
Advanced Algorithmic Techniques
(COMP523)

NP-Completeness 2

Recap and plan
• Previous lecture:

• Polynomial time reductions

• Computational classes: P and NP

• NP-hardness and NP-completeness

• NP-Complete problems: 3SAT and Vertex Cover

• This lecture:

• Decision vs Optimisation.

• NP-hardness for Subset Sum and Knapsack.

• A catalogue of NP-complete problems.

• A taxonomy of NP-complete problems.

Recall: Vertex Cover

• Definition: A vertex cover C of a graph G=(V, E) is a subset
of the nodes such that every edge e in the graph has at
least one endpoint in C.

• Definition: A minimum vertex cover is a vertex cover of
the smallest possible size.

• Vertex Cover 
Input: A graph G=(V, E) 
Output: A minimum vertex cover.

Vertex Cover  
decision version

• Definition: A vertex cover C of a graph G=(V, E) is a subset
of the nodes such that every edge e in the graph has at
least one endpoint in C.

• Definition: A minimum vertex cover is a vertex cover of
the smallest possible size.

• Vertex Cover 
Input: A graph G=(V, E) and a number k  
Output: Is there a vertex cover of size ≤ k?.

From optimisation to
decision

• We are given an optimisation problem P (assume
minimisation).

• E.g., find the minimum vertex cover.

• We introduce a threshold k.

• The decision version Pd becomes: Given an instance of P
and the threshold k as input, is there a solution to P of
value at most k?

• E.g., is there a vertex cover of size at most k?

Optimisation vs decision

Optimisation vs decision

• If we can solve P in polynomial time, we can solve Pd in
polynomial time. (why?)

Optimisation vs decision

• If we can solve P in polynomial time, we can solve Pd in
polynomial time. (why?)

• This implies that if the decision version is NP-hard, so
is the optimisation version.

Optimisation vs decision

• If we can solve P in polynomial time, we can solve Pd in
polynomial time. (why?)

• This implies that if the decision version is NP-hard, so
is the optimisation version.

• Often the opposite is also true.

Optimisation vs decision

• If we can solve P in polynomial time, we can solve Pd in
polynomial time. (why?)

• This implies that if the decision version is NP-hard, so
is the optimisation version.

• Often the opposite is also true.

• If we can solve Pd in polynomial time, we can solve P in
polynomial time.

Optimisation vs decision

• Vertex Cover (Optimisation) 
Input: A graph G=(V, E) 
Output: A minimum vertex cover.

• Vertex Cover (Decision) 
Input: A graph G=(V, E) and a number k  
Output: Is there a vertex cover of size ≤ k?.

Optimisation vs decision

• Vertex Cover Size (Optimisation) 
Input: A graph G=(V, E) 
Output: The size of a minimum vertex cover.

• Vertex Cover (Decision) 
Input: A graph G=(V, E) and a number k  
Output: Is there a vertex cover of size ≤ k?.

Vertex Cover Size

VC (decision)

Vertex Cover Size
k = 1 ?

VC (decision)

Vertex Cover Size
k = 1 ?

VC (decision)

no

Vertex Cover Size
k = 1 ?

VC (decision)

no

k = 2 ?

Vertex Cover Size
k = 1 ?

VC (decision)

no

k = 2 ?

no

Vertex Cover Size
k = 1 ?

VC (decision)

no

k = 2 ?

no
…

Vertex Cover Size
k = 1 ?

VC (decision)

no

k = 2 ?

no
…

k = n ?

Vertex Cover Size
k = 1 ?

VC (decision)

no

k = 2 ?

no
…

k = n ?

yes

Vertex Cover Size
k = 1 ?

VC (decision)

no

k = 2 ?

no
…

k = n ?

yes

…

Vertex Cover Size
k = 1 ?

VC (decision)

no

k = 2 ?

no
…

k = n ?

yes

…

k = l ?
yes

k = l-1 ?
no

Vertex Cover Size

VC (decision)

Vertex Cover Size
k = 1 ?

VC (decision)

Vertex Cover Size
k = 1 ?

VC (decision)

no

Vertex Cover Size
k = 1 ?

VC (decision)

no

k = n ?

Vertex Cover Size
k = 1 ?

