
Advanced Algorithmic Techniques
(COMP523)

NP-Completeness

Recap and plan
• Previous 16 lectures:

• Polynomial time algorithms for solving several problems

• Searching, sorting, graph reachability, interval scheduling, minimum
spanning trees etc.

• This lecture:

• Polynomial time reductions

• Computational classes: P and NP

• NP-hardness and NP-completeness

• NP-Complete problems: 3SAT and Vertex Cover

Polynomial Time Reduction
• We are given a problem A that we want to solve.

Polynomial Time Reduction
• We are given a problem A that we want to solve.

• We can reduce solving problem A to solving some other
problem B.

Polynomial Time Reduction
• We are given a problem A that we want to solve.

• We can reduce solving problem A to solving some other
problem B.

• Assume that we had an algorithm ALGB for solving problem
B, which we can use at cost O(1).

Polynomial Time Reduction
• We are given a problem A that we want to solve.

• We can reduce solving problem A to solving some other
problem B.

• Assume that we had an algorithm ALGB for solving problem
B, which we can use at cost O(1).

• We can construct an algorithm ALGA for solving problem A,
which uses calls to the algorithm ALGB as a subroutine.

Polynomial Time Reduction
• We are given a problem A that we want to solve.

• We can reduce solving problem A to solving some other
problem B.

• Assume that we had an algorithm ALGB for solving problem
B, which we can use at cost O(1).

• We can construct an algorithm ALGA for solving problem A,
which uses calls to the algorithm ALGB as a subroutine.

• If ALGA is a polynomial time algorithm, then this is a
polynomial time reduction.

Pictorially
Problem A Problem B

ALGB

Do stuff …  
 

Do stuff … 
 

Do stuff…

Do stuff …

… 
 

ALGA

ALGB

ALGB

Polynomial time reduction

• Can you think of any examples of such reductions?

Notation

• When problem A reduces to problem B in polynomial
time, we write  
 
A ≤p B 
 
We often say “there is a polynomial time reduction from A
to B”.

How to work with reductions

How to work with reductions

• Positive: Assume that I want to solve problem A and I know how
to solve problem B in polynomial time.

How to work with reductions

• Positive: Assume that I want to solve problem A and I know how
to solve problem B in polynomial time.

• I can try to come up with a polynomial time reduction A ≤p B,
which will give me a polynomial time algorithm for solving A.

How to work with reductions

• Positive: Assume that I want to solve problem A and I know how
to solve problem B in polynomial time.

• I can try to come up with a polynomial time reduction A ≤p B,
which will give me a polynomial time algorithm for solving A.

• Contrapositive: Assume that there is a problem A for which it is
unlikely that there is a polynomial time algorithm that solves it.

How to work with reductions

• Positive: Assume that I want to solve problem A and I know how
to solve problem B in polynomial time.

• I can try to come up with a polynomial time reduction A ≤p B,
which will give me a polynomial time algorithm for solving A.

• Contrapositive: Assume that there is a problem A for which it is
unlikely that there is a polynomial time algorithm that solves it.

• If I come up with a polynomial time reduction A ≤p B, it is also
unlikely that there is a polynomial time algorithm that solves B.

How to work with reductions

• Positive: Assume that I want to solve problem A and I know how
to solve problem B in polynomial time.

• I can try to come up with a polynomial time reduction A ≤p B,
which will give me a polynomial time algorithm for solving A.

• Contrapositive: Assume that there is a problem A for which it is
unlikely that there is a polynomial time algorithm that solves it.

• If I come up with a polynomial time reduction A ≤p B, it is also
unlikely that there is a polynomial time algorithm that solves B.

• B is “at least as hard to solve as” A, because if I could solve B,
I could also solve A.

Types of reductions

• Turing reduction:

• Notation: A ≤T B

• A reduction which solves problem A using
(polynomially) many calls to an oracle (an algorithm) for
solving problem B.

• (Also known as Cook reduction).

Pictorially
Problem A Problem B

ALGB

Do stuff …  
 

Do stuff … 
 

Do stuff…

Do stuff …

… 
 

ALGA

ALGB

ALGB

Types of reductions
• Turing reduction:

• Notation: A ≤T B

• A reduction which solves problem A using (polynomially) many calls to an
oracle (an algorithm) for solving problem B.

