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Recap and plan
• Previous lecture: 

• Polynomial time reductions


• Computational classes: P and NP


• NP-hardness and NP-completeness


• NP-Complete problems: 3SAT and Vertex Cover


• This lecture: 

• Decision vs Optimisation.


• NP-hardness for Subset Sum and Knapsack.


• A catalogue of NP-complete problems.


• A taxonomy of NP-complete problems.



Recall: Vertex Cover

• Definition: A vertex cover C of a graph G=(V, E) is a subset 
of the nodes such that every edge e in the graph has at 
least one endpoint in C.


• Definition: A minimum vertex cover is a vertex cover of 
the smallest possible size.


• Vertex Cover 
Input: A graph G=(V, E) 
Output: A minimum vertex cover.



Vertex Cover  
decision version

• Definition: A vertex cover C of a graph G=(V, E) is a subset 
of the nodes such that every edge e in the graph has at 
least one endpoint in C.


• Definition: A minimum vertex cover is a vertex cover of 
the smallest possible size.


• Vertex Cover 
Input: A graph G=(V, E) and a number k  
Output: Is there a vertex cover of size ≤ k?.



From optimisation to 
decision

• We are given an optimisation problem P (assume 
minimisation).


• E.g., find the minimum vertex cover.


• We introduce a threshold k.


• The decision version Pd becomes: Given an instance of P 
and the threshold k as input, is there a solution to P of 
value at most k?


• E.g., is there a vertex cover of size at most k?



Optimisation vs decision



Optimisation vs decision

• If we can solve P in polynomial time, we can solve Pd in 
polynomial time. (why?)
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Optimisation vs decision

• If we can solve P in polynomial time, we can solve Pd in 
polynomial time. (why?)

• This implies that if the decision version is NP-hard, so 
is the optimisation version.

• Often the opposite is also true.

• If we can solve Pd in polynomial time, we can solve P in 
polynomial time.



Optimisation vs decision

• Vertex Cover (Optimisation) 
Input: A graph G=(V, E) 
Output: A minimum vertex cover.


• Vertex Cover (Decision) 
Input: A graph G=(V, E) and a number k  
Output: Is there a vertex cover of size ≤ k?.



Optimisation vs decision

• Vertex Cover Size (Optimisation) 
Input: A graph G=(V, E) 
Output: The size of a minimum vertex cover.


• Vertex Cover (Decision) 
Input: A graph G=(V, E) and a number k  
Output: Is there a vertex cover of size ≤ k?.
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Optimisation vs decision

• Vertex Cover Size (Optimisation) 
Input: A graph G=(V, E) 
Output: The size of a minimum vertex cover.


• Vertex Cover (Decision) 
Input: A graph G=(V, E) and a number k  
Output: Is there a vertex cover of size ≤ k?.



Optimisation vs decision

• Vertex Cover (Optimisation) 
Input: A graph G=(V, E) 
Output: A minimum vertex cover.


• Vertex Cover (Decision) 
Input: A graph G=(V, E) and a number k  
Output: Is there a vertex cover of size ≤ k?.



Vertex Cover
• First, find the value k* of the minimum vertex cover using the algorithm for VCd.


• Pick a vertex v in the graph.


• Remove it (and the incident edges) to get graph G - {v}.


• Property: If v was in any minimum vertex cover, G - {v} has a minimum 
vertex cover of size k*-1.


• Check if the graph G - {v} has a vertex cover of size at most k*-1.


• Yes: Include v in the vertex cover.


• No: Do not include v in the vertex cover. 


• Then move to the next vertex. 



The subset sum problem

• We are given a set of n items {1, 2, … , n}.


• Each item i has a non-negative integer weight wi.


• We are given an integer bound W.


• Goal: Select a subset S of the items such that  
 
and                 is maximised.

∑
i∈S

wi ≤ W

∑
i∈S

wi



Equivalent formulation 
decision version

• We are given a set T of n items {1, 2, … , n}.


• Each item i has a non-negative integer weight wi.


• We are given an integer bound W.


• Goal: Decide if there exists a subset S of the items such 
that 

∑
i∈S

wi = W



Subset Sum is in NP

• If we are given a candidate solution S, we can easily 
check whether the following holds or not:

∑
i∈S

wi = W



Subset Sum is in NP-hard
• We will reduce from 3SAT.


• Given a 3CNF formula φ (with m clauses and n variables) we will 
construct an instance  <T, W> of the subset sum problem such that:


• φ is satisfiable if any only if there exists a subset S of T whose 
sum is exactly W. 


• Assumptions wlog:


• Every variable appears in some clause.


• A clause does not include both a variable and its negation.



The reduction

• We will create integers with m+n digits that look like this: 
 
x1 x2 x3 … xn … C1 C2 … Cm
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The reduction

• We will create integers with m+n digits that look like this: 
 
x1 x2 x3 … xn … C1 C2 … Cm

Variables Clauses



The reduction
x1 x2 x3 C1 C2 C3 C4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3 ) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3 ) ⌃  (⌝x1 ⌵ ⌝x2 ⌵ x3 ) ⌃  (x1 ⌵ x2 ⌵ x3 )
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x1 x2 x3 … xn … C1 C2 … Cm


• We will set W to have 1 in all “variable digits” and 0 in all 
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The reduction

• We will create integers with m+n digits that look like this: 
 
x1 x2 x3 … xn … C1 C2 … Cm


• We will set W to have 1 in all “variable digits” and 0 in all 
“clause digits”.