VC (decision)

no

k = n ?

yes

Vertex Cover Size
k = 1 ?

VC (decision)

no

k = n ?

yes

k = n/2 ?

Vertex Cover Size
k = 1 ?

VC (decision)

no

k = n ?

yes

k = n/2 ?

no

Vertex Cover Size
k = 1 ?

VC (decision)

no

k = n ?

yes

k = n/2 ?

no

Optimisation vs decision

• Vertex Cover Size (Optimisation) 
Input: A graph G=(V, E) 
Output: The size of a minimum vertex cover.

• Vertex Cover (Decision) 
Input: A graph G=(V, E) and a number k  
Output: Is there a vertex cover of size ≤ k?.

Optimisation vs decision

• Vertex Cover (Optimisation) 
Input: A graph G=(V, E) 
Output: A minimum vertex cover.

• Vertex Cover (Decision) 
Input: A graph G=(V, E) and a number k  
Output: Is there a vertex cover of size ≤ k?.

Vertex Cover
• First, find the value k* of the minimum vertex cover using the algorithm for VCd.

• Pick a vertex v in the graph.

• Remove it (and the incident edges) to get graph G - {v}.

• Property: If v was in any minimum vertex cover, G - {v} has a minimum
vertex cover of size k*-1.

• Check if the graph G - {v} has a vertex cover of size at most k*-1.

• Yes: Include v in the vertex cover.

• No: Do not include v in the vertex cover.

• Then move to the next vertex.

The subset sum problem

• We are given a set of n items {1, 2, … , n}.

• Each item i has a non-negative integer weight wi.

• We are given an integer bound W.

• Goal: Select a subset S of the items such that  
 
and is maximised.

∑
i∈S

wi ≤ W

∑
i∈S

wi

Equivalent formulation
decision version

• We are given a set T of n items {1, 2, … , n}.

• Each item i has a non-negative integer weight wi.

• We are given an integer bound W.

• Goal: Decide if there exists a subset S of the items such
that

∑
i∈S

wi = W

Subset Sum is in NP

• If we are given a candidate solution S, we can easily
check whether the following holds or not:

∑
i∈S

wi = W

Subset Sum is in NP-hard
• We will reduce from 3SAT.

• Given a 3CNF formula φ (with m clauses and n variables) we will
construct an instance <T, W> of the subset sum problem such that:

• φ is satisfiable if any only if there exists a subset S of T whose
sum is exactly W.

• Assumptions wlog:

• Every variable appears in some clause.

• A clause does not include both a variable and its negation.

The reduction

• We will create integers with m+n digits that look like this: 
 
x1 x2 x3 … xn … C1 C2 … Cm

The reduction

• We will create integers with m+n digits that look like this: 
 
x1 x2 x3 … xn … C1 C2 … Cm

Variables

The reduction

• We will create integers with m+n digits that look like this: 
 
x1 x2 x3 … xn … C1 C2 … Cm

Variables Clauses

The reduction
x1 x2 x3 C1 C2 C3 C4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ x3) ⌃ (x1 ⌵ x2 ⌵ x3)

The reduction

• We will create integers with m+n digits that look like this: 
 
x1 x2 x3 … xn … C1 C2 … Cm

• We will set W to have 1 in all “variable digits” and 0 in all
“clause digits”.

The reduction
x1 x2 x3 C1 C2 C3 C4

W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ x3) ⌃ (x1 ⌵ x2 ⌵ x3)

The reduction

• We will create integers with m+n digits that look like this: 
 
x1 x2 x3 … xn … C1 C2 … Cm

• We will set W to have 1 in all “variable digits” and 0 in all
“clause digits”.

• For each variable xi, we create two integers zi and yi.

• Each of them has 1 in the digit xi and 0 in the other
“variable digits”.

The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0
y1 1 0 0
z2 0 1 0
y2 0 1 0
z3 0 0 1
y3 0 0 1

W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ x3) ⌃ (x1 ⌵ x2 ⌵ x3)

The reduction
• We will create integers with m+n digits that look like this: 

 
x1 x2 x3 … xn … C1 C2 … Cm

• We will set W to have 1 in all “variable digits” and 0 in all “clause digits”.

• For each variable xi, we create two integers zi and yi.