• (Also known as Cook reduction).

• Many-one reduction:

• Notation: A ≤m B

• A reduction which converts instances of problem A to instances of problem B.

• (Also known as Karp reduction).

Pictorially
Problem A Problem B

ALGB

Do stuff …  
 

Do stuff … 
 

Do stuff…

Do stuff …

 
 

ALGA

ALGB

instance  
transformation

Types of reductions
• Turing reduction:

• Argument: Here is an algorithm which runs in polynomial time solving problem
A, using polynomially many calls to an oracle for problem B.

• Many-one reduction:

• Argument:

• If z is a solution to instance I of problem A, then z’ is a solution of instance
f(I) to problem B.

• If z is not a solution to instance I of problem A, then z’ is not a solution of
instance f(I) to problem B.

• Equivalently: If z’ is a solution of instance f(I) to problem B, then z is a
solution to instance I of problem A.

Example:  
Bipartite Matching ≤m Maximum Flow

• Maximum Bipartite Matching or Maximum matching on a
bipartite graph G.

• Matching: A subset M of the edges E such that each
node v of V appears in at most one edge e in E.

• Maximum matching: A matching with maximum
cardinality.(i.e., |M| is maximised).

From matchings to flows

• Claim: Assume that there is a matching M of size k on G.
Then there is a flow f of value k in Gf.

From flows to matchings

• Claim: Assume that there is a a flow f of value k in Gf.
Then there is a matching M of size k on G.

Technically speaking
• Here problem A was:  

 
Is there a bipartite matching of size at least k? 
 
and problem B was:  
 
Is there a flow with value at least k?

• Maximum Bipartite Matching and Maximum Flow are
optimisation problems.

• The reduction used the corresponding decision problems.

• More about that later.

Running time hierarchy

O(log n) O(n) O(n log n) O(n2) O(n↵)
O(cn)

logarithmic linear quadratic polynomial exponential

The algorithm

does not even

read the

whole input.

The algorithm

accesses the

input only

a constant

number of

times.

The algorithm

splits the inputs

into two pieces

of similar size,

solves each part

and merges the

solutions.

The algorithm

considers pairs

of elements.

The algorithm

performs many

nested loops.

The algorithm

considers many

subsets of the

input elements.

constant O(1)

superconstant !(1)

sublinear o(n)

superlinear !(n)

!(n↵)superpolynomial

o(cn)subexponential

Running time hierarchy

O(log n) O(n) O(n log n) O(n2) O(n↵)
O(cn)

logarithmic linear quadratic polynomial exponential

The algorithm

does not even

read the

whole input.

The algorithm

accesses the

input only

a constant

number of

times.

The algorithm

splits the inputs

into two pieces

of similar size,

solves each part

and merges the

solutions.

The algorithm

considers pairs

of elements.

The algorithm

performs many

nested loops.

The algorithm

considers many

subsets of the

input elements.

constant O(1)

superconstant !(1)

sublinear o(n)

superlinear !(n)

!(n↵)superpolynomial

o(cn)subexponential

Polynomial time

Computational classes

• Every problem for which there is a known polynomial time
algorithm is in the computational class P.

• Searching, sorting, interval scheduling, minimum
spanning tree, graph traversal, …

• The class P contains computational problems that can
be solved in polynomial time.

• We also say that they can be solved efficiently.

Problems not in P

• Do you remember any problems from the lectures that we
did not manage to prove that they lie in P?

Problems not in P

• Do you remember any problems from the lectures that we
did not manage to prove that they lie in P?

• Weighted interval scheduling?

Problems not in P

• Do you remember any problems from the lectures that we
did not manage to prove that they lie in P?

• Weighted interval scheduling?

• Subset sum?

Problems not in P

• Do you remember any problems from the lectures that we
did not manage to prove that they lie in P?

• Weighted interval scheduling?

• Subset sum?

• Knapsack?

Problems not in P

• Do you remember any problems from the lectures that we
did not manage to prove that they lie in P?

• Weighted interval scheduling?

• Subset sum?

• Knapsack?

• Maximum flow?

The landscape of complexity

P

contains all problems that 
can be solved in polynomial time.