• For each variable xi, we create two integers zi and yi. 


• Each of them has 1 in the digit xi and 0 in the other 
“variable digits”. 



The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0
y1 1 0 0
z2 0 1 0
y2 0 1 0
z3 0 0 1
y3 0 0 1

W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3 ) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3 ) ⌃  (⌝x1 ⌵ ⌝x2 ⌵ x3 ) ⌃  (x1 ⌵ x2 ⌵ x3 )



The reduction
• We will create integers with m+n digits that look like this: 

 
x1 x2 x3 … xn … C1 C2 … Cm


• We will set W to have 1 in all “variable digits” and 0 in all “clause digits”.


• For each variable xi, we create two integers zi and yi. 


• Each of them has 1 in the digit xi and 0 in the other “variable digits”. 


• If literal xi appears in clause Cj, zi contains a 1 in the corresponding 
“clause digit”.


• If literal ⌝xi appears in clause Cj, yi contains a 1in the corresponding 
“clause digit”.


• All other “clause digits” are set to 0.



The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0

W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3 ) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3 ) ⌃  (⌝x1 ⌵ ⌝x2 ⌵ x3 ) ⌃  (x1 ⌵ x2 ⌵ x3 )



The reduction
• We will create integers with m+n digits that look like this: 

 
x1 x2 x3 … xn … C1 C2 … Cm


• We will set W to have 1 in all “variable digits” and 0 in all “clause digits”.


• For each variable xi, we create two integers zi and yi. 


• Each of them has 1 in the digit xi and 0 in the other “variable digits”. 


• If literal xi appears in clause Cj, zi contains a 1 in the corresponding 
“clause digit”.


• If literal ⌝xi appears in clause Cj, yi contains a 1in the corresponding 
“clause digit”.


• All other “clause digits” are set to 0.



The reduction

• For each clause Cj we create two integers si and ti.


• These have 0 everywhere, except in the corresponding 
“clause digit”. 



The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0
s1 0 0 0 0 0 0
t1 0 0 0 0 0 0
s2 0 0 0 0 0 0
t2 0 0 0 0 0 0
s3 0 0 0 0 0 0
t3 0 0 0 0 0 0
s4 0 0 0 0 0 0
t4 0 0 0 0 0 0
W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3 ) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3 ) ⌃  (⌝x1 ⌵ ⌝x2 ⌵ x3 ) ⌃  (x1 ⌵ x2 ⌵ x3 )



The reduction

• For each clause Cj we create two integers si and ti.


• These have 0 everywhere, except in the corresponding 
“clause digit”. 


• si has a 1 in the corresponding “clause digit”.


• ti has a 2 in the corresponding “clause digit”.



The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0
s1 0 0 0 1 0 0 0
t1 0 0 0 2 0 0 0
s2 0 0 0 0 1 0 0
t2 0 0 0 0 2 0 0
s3 0 0 0 0 0 1 0
t3 0 0 0 0 0 2 0
s4 0 0 0 0 0 0 1
t4 0 0 0 0 0 0 2
W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3 ) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3 ) ⌃  (⌝x1 ⌵ ⌝x2 ⌵ x3 ) ⌃  (x1 ⌵ x2 ⌵ x3 )



Subset Sum is in NP-hard
• We will reduce from 3SAT.

• Given a 3CNF formula φ (with m clauses and n variables) we 
will construct an instance  <T, W> of the subset sum problem 
such that:

• φ is satisfiable if any only if there exists a subset S of T 
whose sum is exactly W. 



Subset Sum is in NP-hard
• We will reduce from 3SAT.

• Given a 3CNF formula φ (with m clauses and n variables) we 
will construct an instance  <T, W> of the subset sum problem 
such that:

• φ is satisfiable if any only if there exists a subset S of T 
whose sum is exactly W. 

• One direction:  
 
φ is satisfiable => there exists a subset S of T whose sum is 
exactly W. 



The reduction
• Let x be a satisfying assignment.


• If x1 = 1, include z1.


• Otherwise, include y1.


• Include appropriate choices of si and ti.


 



The reduction
x1 x2 x3 C1 C2 C3 C4
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y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
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t1 0 0 0 2 0 0 0
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t4 0 0 0 0 0 0 2
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Since all clauses are satisfied, we get at 
least one “1” from one of the  

variables that were set to “0” in x.
If we need either  

1 more “1” or  
2 more “1”s 
to get to “4”.
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The reduction
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z1 1 0 0 1 0 0 1
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By the construction of z and y, the 
“variable digits” always sum up to 1111

Since all clauses are satisfied, we get at 
least one “1” from one of the  

variables that were set to “0” in x.
If we need either  

1 more “1” or  
2 more “1”s 
to get to “4”.
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appropriate si or ti to 

make up the difference.