• Each of them has 1 in the digit xi and 0 in the other “variable digits”.

• If literal xi appears in clause Cj, zi contains a 1 in the corresponding
“clause digit”.

• If literal ⌝xi appears in clause Cj, yi contains a 1in the corresponding
“clause digit”.

• All other “clause digits” are set to 0.

The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0

W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ x3) ⌃ (x1 ⌵ x2 ⌵ x3)

The reduction
• We will create integers with m+n digits that look like this: 

 
x1 x2 x3 … xn … C1 C2 … Cm

• We will set W to have 1 in all “variable digits” and 0 in all “clause digits”.

• For each variable xi, we create two integers zi and yi.

• Each of them has 1 in the digit xi and 0 in the other “variable digits”.

• If literal xi appears in clause Cj, zi contains a 1 in the corresponding
“clause digit”.

• If literal ⌝xi appears in clause Cj, yi contains a 1in the corresponding
“clause digit”.

• All other “clause digits” are set to 0.

The reduction

• For each clause Cj we create two integers si and ti.

• These have 0 everywhere, except in the corresponding
“clause digit”.

The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0
s1 0 0 0 0 0 0
t1 0 0 0 0 0 0
s2 0 0 0 0 0 0
t2 0 0 0 0 0 0
s3 0 0 0 0 0 0
t3 0 0 0 0 0 0
s4 0 0 0 0 0 0
t4 0 0 0 0 0 0
W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ x3) ⌃ (x1 ⌵ x2 ⌵ x3)

The reduction

• For each clause Cj we create two integers si and ti.

• These have 0 everywhere, except in the corresponding
“clause digit”.

• si has a 1 in the corresponding “clause digit”.

• ti has a 2 in the corresponding “clause digit”.

The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0
s1 0 0 0 1 0 0 0
t1 0 0 0 2 0 0 0
s2 0 0 0 0 1 0 0
t2 0 0 0 0 2 0 0
s3 0 0 0 0 0 1 0
t3 0 0 0 0 0 2 0
s4 0 0 0 0 0 0 1
t4 0 0 0 0 0 0 2
W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ x3) ⌃ (x1 ⌵ x2 ⌵ x3)

Subset Sum is in NP-hard
• We will reduce from 3SAT.

• Given a 3CNF formula φ (with m clauses and n variables) we
will construct an instance <T, W> of the subset sum problem
such that:

• φ is satisfiable if any only if there exists a subset S of T
whose sum is exactly W.

Subset Sum is in NP-hard
• We will reduce from 3SAT.

• Given a 3CNF formula φ (with m clauses and n variables) we
will construct an instance <T, W> of the subset sum problem
such that:

• φ is satisfiable if any only if there exists a subset S of T
whose sum is exactly W.

• One direction:  
 
φ is satisfiable => there exists a subset S of T whose sum is
exactly W.

The reduction
• Let x be a satisfying assignment.

• If x1 = 1, include z1.

• Otherwise, include y1.

• Include appropriate choices of si and ti.

The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0
s1 0 0 0 1 0 0 0
t1 0 0 0 2 0 0 0
s2 0 0 0 0 1 0 0
t2 0 0 0 0 2 0 0
s3 0 0 0 0 0 1 0
t3 0 0 0 0 0 2 0
s4 0 0 0 0 0 0 1
t4 0 0 0 0 0 0 2
W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ x3) ⌃ (x1 ⌵ x2 ⌵ x3)

The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0
s1 0 0 0 1 0 0 0
t1 0 0 0 2 0 0 0
s2 0 0 0 0 1 0 0
t2 0 0 0 0 2 0 0
s3 0 0 0 0 0 1 0
t3 0 0 0 0 0 2 0
s4 0 0 0 0 0 0 1
t4 0 0 0 0 0 0 2
W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ x3) ⌃ (x1 ⌵ x2 ⌵ x3)

By the construction of z and y, the 
“variable digits” always sum up to 1111

The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0
s1 0 0 0 1 0 0 0
t1 0 0 0 2 0 0 0
s2 0 0 0 0 1 0 0
t2 0 0 0 0 2 0 0
s3 0 0 0 0 0 1 0
t3 0 0 0 0 0 2 0
s4 0 0 0 0 0 0 1
t4 0 0 0 0 0 0 2
W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ x3) ⌃ (x1 ⌵ x2 ⌵ x3)

By the construction of z and y, the 
“variable digits” always sum up to 1111

Since all clauses are satisfied, we get at 
least one “1” from one of the  

variables that were set to 0 in x.