The class NP

The class NP
• Stands for “non deterministic polynomial time”.

The class NP
• Stands for “non deterministic polynomial time”.

• Problems that can be solved in polynomial time by a non-
deterministic Turing machine.

The class NP
• Stands for “non deterministic polynomial time”.

• Problems that can be solved in polynomial time by a non-
deterministic Turing machine.

• More intuitive definition:

The class NP
• Stands for “non deterministic polynomial time”.

• Problems that can be solved in polynomial time by a non-
deterministic Turing machine.

• More intuitive definition:

• Problems such that, if a solution is given, it can be
checked that it is indeed a solution in polynomial time.

The class NP
• Stands for “non deterministic polynomial time”.

• Problems that can be solved in polynomial time by a non-
deterministic Turing machine.

• More intuitive definition:

• Problems such that, if a solution is given, it can be
checked that it is indeed a solution in polynomial time.

• Efficiently verifiable.

The subset sum problem

• We are given a set of n items {1, 2, … , n}.

• Each item i has a non-negative integer weight wi.

• We are given an integer bound W.

• Goal: Select a subset S of the items such that  
 
and is maximised.

∑
i∈S

wi ≤ W

∑
i∈S

wi

Equivalent formulation
decision version

• We are given a set of n items {1, 2, … , n}.

• Each item i has a non-negative integer weight wi.

• We are given an integer bound W.

• Goal: Decide if there exists a subset S of the items such
that

∑
i∈S

wi = W

Subset Sum is in NP

• If we are given a candidate solution S, we can easily
check whether the following holds or not:

∑
i∈S

wi = W

Problem classification

Problem classification

• Problems in P:

• Searching, sorting, minimum spanning tree, graph
traversal, maximum flow, minimum cut, Weighted
Interval Scheduling, …

Problem classification

• Problems in P:

• Searching, sorting, minimum spanning tree, graph
traversal, maximum flow, minimum cut, Weighted
Interval Scheduling, …

• Problems in NP:

• Subset Sum, Knapsack

Problem classification
• Problems in P:

• Searching, sorting, minimum spanning tree, graph
traversal, maximum flow, minimum cut, Weighted
Interval Scheduling, …

• Problems in NP:

• Subset Sum, Knapsack, Weighted Interval Scheduling,
Searching, sorting, minimum spanning tree, graph
traversal, maximum flow, minimum cut, …

The landscape of complexity

P

contains all problems that 
can be solved in polynomial time.

The landscape of complexity

 NP P

contains all problems that 
can be solved in polynomial time.

contains all problems for which 
a solution can be verified in  

polynomial time.

How to work with reductions

• Positive: Assume that I want to solve problem A and I know how
to solve problem B in polynomial time.

• I can try to come up with a polynomial time reduction A ≤p B,
which will give me a polynomial time algorithm for solving A.

• Contrapositive: Assume that there is a problem A for which it is
unlikely that there is a polynomial time algorithm that solves it.

• If I come up with a polynomial time reduction A ≤p B, it is also
unlikely that there is a polynomial time algorithm that solves B.

• B is “at least as hard to solve as” A, because if I could solve B,
I could also solve A.

How to work with reductions

• Positive: Assume that I want to solve problem A and I know how
to solve problem B in polynomial time.

• I can try to come up with a polynomial time reduction A ≤p B,
which will give me a polynomial time algorithm for solving A.

• Contrapositive: Assume that there is a problem A for which it is
unlikely that there is a polynomial time algorithm that solves it.

• If I come up with a polynomial time reduction A ≤p B, it is also
unlikely that there is a polynomial time algorithm that solves B.

• B is “at least as hard to solve as” A, because if I could solve B,
I could also solve A.

NP-hardness
• A problem B is NP-hard if for every problem A in NP, it holds

that A ≤p B.

• If every problem in NP is “polynomial time reducible to B”.

• This captures the fact that B is at least as hard as the
hardest problems in NP.

NP-hardness

• A problem B is NP-hard if for every problem A in NP, it
holds that A ≤p B.

• To prove NP-hardness, it seems that we have to construct
a reduction from every problem A in NP.

• This is not very useful!

NP-completeness

• A problem B is NP-complete if

NP-completeness

• A problem B is NP-complete if

• It is in NP.

