
Advanced Algorithmic Techniques  
(COMP523)

NP-Completeness



Recap and plan
• Previous 16 lectures: 

• Polynomial time algorithms for solving several problems


• Searching, sorting, graph reachability, interval scheduling, minimum 
spanning trees etc.


• This lecture: 

• Polynomial time reductions


• Computational classes: P and NP


• NP-hardness and NP-completeness


• NP-Complete problems: 3SAT and Vertex Cover
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Polynomial Time Reduction
• We are given a problem A that we want to solve.

• We can reduce solving problem A to solving some other 
problem B.

• Assume that we had an algorithm ALGB for solving problem 
B, which we can use at cost O(1).

• We can construct an algorithm ALGA for solving problem A, 
which uses calls to the algorithm ALGB  as a subroutine.

• If ALGA is a polynomial time algorithm, then this is a 
polynomial time reduction.



Pictorially
Problem A Problem B

ALGB

Do stuff …  
 

Do stuff … 
 

Do stuff… 

Do stuff … 

… 
 

ALGA

ALGB

ALGB



Polynomial time reduction

• Can you think of any examples of such reductions?



Notation

• When problem A reduces to problem B in polynomial 
time, we write  
 
A ≤p B 
 
We often say “there is a polynomial time reduction from A 
to B”.
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How to work with reductions

• Positive: Assume that I want to solve problem A and I know how 
to solve problem B in polynomial time.

• I can try to come up with a polynomial time reduction A ≤p B, 
which will give me a polynomial time algorithm for solving A.

• Contrapositive: Assume that there is a problem A for which it is 
unlikely that there is a polynomial time algorithm that solves it.

• If I come up with a polynomial time reduction A ≤p B, it is also 
unlikely that there is a polynomial time algorithm that solves B.

• B is “at least as hard to solve as” A, because if I could solve B, 
I could also solve A.



Types of reductions

• Turing reduction: 

• Notation: A ≤T B


• A reduction which solves problem A using 
(polynomially) many calls to an oracle (an algorithm) for 
solving problem B.


• (Also known as Cook reduction).
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Types of reductions
• Turing reduction: 

• Notation: A ≤T B


• A reduction which solves problem A using (polynomially) many calls to an 
oracle (an algorithm) for solving problem B.


• (Also known as Cook reduction).


• Many-one reduction: 

• Notation: A ≤m B


• A reduction which converts instances of problem A to instances of problem B.


• (Also known as Karp reduction).



Pictorially
Problem A Problem B

ALGB

Do stuff …  
 

Do stuff … 
 

Do stuff… 

Do stuff … 

 
 

ALGA

ALGB

instance  
transformation 



Types of reductions
• Turing reduction: 

• Argument: Here is an algorithm which runs in polynomial time solving problem 
A, using polynomially many calls to an oracle for problem B.


• Many-one reduction: 

• Argument: 


• If z is a solution to instance I of problem A, then z’ is a solution of instance 
f(I) to problem B.


• If z is not a solution to instance I of problem A, then z’ is not a solution of 
instance f(I) to problem B.


• Equivalently: If z’ is a solution of instance f(I) to problem B, then z is a 
solution to instance I of problem A.



Example:  
Bipartite Matching ≤m Maximum Flow

• Maximum Bipartite Matching or Maximum matching on a 
bipartite graph G.


• Matching: A subset M of the edges E such that each 
node v of V appears in at most one edge e in E.


• Maximum matching: A matching with maximum 
cardinality.(i.e., |M| is maximised).



From matchings to flows

• Claim: Assume that there is a matching M of size k on G. 
Then there is a flow f of value k in Gf.



From flows to matchings

• Claim: Assume that there is a a flow f of value k in Gf. 
Then there is a matching M of size k on G.



Technically speaking
• Here problem A was:  

 
Is there a bipartite matching of size at least k? 
 
and problem B was:  
 
Is there a flow with value at least k? 

• Maximum Bipartite Matching and Maximum Flow are 
optimisation problems.


• The reduction used the corresponding decision problems.


• More about that later.
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Polynomial time



Computational classes

• Every problem for which there is a known polynomial time 
algorithm is in the computational class P.


• Searching, sorting, interval scheduling, minimum 
spanning tree, graph traversal, … 


• The class P contains computational problems that can 
be solved in polynomial time.


• We also say that they can be solved efficiently.
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Problems not in P

• Do you remember any problems from the lectures that we 
did not manage to prove that they lie in P?

• Weighted interval scheduling?

• Subset sum?

• Knapsack?

• Maximum flow?



The landscape of complexity

P

contains all problems that 
can be solved in polynomial time.
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The class NP
• Stands for “non deterministic polynomial time”.

• Problems that can be solved in polynomial time by a non-
deterministic Turing machine. 

• More intuitive definition: 

• Problems such that, if a solution is given, it can be 
checked that it is indeed a solution in polynomial time.

