 Claim: Assume that there is a matching M of size k on G. Then there is a flow f of value k in G^f.

- Claim: Assume that there is a matching M of size k on G. Then there is a flow f of value k in G^f.
 - Consider the matching

 $M = \{(U_1, V_1), (U_2, V_2), \dots, (U_k, V_k)\}$

- Claim: Assume that there is a matching M of size k on G. Then there is a flow f of value k in G^f.
 - Consider the matching

 $M = \{(U_1, V_1), (U_2, V_2), \dots, (U_k, V_k)\}$

Consider the flow such that

 $f(s, u_i) = f(u_i, v_i) = f(v_i, t) = 1$ for all i = 1, ..., k

f(e) = 0, otherwise

- Claim: Assume that there is a matching M of size k on G. Then there is a flow f of value k in G^f.
 - Consider the matching

 $M = \{(U_1, V_1), (U_2, V_2), \dots, (U_k, V_k)\}$

Consider the flow such that

 $f(s, u_i) = f(u_i, v_i) = f(v_i, t) = 1$ for all i = 1, ..., k

f(e) = 0, otherwise

• This is a feasible flow and obviously has value k.

Claim: Assume that there is a a flow f of value k in Gf.
 Then there is a matching M of size k on G.

- Claim: Assume that there is a a flow f of value k in Gf.
 Then there is a matching M of size k on G.
 - For an edge e, f(e) is either 0 or 1. (why?)

- Claim: Assume that there is a a flow f of value k in Gf.
 Then there is a matching M of size k on G.
 - For an edge e, f(e) is either 0 or 1. (why?)
 - Consider the set M' of edges with f(e) = 1.

• Consider the set M' of edges with f(e) = 1.

- Consider the set M' of edges with f(e) = 1.
 - Claim: |M'| = k.

- Consider the set M' of edges with f(e) = 1.
 - Claim: |M'| = k.

- Consider the set M' of edges with f(e) = 1.
 - Claim: |M'| = k.

- Consider the set M' of edges with f(e) = 1.
 - Claim: M' is a matching.

- Consider the set M' of edges with f(e) = 1.
 - Claim: M' is a matching.

Maximum Flow and Maximum matching

- The size of the maximum matching M in G is equal to the value of the maximum flow f in G^f.
- The edges of M are the edges that carry flow from A to B in G^f.

Maximum Flow and Maximum matching

- The size of the maximum matching M in G is equal to the value of the maximum flow f in G^f.
- The edges of M are the edges that carry flow from A to B in G^f.
- What was the crucial part, that allows us to establish this?

Maximum Flow and Maximum matching

- The size of the maximum matching M in G is equal to the value of the maximum flow f in G^f.
- The edges of M are the edges that carry flow from A to B in G^f.
- What was the crucial part, that allows us to establish this?
 - The integrality theorem.

- What is the running time of the algorithm?
- By Edmonds Karp, we get O(nm²).

- What is the running time of the algorithm?
- By Ford-Fulkerson, we get O(mF).

- What is the running time of the algorithm?
- By Ford-Fulkerson, we get O(mF).
- How large is F here?

- What is the running time of the algorithm?
- By Ford-Fulkerson, we get O(mF).
- How large is F here?
 - It is at most max{|A|, |B|}.

- What is the running time of the algorithm?
- By Ford-Fulkerson, we get O(mF).
- How large is F here?
 - It is at most max{|A|, |B|}.
 - Running time **O(nm).**

 In the baseball league, there are 4 teams with the following number of wins:`

New York92Baltimore91Toronto91Boston90

- There are five games left in the season.
 - NY vs BLT, NY vs TOR, BLT vs TOR, BLT vs BOS, TOR vs BOS
- **Question:** Can Boston finish (possibly tied for) first?

 In the baseball league, there are 4 teams with the following number of wins:`

Assume Boston wins all remaining games.

New York92Baltimore91Toronto91Boston90

- There are five games left in the season.
 - NY vs BLT, NY vs TOR, BLT vs TOR, BLT vs BOS, TOR vs BOS
- **Question:** Can Boston finish (possibly tied for) first?

 In the baseball league, there are 4 teams with the following number of wins:`

New York92Baltimore91Toronto91Boston90

Assume Boston wins all remaining games.

New York must lose all remaining games.

- There are five games left in the season.
 - NY vs BLT, NY vs TOR, BLT vs TOR, BLT vs BOS, TOR vs BOS
- Question: Can Boston finish (possibly tied for) first?