NP-completeness

• A problem B is NP-complete if

• It is in NP.

• i.e., it has a polynomial-time verifiable solution.

NP-completeness

• A problem B is NP-complete if

• It is in NP.

• i.e., it has a polynomial-time verifiable solution.

• It is NP-hard.

NP-completeness

• A problem B is NP-complete if

• It is in NP.

• i.e., it has a polynomial-time verifiable solution.

• It is NP-hard.

• i.e., every problem in NP can be efficiently reduced
to it.

NP-completeness

NP-completeness
• Assume problem P is NP-complete.

NP-completeness
• Assume problem P is NP-complete.

• Then every problem in NP is efficiently reducible to P.
(why?)

NP-completeness
• Assume problem P is NP-complete.

• Then every problem in NP is efficiently reducible to P.
(why?)

• To prove NP-hardness of problem B, it seems that we
have to construct a reduction from every problem A in NP.

NP-completeness
• Assume problem P is NP-complete.

• Then every problem in NP is efficiently reducible to P.
(why?)

• To prove NP-hardness of problem B, it seems that we
have to construct a reduction from every problem A in NP.

• Actually, it suffices to construct a reduction from P to B.

NP-completeness
• Assume problem P is NP-complete.

• Then every problem in NP is efficiently reducible to P.
(why?)

• To prove NP-hardness of problem B, it seems that we
have to construct a reduction from every problem A in NP.

• Actually, it suffices to construct a reduction from P to B.

• A reduction from any other problem A to B goes “via” P.

NP-hardness via P.
Problem A1 Problem P Problem B

Problem A2

Problem Ak

NP-completeness

NP-completeness

• Assume problem P is NP-complete.

NP-completeness

• Assume problem P is NP-complete.

• This all works if we have an NP-complete problem to start
with.

3 SAT
• A CNF formula with m clauses and k literals. 

 
φ = (x1 ⌵ x5 ⌵ x3) ⌃ (x2 ⌵ x6 ⌵ ⌝x5) ⌃ … ⌃ (x3 ⌵ x8 ⌵ x12)

• (“An AND of ORs”).

• Each clause has three literals.

3 SAT
• A CNF formula with m clauses and k literals. 

 
φ = (x1 ⌵ x5 ⌵ x3) ⌃ (x2 ⌵ x6 ⌵ ⌝x5) ⌃ … ⌃ (x3 ⌵ x8 ⌵ x12)

• (“An AND of ORs”).

• Each clause has three literals.

• Truth assignment: A value in {0,1} for each variable xi.

3 SAT
• A CNF formula with m clauses and k literals. 

 
φ = (x1 ⌵ x5 ⌵ x3) ⌃ (x2 ⌵ x6 ⌵ ⌝x5) ⌃ … ⌃ (x3 ⌵ x8 ⌵ x12)

• (“An AND of ORs”).

• Each clause has three literals.

• Truth assignment: A value in {0,1} for each variable xi.

• Satisfying assignment: A truth assignment which makes the formula
evaluate to 1 (= true).

3 SAT
• A CNF formula with m clauses and k literals. 

 
φ = (x1 ⌵ x5 ⌵ x3) ⌃ (x2 ⌵ x6 ⌵ ⌝x5) ⌃ … ⌃ (x3 ⌵ x8 ⌵ x12)

• (“An AND of ORs”).

• Each clause has three literals.

• Truth assignment: A value in {0,1} for each variable xi.

• Satisfying assignment: A truth assignment which makes the formula
evaluate to 1 (= true).

• Computational problem 3SAT : Decide if the input formula φ has a
satisfying assignment.

3 SAT is NP-complete

3 SAT is NP-complete
• 3 SAT is in NP (why?)

3 SAT is NP-complete
• 3 SAT is in NP (why?)

• 3 SAT is NP-hard.

3 SAT is NP-complete
• 3 SAT is in NP (why?)

• 3 SAT is NP-hard.

• Remarks:

• The first problem shown to be NP-complete was the SAT
problem (more general than 3 SAT), and this reduces to
3SAT.

• Several textbooks start from Circuit SAT, a version of the
SAT problem defined on circuits with boolean gates AND,
OR or NOT.