• Efficiently verifiable.



The subset sum problem

• We are given a set of n items {1, 2, … , n}.


• Each item i has a non-negative integer weight wi.


• We are given an integer bound W.


• Goal: Select a subset S of the items such that  
 
and                 is maximised.

∑
i∈S

wi ≤ W

∑
i∈S

wi



Equivalent formulation 
decision version

• We are given a set of n items {1, 2, … , n}.


• Each item i has a non-negative integer weight wi.


• We are given an integer bound W.


• Goal: Decide if there exists a subset S of the items such 
that 

∑
i∈S

wi = W



Subset Sum is in NP

• If we are given a candidate solution S, we can easily 
check whether the following holds or not:

∑
i∈S

wi = W
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Problem classification
• Problems in P:


• Searching, sorting, minimum spanning tree, graph 
traversal, maximum flow, minimum cut, Weighted 
Interval Scheduling, …


• Problems in NP:


• Subset Sum, Knapsack, Weighted Interval Scheduling, 
Searching, sorting, minimum spanning tree, graph 
traversal, maximum flow, minimum cut, …
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The landscape of complexity

    NP P

contains all problems that 
can be solved in polynomial time.

contains all problems for which 
a solution can be verified in  

polynomial time.
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How to work with reductions

• Positive: Assume that I want to solve problem A and I know how 
to solve problem B in polynomial time.


• I can try to come up with a polynomial time reduction A ≤p B, 
which will give me a polynomial time algorithm for solving A.


• Contrapositive: Assume that there is a problem A for which it is 
unlikely that there is a polynomial time algorithm that solves it.


• If I come up with a polynomial time reduction A ≤p B, it is also 
unlikely that there is a polynomial time algorithm that solves B.


• B is “at least as hard to solve as” A, because if I could solve B, 
I could also solve A.



NP-hardness
• A problem B is NP-hard if for every problem A in NP, it holds 

that A ≤p B.


• If every problem in NP is “polynomial time reducible to B”.


• This captures the fact that B is at least as hard as the 
hardest problems in NP.



NP-hardness

• A problem B is NP-hard if for every problem A in NP, it 
holds that A ≤p B.


• To prove NP-hardness, it seems that we have to construct 
a reduction from every problem A in NP. 


• This is not very useful! 
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NP-completeness

• A problem B is NP-complete if

• It is in NP.

• i.e., it has a polynomial-time verifiable solution.

• It is NP-hard.

• i.e., every problem in NP can be efficiently reduced 
to it.
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NP-completeness
• Assume problem P is NP-complete.

• Then every problem in NP is efficiently reducible to P. 
(why?)

• To prove NP-hardness of problem B, it seems that we 
have to construct a reduction from every problem A in NP. 

• Actually, it suffices to construct a reduction from P to B.

• A reduction from any other problem A to B goes “via” P.



NP-hardness via P.
Problem A1 Problem P Problem B

Problem A2

Problem Ak
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NP-completeness

• Assume problem P is NP-complete.

• This all works if we have an NP-complete problem to start 
with.
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3 SAT
• A CNF formula with m clauses and k literals. 

 
φ = (x1 ⌵ x5 ⌵ x3 ) ⌃ (x2 ⌵ x6 ⌵ ⌝x5 ) ⌃ … ⌃  (x3 ⌵ x8 ⌵ x12 )

• (“An AND of ORs”).

• Each clause has three literals.

• Truth assignment: A value in {0,1} for each variable xi.

• Satisfying assignment: A truth assignment which makes the formula 
evaluate to 1 (= true).

• Computational problem 3SAT : Decide if the input formula φ has a 
satisfying assignment.
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3 SAT is NP-complete
• 3 SAT is in NP (why?)

• 3 SAT is NP-hard.

• Remarks: 


• The first problem shown to be NP-complete was the SAT 
problem (more general than 3 SAT), and this reduces to 
3SAT.


• Several textbooks start from Circuit SAT, a version of the 
SAT problem defined on circuits with boolean gates AND, 
OR or NOT. 
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In fact … 
• Suppose that you are given a problem A and you want to 

prove that it is NP-complete.


• First, prove that A is in NP.


• Usually by observing that a solution is efficiently 
checkable.


• Then prove that A is NP-hard.


• Construct a polynomial time reduction from some NP-
hard problem P.



Pictorially

NP-complete 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Problem A

NP-hard 
problems



Enough with the definitions. 
Let’s see how it works.

• We will prove that a well-known problem on graphs, 
called Vertex Cover is NP-complete.



Vertex Cover

• Definition: A vertex cover C of a graph G=(V, E) is a subset 
of the nodes such that every edge e in the graph has at 
least one endpoint in C.


• Definition: A minimum vertex cover is a vertex cover of 
the smallest possible size.