In the baseball league, there are 4 teams with the following number of wins:`

New York 92 Baltimore 91 Toronto 91 Boston 90 remaining games.

New York must lose all remaining games.

Assume Boston wins all Baltimore and Toronto must win one game each.

- There are five games left in the season.
 - NY vs BLT, NY vs TOR, BLT vs TOR, BLT vs BOS, TOR vs BOS
- **Question:** Can Boston finish (possibly tied for) first?

 In the baseball league, there are 4 teams with the following number of wins:`

New York92Baltimore91Toronto91Boston90

Assume Boston wins all Baltimore and Toronto must remaining games.
 New York must lose all remaining games.
 Baltimore or Toronto must win one more game (BLT vs TOR).

- There are five games left in the season.
 - NY vs BLT, NY vs TOR, BLT vs TOR, BLT vs BOS, TOR vs BOS
- Question: Can Boston finish (possibly tied for) first?

 In the baseball league, there are 4 teams with the following number of wins:`

New York92Baltimore91Toronto91Boston90

Assume Boston wins all Baltimore and Toronto must remaining games.
 New York must lose all remaining games.
 Baltimore or Toronto must win one more game (BLT vs TOR).

- There are five games left in the season.
 - NY vs BLT, NY vs TOR, BLT vs TOR, BLT vs BOS, TOR vs BOS
- **Question:** Can Boston finish (possibly tied for) first?

The answer is no.

- In the baseball league, there are 4 teams with the following number of wins:`
 - New York90Baltimore88Toronto87Boston79
- There are five games left in the season.
 - NY vs BLT
 - NY vs TOR 6 games
 - BLT vs TOR
 - BOS vs ANY 4 games (12 games total)
- **Question:** Can Boston finish (possibly tied for) first?

- Generally:
 - We have a set S of teams.
 - For each team x in S, the current number of wins is w_x .
 - For teams x and y in S, they still have to play g_{xy} games against each other.
 - We are given a designated team z.
 - Can z win the tournament (possibly in a tie?)

- Observation: If there is a way for z to be first, there is a way for z to be first when winning all remaining games.
 - Suppose that in the end, team z has m wins.
 - What are we looking for?
 - Is there an allocation of all the remaining g* games (between the other teams) such that no team ends up with more than m wins?

A pair of teams

Two edges if teams in p_j still have games to play between them.

• Assume that the algorithm says yes.

- Assume that the algorithm says yes.
 - The value of the flow is equal to the number of remaining games. (why?)

- Assume that the algorithm says yes.
 - The value of the flow is equal to the number of remaining games. (why?)
 - Flow conservation implies:

- Assume that the algorithm says yes.
 - The value of the flow is equal to the number of remaining games. (why?)
 - Flow conservation implies:
 - A pair (x, y) will play exactly gxy games.

- Assume that the algorithm says yes.
 - The value of the flow is equal to the number of remaining games. (why?)
 - Flow conservation implies:
 - A pair (x, y) will play exactly g_{xy} games.
 - A team x will win at most m-w_x games.

- Assume that the algorithm says yes.
 - The value of the flow is equal to the number of remaining games. (why?)
 - Flow conservation implies:
 - A pair (x, y) will play exactly g_{xy} games.
 - A team x will win at most m-w_x games.
 - Team z can win.

• Assume that the algorithm says no.

- Assume that the algorithm says no.
 - The maximum flow has value $\leq g^*$.

- Assume that the algorithm says no.
 - The maximum flow has value $\leq g^*$.
 - It is not possible to play all the remaining games without giving some team x more than m - w_x points.

- Assume that the algorithm says no.
 - The maximum flow has value $\leq g^*$.
 - It is not possible to play all the remaining games without giving some team x more than m - w_x points.
 - Team z cannot win.

Example

- In the baseball league, there are 4 teams with the following number of wins:`
 - New York90Baltimore88Toronto87Boston79
- There are five games left in the season.
 - NY vs BLT
 - NY vs TOR 6 games
 - BLT vs TOR
 - BOS vs ANY 4 games (12 games total)
- **Question:** Can Boston finish (possibly tied for) first?

m = 91

Open pit mining

- We extract blocks of earth from the surface, trying to find gold.
- Each block z that we mine has
 - a value pz
 - a mining cost Cz
- Constraint: We can not mine a block z unless we mine the two blocks x and y on top of it.
- We want to earn as much money as possible.

Open pit mining

 $ls p_z - c_z > 0 ?$

Yes

• Consider an (S, T) cut C.