Proving NP-completeness

Proving NP-completeness
• Suppose that you are given a problem A and you want to

prove that it is NP-complete.

Proving NP-completeness
• Suppose that you are given a problem A and you want to

prove that it is NP-complete.

• First, prove that A is in NP.

• Usually by observing that a solution is efficiently
checkable.

Proving NP-completeness
• Suppose that you are given a problem A and you want to

prove that it is NP-complete.

• First, prove that A is in NP.

• Usually by observing that a solution is efficiently
checkable.

• Then prove that A is NP-hard.

• Construct a polynomial time reduction from some NP-
complete problem P.

In fact …
• Suppose that you are given a problem A and you want to

prove that it is NP-complete.

• First, prove that A is in NP.

• Usually by observing that a solution is efficiently
checkable.

• Then prove that A is NP-hard.

• Construct a polynomial time reduction from some NP-
hard problem P.

Pictorially

NP-complete 
problems

Problem A

NP-hard 
problems

Enough with the definitions.
Let’s see how it works.

• We will prove that a well-known problem on graphs,
called Vertex Cover is NP-complete.

Vertex Cover

• Definition: A vertex cover C of a graph G=(V, E) is a subset
of the nodes such that every edge e in the graph has at
least one endpoint in C.

• Definition: A minimum vertex cover is a vertex cover of
the smallest possible size.

• Vertex Cover 
Input: A graph G=(V, E) 
Output: A minimum vertex cover.

Example

Example

Example

Example

Example

A vertex cover

Example

Example

Example

Example

A minimum vertex cover

Vertex Cover

• Definition: A vertex cover C of a graph G=(V, E) is a subset
of the nodes such that every edge e in the graph has at
least one endpoint in C.

• Definition: A minimum vertex cover is a vertex cover of
the smallest possible size.

• Vertex Cover 
Input: A graph G=(V, E) 
Output: A minimum vertex cover.

Vertex Cover  
decision version

• Definition: A vertex cover C of a graph G=(V, E) is a subset
of the nodes such that every edge e in the graph has at
least one endpoint in C.

• Definition: A minimum vertex cover is a vertex cover of
the smallest possible size.

• Vertex Cover 
Input: A graph G=(V, E) and a number k  
Output: Is there a vertex cover of size ≤ k?.

Vertex cover

Vertex cover

• Vertex Cover is in NP.

Vertex cover

• Vertex Cover is in NP.

• Assume that we are given a vertex cover.

• We can check that is has size k and that it is a vertex
cover in polynomial time.

Vertex cover

Vertex cover

• Vertex Cover is in NP-hard.

Vertex cover

• Vertex Cover is in NP-hard.

• We will construct a polynomial time reduction from 3SAT.

• i.e., we will prove that 3SAT ≤p Vertex Cover.

The reduction

• Let φ be a 3-CNF formula with m clauses and d variables.

• We construct, in polynomial time, an instance <G, k> of
Vertex Cover such that

• If φ is satisfiable => G has a vertex cover of size at
most k.

• If φ is not satisfiable => G does not have any vertex
cover of size at most k.

The reduction
• For every variable x in φ, we create two nodes x and ⌝x in

G and we connect them with an edge e = (x , ⌝x).

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

The reduction
• For every variable x in φ, we create two nodes x and ⌝x in

G and we connect them with an edge e = (x , ⌝x).

x1 ⌝x1 x2 ⌝x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

The reduction
• For every clause l = (l 1, l2 , l3) in φ, we create three nodes

l 1, l2 , l3 in G and we connect them all with each other.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

The reduction
• We add an edge between all nodes with the same label

on the top and on the bottom.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

The reduction
• We add an edge between all nodes with the same label

on the top and on the bottom.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

The reduction
• We add an edge between all nodes with the same label

on the top and on the bottom.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

The reduction
• We add an edge between all nodes with the same label

on the top and on the bottom.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

The reduction
• We add an edge between all nodes with the same label

on the top and on the bottom.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

The reduction
• We add an edge between all nodes with the same label

on the top and on the bottom.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

The reduction
• We add an edge between all nodes with the same label

on the top and on the bottom.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

The reduction
• We add an edge between all nodes with the same label

on the top and on the bottom.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

The reduction
• We add an edge between all nodes with the same label

on the top and on the bottom.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

The reduction
• We add an edge between all nodes with the same label

on the top and on the bottom.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

The reduction

• Let φ be a 3-CNF formula with m clauses and d variables.