• Vertex Cover 
Input: A graph G=(V, E) 
Output: A minimum vertex cover.
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Vertex Cover

• Definition: A vertex cover C of a graph G=(V, E) is a subset 
of the nodes such that every edge e in the graph has at 
least one endpoint in C.
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Vertex Cover  
decision version

• Definition: A vertex cover C of a graph G=(V, E) is a subset 
of the nodes such that every edge e in the graph has at 
least one endpoint in C.


• Definition: A minimum vertex cover is a vertex cover of 
the smallest possible size.


• Vertex Cover 
Input: A graph G=(V, E) and a number k  
Output: Is there a vertex cover of size ≤ k?.
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Vertex cover

• Vertex Cover is in NP.

• Assume that we are given a vertex cover. 


• We can check that is has size k and that it is a vertex 
cover in polynomial time.
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Vertex cover

• Vertex Cover is in NP-hard.

• We will construct a polynomial time reduction from 3SAT.


• i.e., we will prove that 3SAT ≤p Vertex Cover.



The reduction

• Let φ be a 3-CNF formula with m clauses and d variables.


• We construct, in polynomial time, an instance <G, k> of 
Vertex Cover such that


• If φ is satisfiable => G has a vertex cover of size at 
most k.


• If φ is not satisfiable => G does not have any vertex 
cover of size at most k.
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The reduction
• For every clause l = (l 1, l2 , l3 ) in φ, we create three nodes   

l 1, l2 , l3 in G and we connect them all with each other.
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The reduction

• Let φ be a 3-CNF formula with m clauses and d variables.


• We construct, in polynomial time, an instance <G, k> of 
Vertex Cover, with k = d + 2m such that


• If φ is satisfiable => G has a vertex cover of size at 
most k.


• If φ is not satisfiable => G does not have any vertex 
cover of size at most k.
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• If φ is satisfiable => G has a vertex cover of size at most k.

• Let (y1, y2 , … , yk) in {0,1}n be a satisfying assignment for φ.

• For the nodes on the top: If yi = 1, include node xi in the 
vertex cover C, otherwise, include node ⌝xi.

• For the nodes on the bottom: In each triangle, choose a 
note xi that has been picked on the top and do not include 
it in the vertex cover. Include the other two nodes.
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Example
• For the nodes on the bottom: In each triangle, choose a note xi that has been picked 

on the top and do not include it in the vertex cover. Include the other two nodes. 
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Example
• For the nodes on the bottom: In each triangle, choose a note xi that has been picked 

on the top and do not include it in the vertex cover. Include the other two nodes. 
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One direction

• Claim: The set of nodes we have chosen is a vertex cover.


• Every edge on the top is incident to either node xi or 
node ⌝xi.


• Every edge on the bottom is incident to some node in 
the set, since we select two out of three nodes.


• Every edge between the top and to bottom is incident 
to some node.



Example
• For the nodes on the bottom: In each triangle, choose a note xi that has been picked 

on the top and do not include it in the vertex cover. Include the other two nodes. 
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One direction
• Claim: The vertex cover has size k = d + 2m


• Each variable is selected at the top (either as xi or as ⌝xi).


• For each clause, we select two nodes at the bottom.
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cover of size at most k.
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• Let C be a vertex cover of size k = d + 2m in G.

• Since it is a vertex cover, it must include at least two 
out of three nodes in each “clause gadget” at the 
bottom.
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• G has a vertex cover of size at most k. => φ is 

satisfiable.

• Let C be a vertex cover of size k = d + 2m in G.

• Since it is a vertex cover, it must include at least two out 
of three nodes in each “clause gadget” at the bottom.

• This means that at least 2m nodes of C are at the 
bottom.

• This means that at most d nodes of C are at the top.



Other direction

• This means that at most d nodes of C are at the top.


• To satisfy the edges at the top, in each “variable 
gadget”, at least one node must be included in C.
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Other direction

• This means that at most d nodes of C are at the top.

• To satisfy the edges between the top and the 
bottom, in each “variable gadget”, at least one node 
must be included in C.



Other direction

• This means that at most d nodes of C are at the top.

• To satisfy the edges between the top and the 
bottom, in each “variable gadget”, at least one node 
must be included in C.

• From the two statements above, in each “variable 
gadget”, exactly one node must be included in C.
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Satisfying the formula
• Consider the truth assignment corresponding to the nodes of the 

vertex cover C on the top (in the variable gadgets).

• Note that we either choose xi or ⌝xi to be 1, but not both.

• From the statement “in each “variable gadget”, exactly one node 
must be included in C”.

• Since all “cross” edges are covered, there must be one endpoint on 
the top (in the “variable gadget”) that is in C.

• This means that there is one variable of the clause that is set to 1.

• Thus the clause is satisfied.



Example
• To satisfy the edges at the top, in each “variable gadget”, at 

least one node must be included in C.
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