- Consider an (S, T) cut C.
- If C is minimum, S or T must contain all nodes that are connected with an *infinite capacity* edge.

- Consider an (S, T) cut C.
- If C is minimum, S or T must contain all nodes that are connected with an *infinite capacity* edge.
 - If it contains z, it must contain x and y.

- Consider an (S, T) cut C.
- If C is minimum, S or T must contain all nodes that are connected with an *infinite capacity* edge.
 - If it contains z, it must contain x and y.
- We will mine S {s}.

- Consider an (S, T) cut C.
- If C is minimum, S or T must contain all nodes that are connected with an *infinite capacity* edge.
 - If it contains z, it must contain x and y.
- We will mine S {s}.
 - Feasibility guaranteed by the above fact.

- Consider an (S, T) cut C.
- If C is minimum, S or T must contain all nodes that are connected with an *infinite capacity* edge.
 - If it contains z, it must contain x and y.
- We will mine S {s}.
 - Feasibility guaranteed by the above fact.
 - Optimality?

$c(S,T) = \sum_{z \in T: \ p_z - c_z > 0} (p_z - c_z) + \sum_{z \in S: \ p_z - c_z < 0} (c_z - p_z)$

$c(S,T) = \sum_{z \in T: \ p_z - c_z > 0} (p_z - c_z) + \sum_{z \in S: \ p_z - c_z < 0} (c_z - p_z)$

$$c(S,T) = \sum_{z \in T: \ p_z - c_z > 0} (p_z - c_z) + \sum_{z \in S: \ p_z - c_z < 0} (c_z - p_z)$$

$$c(S,T) = \sum_{z \in T: \ p_z - c_z > 0} (p_z - c_z) - \sum_{z \in S: \ p_z - c_z < 0} (p_z - c_z)$$

$$c(S,T) = \sum_{z \in T: \ p_z - c_z > 0} (p_z - c_z) + \sum_{z \in S: \ p_z - c_z < 0} (c_z - p_z)$$

$$c(S,T) = \sum_{z \in T: \ p_z - c_z > 0} (p_z - c_z) - \sum_{z \in S: \ p_z - c_z < 0} (p_z - c_z)$$

Add and subtract this:

$$c(S,T) = \sum_{z \in S : p_z - c_z > 0} (p_z - c_z)$$

$$c(S,T) = \sum_{z \in T: \ p_z - c_z > 0} (p_z - c_z) + \sum_{z \in S: \ p_z - c_z < 0} (c_z - p_z)$$

$$c(S,T) = \sum_{z \in T: \ p_z - c_z > 0} (p_z - c_z) - \sum_{z \in S: \ p_z - c_z < 0} (p_z - c_z)$$

Add and subtract this:
$$c(S,T) = \sum_{z \in S : p_z - c_z > 0} (p_z - c_z)$$

$$c(S,T) = \sum_{z \in V: \ p_z - c_z > 0} (p_z - c_z) - \sum_{z \in S} (p_z - c_z)$$

$$c(S,T) = \sum_{z \in T: \ p_z - c_z > 0} (p_z - c_z) + \sum_{z \in S: \ p_z - c_z < 0} (c_z - p_z)$$

$$c(S,T) = \sum_{z \in T: \ p_z - c_z > 0} (p_z - c_z) - \sum_{z \in S: \ p_z - c_z < 0} (p_z - c_z)$$

add and subtract this:
$$c(S,T) = \sum_{z \in S : p_z - c_z > 0} (p_z - c_z)$$

A

$$c(S,T) = \sum_{z \in V: p_z - c_z > 0} (p_z - c_z) - \sum_{z \in S} (p_z - c_z)$$

constant

$$c(S,T) = \sum_{z \in T: \ p_z - c_z > 0} (p_z - c_z) + \sum_{z \in S: \ p_z - c_z < 0} (c_z - p_z)$$

$$c(S,T) = \sum_{z \in T: \ p_z - c_z > 0} (p_z - c_z) - \sum_{z \in S: \ p_z - c_z < 0} (p_z - c_z)$$

Add and subtract this:

$$c(S,T) = \sum_{z \in S : p_z - c_z > 0} (p_z - c_z)$$

$$c(S,T) = \sum_{z \in V : p_z - c_z > 0} (p_z - c_z) - \sum_{z \in S} (p_z - c_z)$$
constant
Mining profit

Open-pit mining -Summarising

- Construct the flow network.
- Run Ford-Fulkerson to find a maximum flow.
- Find a minimum cut using the final residual graph.
- Mine the blocks in the S part of the cut.