The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0
s1 0 0 0 1 0 0 0
t1 0 0 0 2 0 0 0
s2 0 0 0 0 1 0 0
t2 0 0 0 0 2 0 0
s3 0 0 0 0 0 1 0
t3 0 0 0 0 0 2 0
s4 0 0 0 0 0 0 1
t4 0 0 0 0 0 0 2
W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3 ) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3 ) ⌃  (⌝x1 ⌵ ⌝x2 ⌵ x3 ) ⌃  (x1 ⌵ x2 ⌵ x3 )

By the construction of z and y, the 
“variable digits” always sum up to 1111

Since all clauses are satisfied, we get at 
least one “1” from one of the  

variables that were set to “0” in x.

If we need either  
3 more “1s 

to get to “4”.

We pick both si or ti to 
make up the difference.



The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
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If we need either  
3 more “1s 

to get to “4”.

We pick both si or ti to 
make up the difference.
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By the construction of z and y, the 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Since all clauses are satisfied, we get at 
least one “1” from one of the  

variables that were set to “0” in x.

If we need either  
3 more “1s 

to get to “4”.

We pick both si or ti to 
make up the difference.
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• We will reduce from 3SAT.

• Given a 3CNF formula φ (with m clauses and n variables) we 
will construct an instance  <T, W> of the subset sum problem 
such that:

• φ is satisfiable if any only if there exists a subset S of T 
whose sum is exactly W. 



Subset Sum is in NP-hard
• We will reduce from 3SAT.

• Given a 3CNF formula φ (with m clauses and n variables) we 
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such that:

• φ is satisfiable if any only if there exists a subset S of T 
whose sum is exactly W. 

• Other direction:  
 
there exists a subset S of T whose sum is exactly W => φ is 
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S must contain exactly one of z and y  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Set xi = 1 if S contains zi and xi = 0 otherwise.

Consider an arbitrary clause Cj.

Consider the corresponding “clause digits”.

Since these add up to “4”, it must 
receive at least “1” from the 

chosen  z or y numbers.

This implies that the clause is satisfied.



Knapsack

• 0/1-Knapsack is also NP-complete.


• Define the decision problem, containment is easy to 
see.


• How do we prove hardness?


• Which problem should we reduce from?



NP-complete problems
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such that there is no edge between any two nodes in the 
set.
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• Independent Set in graph G: A set of nodes in the graph, 

such that there is no edge between any two nodes in the 
set.

• Maximum Independent Set  
Given a graph G, find an independent set of maximum 
size.

• Maximum Independent Set (decision version) 
Given a graph G, and an integer k, is there an 
independent set of size at least k?
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Given a set U of elements, a collection S1, … , Sm of 
subsets of U and a number k, does there exist a 
collection of at least k of these sets such that no two of 
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NP-complete problems
• Set Packing 

Given a set U of elements, a collection S1, … , Sm of 
subsets of U and a number k, does there exist a 
collection of at least k of these sets such that no two of 
them intersect?

• Set Cover 
Given a set U of elements, a collection S1, … , Sm of 
subsets of U and a number k, does there exist a 
collection of at most k of these sets whose union is equal 
to U?



NP-complete problems



NP-complete problems

• 3-Dimensional Matching 
Given disjoint sets X, Y and Z each of size n, and given a 
set T (which is a subset of X x Y x Z) of ordered triples, 
does there exist a set of n triples in T, so that each 
element of X U Y U Z is contained in exactly in one of 
these triples?
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• k-Colouring of a graph G: A function f: V → {1, …, k} so 
that for every edge (u, v) we have that f(u) ≠ f(v).
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• k-Colouring of a graph G: A function f: V → {1, …, k} so 
that for every edge (u, v) we have that f(u) ≠ f(v).

• 3-Colouring 
Given a graph G, does it have a 3-Colouring?



Interlude

• k-Colouring of a graph G: A function f: V → {1, …, k} so 
that for every edge (u, v) we have that f(u) ≠ f(v).


• 3-Colouring 
Given a graph G, does it have a 3-Colouring?


• What about 2-Colouring? Is it NP-complete?
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that contains each vertex exactly once.
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NP-complete problems
• Hamiltonian cycle in a directed graph G: A cycle in a directed 

graph that visits each vertex exactly once.

• Hamiltonian path in a directed graph G: A path in a directed graph 
that contains each vertex exactly once.

• Hamiltonian Cycle 
Given a directed graph G, does it have a Hamiltonian Cycle?

• Hamiltonian Path 
Given a directed graph G, does it have a Hamiltonian Path?

• Traveling Salesman 
(def Kleinberg and Tardos, p. 474).



NP-completeness,  
a taxonomy

Independent Set 
Set Packing

Vertex Cover 
Set Cover

3D-Matching 
Graph Colouring

Hamiltonian Cycle 
Hamiltonian Path 

Traveling Salesman

Subset Sum 
Knapsack 3 SAT

Packing problems Covering problems Partitioning problems

Sequencing problems Numerical problems Constraint Satisfaction  
problems