The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0
s1 0 0 0 1 0 0 0
t1 0 0 0 2 0 0 0
s2 0 0 0 0 1 0 0
t2 0 0 0 0 2 0 0
s3 0 0 0 0 0 1 0
t3 0 0 0 0 0 2 0
s4 0 0 0 0 0 0 1
t4 0 0 0 0 0 0 2
W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ x3) ⌃ (x1 ⌵ x2 ⌵ x3)

By the construction of z and y, the 
“variable digits” always sum up to 1111

Since all clauses are satisfied, we get at 
least one “1” from one of the  

variables that were set to “0” in x.

The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0
s1 0 0 0 1 0 0 0
t1 0 0 0 2 0 0 0
s2 0 0 0 0 1 0 0
t2 0 0 0 0 2 0 0
s3 0 0 0 0 0 1 0
t3 0 0 0 0 0 2 0
s4 0 0 0 0 0 0 1
t4 0 0 0 0 0 0 2
W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ x3) ⌃ (x1 ⌵ x2 ⌵ x3)

By the construction of z and y, the 
“variable digits” always sum up to 1111

Since all clauses are satisfied, we get at 
least one “1” from one of the  

variables that were set to “0” in x.
If we need either  

1 more “1” or  
2 more “1”s 
to get to “4”.

The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0
s1 0 0 0 1 0 0 0
t1 0 0 0 2 0 0 0
s2 0 0 0 0 1 0 0
t2 0 0 0 0 2 0 0
s3 0 0 0 0 0 1 0
t3 0 0 0 0 0 2 0
s4 0 0 0 0 0 0 1
t4 0 0 0 0 0 0 2
W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ x3) ⌃ (x1 ⌵ x2 ⌵ x3)

By the construction of z and y, the 
“variable digits” always sum up to 1111

Since all clauses are satisfied, we get at 
least one “1” from one of the  

variables that were set to “0” in x.
If we need either  

1 more “1” or  
2 more “1”s 
to get to “4”.

We can pick the 
appropriate si or ti to 

make up the difference.

The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0
s1 0 0 0 1 0 0 0
t1 0 0 0 2 0 0 0
s2 0 0 0 0 1 0 0
t2 0 0 0 0 2 0 0
s3 0 0 0 0 0 1 0
t3 0 0 0 0 0 2 0
s4 0 0 0 0 0 0 1
t4 0 0 0 0 0 0 2
W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ x3) ⌃ (x1 ⌵ x2 ⌵ x3)

By the construction of z and y, the 
“variable digits” always sum up to 1111

Since all clauses are satisfied, we get at 
least one “1” from one of the  

variables that were set to “0” in x.
If we need either  

1 more “1” or  
2 more “1”s 
to get to “4”.

We can pick the 
appropriate si or ti to 

make up the difference.

The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0
s1 0 0 0 1 0 0 0
t1 0 0 0 2 0 0 0
s2 0 0 0 0 1 0 0
t2 0 0 0 0 2 0 0
s3 0 0 0 0 0 1 0
t3 0 0 0 0 0 2 0
s4 0 0 0 0 0 0 1
t4 0 0 0 0 0 0 2
W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ x3) ⌃ (x1 ⌵ x2 ⌵ x3)

By the construction of z and y, the 
“variable digits” always sum up to 1111

Since all clauses are satisfied, we get at 
least one “1” from one of the  

variables that were set to “0” in x.
If we need either  

1 more “1” or  
2 more “1”s 
to get to “4”.

We can pick the 
appropriate si or ti to 

make up the difference.

The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0
s1 0 0 0 1 0 0 0
t1 0 0 0 2 0 0 0
s2 0 0 0 0 1 0 0
t2 0 0 0 0 2 0 0
s3 0 0 0 0 0 1 0
t3 0 0 0 0 0 2 0
s4 0 0 0 0 0 0 1
t4 0 0 0 0 0 0 2
W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ x3) ⌃ (x1 ⌵ x2 ⌵ x3)

By the construction of z and y, the 
“variable digits” always sum up to 1111

Since all clauses are satisfied, we get at 
least one “1” from one of the  

variables that were set to “0” in x.