• We construct, in polynomial time, an instance <G, k> of
Vertex Cover, with k = d + 2m such that

• If φ is satisfiable => G has a vertex cover of size at
most k.

• If φ is not satisfiable => G does not have any vertex
cover of size at most k.

One direction

One direction
• If φ is satisfiable => G has a vertex cover of size at most k.

One direction
• If φ is satisfiable => G has a vertex cover of size at most k.

• Let (y1, y2 , … , yk) in {0,1}n be a satisfying assignment for φ.

One direction
• If φ is satisfiable => G has a vertex cover of size at most k.

• Let (y1, y2 , … , yk) in {0,1}n be a satisfying assignment for φ.

• For the nodes on the top: If yi = 1, include node xi in the
vertex cover C, otherwise, include node ⌝xi.

One direction
• If φ is satisfiable => G has a vertex cover of size at most k.

• Let (y1, y2 , … , yk) in {0,1}n be a satisfying assignment for φ.

• For the nodes on the top: If yi = 1, include node xi in the
vertex cover C, otherwise, include node ⌝xi.

• For the nodes on the bottom: In each triangle, choose a
note xi that has been picked on the top and do not include
it in the vertex cover. Include the other two nodes.

Example
• For the nodes on the top: If yi = 1, include node xi in the vertex cover

C, otherwise, include node ⌝xi.

• Assume y1 = 0, y2 = 1.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

Example
• For the nodes on the top: If yi = 1, include node xi in the vertex cover

C, otherwise, include node ⌝xi.

• Assume y1 = 0, y2 = 1.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

⌝x1 x2

Example
• For the nodes on the bottom: In each triangle, choose a note xi that has been picked

on the top and do not include it in the vertex cover. Include the other two nodes.

• Assume y1 = 0, y2 = 1.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

⌝x1 x2

Example
• For the nodes on the bottom: In each triangle, choose a note xi that has been picked

on the top and do not include it in the vertex cover. Include the other two nodes.

• Assume y1 = 0, y2 = 1.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

⌝x1 x2

x1 x1 ⌝x2

⌝x2

⌝x1

x2

One direction

• Claim: The set of nodes we have chosen is a vertex cover.

• Every edge on the top is incident to either node xi or
node ⌝xi.

• Every edge on the bottom is incident to some node in
the set, since we select two out of three nodes.

• Every edge between the top and to bottom is incident
to some node.

Example
• For the nodes on the bottom: In each triangle, choose a note xi that has been picked

on the top and do not include it in the vertex cover. Include the other two nodes.

• Assume y1 = 0, y2 = 1.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

⌝x1 x2

x1 x1 ⌝x2

⌝x2

⌝x1

x2

One direction
• Claim: The vertex cover has size k = d + 2m

• Each variable is selected at the top (either as xi or as ⌝xi).

• For each clause, we select two nodes at the bottom.

Other direction

• If φ is not satisfiable => G does not have any vertex
cover of size at most k.

Other direction

• If φ is not satisfiable => G does not have any vertex
cover of size at most k.

• G has a vertex cover of size at most k. => φ is
satisfiable.

Other direction

• G has a vertex cover of size at most k. => φ is
satisfiable.

Other direction

• G has a vertex cover of size at most k. => φ is
satisfiable.

• Let C be a vertex cover of size k = d + 2m in G.

Other direction

• G has a vertex cover of size at most k. => φ is
satisfiable.

• Let C be a vertex cover of size k = d + 2m in G.

• Since it is a vertex cover, it must include at least two
out of three nodes in each “clause gadget” at the
bottom.

Example
• Since it is a vertex cover, it must include at least two out of

three nodes in each “clause gadget” at the bottom.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

⌝x1 x2

x1 x1 ⌝x2

⌝x2

⌝x1

x2

Example
• Since it is a vertex cover, it must include at least two out of

three nodes in each “clause gadget” at the bottom.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

⌝x1 x2

x1 x1 ⌝x2

⌝x2

⌝x1

x2

clause gadget

Other direction
• G has a vertex cover of size at most k. => φ is

satisfiable.

• Let C be a vertex cover of size k = d + 2m in G.

• Since it is a vertex cover, it must include at least two out
of three nodes in each “clause gadget” at the bottom.

Other direction
• G has a vertex cover of size at most k. => φ is

satisfiable.

• Let C be a vertex cover of size k = d + 2m in G.

• Since it is a vertex cover, it must include at least two out
of three nodes in each “clause gadget” at the bottom.

• This means that at least 2m nodes of C are at the
bottom.

Other direction
• G has a vertex cover of size at most k. => φ is

satisfiable.

• Let C be a vertex cover of size k = d + 2m in G.

• Since it is a vertex cover, it must include at least two out
of three nodes in each “clause gadget” at the bottom.

• This means that at least 2m nodes of C are at the
bottom.

• This means that at most d nodes of C are at the top.

Other direction

• This means that at most d nodes of C are at the top.

• To satisfy the edges at the top, in each “variable
gadget”, at least one node must be included in C.

Example
• To satisfy the edges at the top, in each “variable gadget”, at

least one node must be included in C.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

⌝x1 x2

x1 x1 ⌝x2

⌝x2

⌝x1

x2

clause gadget

Example
• To satisfy the edges at the top, in each “variable gadget”, at

least one node must be included in C.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

⌝x1 x2

x1 x1 ⌝x2

⌝x2

⌝x1

x2

clause gadget

variable gadget

Other direction

• This means that at most d nodes of C are at the top.

• To satisfy the edges between the top and the
bottom, in each “variable gadget”, at least one node
must be included in C.

Other direction

• This means that at most d nodes of C are at the top.

• To satisfy the edges between the top and the
bottom, in each “variable gadget”, at least one node
must be included in C.

• From the two statements above, in each “variable
gadget”, exactly one node must be included in C.

Satisfying the formula

Satisfying the formula
• Consider the truth assignment corresponding to the nodes of the

vertex cover C on the top (in the variable gadgets).

Satisfying the formula
• Consider the truth assignment corresponding to the nodes of the

vertex cover C on the top (in the variable gadgets).

• Note that we either choose xi or ⌝xi to be 1, but not both.

Satisfying the formula
• Consider the truth assignment corresponding to the nodes of the

vertex cover C on the top (in the variable gadgets).

• Note that we either choose xi or ⌝xi to be 1, but not both.

• From the statement “in each “variable gadget”, exactly one node
must be included in C”.

Satisfying the formula
• Consider the truth assignment corresponding to the nodes of the

vertex cover C on the top (in the variable gadgets).

• Note that we either choose xi or ⌝xi to be 1, but not both.

• From the statement “in each “variable gadget”, exactly one node
must be included in C”.

• Since all “cross” edges are covered, there must be one endpoint on
the top (in the “variable gadget”) that is in C.

Satisfying the formula
• Consider the truth assignment corresponding to the nodes of the

vertex cover C on the top (in the variable gadgets).

• Note that we either choose xi or ⌝xi to be 1, but not both.

• From the statement “in each “variable gadget”, exactly one node
must be included in C”.

• Since all “cross” edges are covered, there must be one endpoint on
the top (in the “variable gadget”) that is in C.

• This means that there is one variable of the clause that is set to 1.

Satisfying the formula
• Consider the truth assignment corresponding to the nodes of the

vertex cover C on the top (in the variable gadgets).

• Note that we either choose xi or ⌝xi to be 1, but not both.

• From the statement “in each “variable gadget”, exactly one node
must be included in C”.

• Since all “cross” edges are covered, there must be one endpoint on
the top (in the “variable gadget”) that is in C.

• This means that there is one variable of the clause that is set to 1.

• Thus the clause is satisfied.

Example
• To satisfy the edges at the top, in each “variable gadget”, at

least one node must be included in C.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

⌝x1 x2

x1 x1 ⌝x2

⌝x2

⌝x1

x2

clause gadget

Example
• To satisfy the edges at the top, in each “variable gadget”, at

least one node must be included in C.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

⌝x1 x2

x1 x1 ⌝x2

⌝x2

⌝x1

x2

clause gadget

variable gadget