If we need either  
3 more “1s 

to get to “4”.

We pick both si or ti to 
make up the difference.

The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0
s1 0 0 0 1 0 0 0
t1 0 0 0 2 0 0 0
s2 0 0 0 0 1 0 0
t2 0 0 0 0 2 0 0
s3 0 0 0 0 0 1 0
t3 0 0 0 0 0 2 0
s4 0 0 0 0 0 0 1
t4 0 0 0 0 0 0 2
W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ x3) ⌃ (x1 ⌵ x2 ⌵ x3)

By the construction of z and y, the 
“variable digits” always sum up to 1111

Since all clauses are satisfied, we get at 
least one “1” from one of the  

variables that were set to “0” in x.

If we need either  
3 more “1s 

to get to “4”.

We pick both si or ti to 
make up the difference.

The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0
s1 0 0 0 1 0 0 0
t1 0 0 0 2 0 0 0
s2 0 0 0 0 1 0 0
t2 0 0 0 0 2 0 0
s3 0 0 0 0 0 1 0
t3 0 0 0 0 0 2 0
s4 0 0 0 0 0 0 1
t4 0 0 0 0 0 0 2
W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ x3) ⌃ (x1 ⌵ x2 ⌵ x3)

By the construction of z and y, the 
“variable digits” always sum up to 1111

Since all clauses are satisfied, we get at 
least one “1” from one of the  

variables that were set to “0” in x.

If we need either  
3 more “1s 

to get to “4”.

We pick both si or ti to 
make up the difference.

Subset Sum is in NP-hard
• We will reduce from 3SAT.

• Given a 3CNF formula φ (with m clauses and n variables) we
will construct an instance <T, W> of the subset sum problem
such that:

• φ is satisfiable if any only if there exists a subset S of T
whose sum is exactly W.

Subset Sum is in NP-hard
• We will reduce from 3SAT.

• Given a 3CNF formula φ (with m clauses and n variables) we
will construct an instance <T, W> of the subset sum problem
such that:

• φ is satisfiable if any only if there exists a subset S of T
whose sum is exactly W.

• Other direction:  
 
there exists a subset S of T whose sum is exactly W => φ is
satisfiable.

The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0
s1 0 0 0 1 0 0 0
t1 0 0 0 2 0 0 0
s2 0 0 0 0 1 0 0
t2 0 0 0 0 2 0 0
s3 0 0 0 0 0 1 0
t3 0 0 0 0 0 2 0
s4 0 0 0 0 0 0 1
t4 0 0 0 0 0 0 2
W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ x3) ⌃ (x1 ⌵ x2 ⌵ x3)

The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0
s1 0 0 0 1 0 0 0
t1 0 0 0 2 0 0 0
s2 0 0 0 0 1 0 0
t2 0 0 0 0 2 0 0
s3 0 0 0 0 0 1 0
t3 0 0 0 0 0 2 0
s4 0 0 0 0 0 0 1
t4 0 0 0 0 0 0 2
W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ x3) ⌃ (x1 ⌵ x2 ⌵ x3)

S must contain exactly one of z and y  
for each index i, otherwise the sum is not W.

The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0
s1 0 0 0 1 0 0 0
t1 0 0 0 2 0 0 0
s2 0 0 0 0 1 0 0
t2 0 0 0 0 2 0 0
s3 0 0 0 0 0 1 0
t3 0 0 0 0 0 2 0
s4 0 0 0 0 0 0 1
t4 0 0 0 0 0 0 2
W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ x3) ⌃ (x1 ⌵ x2 ⌵ x3)

S must contain exactly one of z and y  
for each index i, otherwise the sum is not W.

The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0
s1 0 0 0 1 0 0 0
t1 0 0 0 2 0 0 0
s2 0 0 0 0 1 0 0
t2 0 0 0 0 2 0 0
s3 0 0 0 0 0 1 0
t3 0 0 0 0 0 2 0
s4 0 0 0 0 0 0 1
t4 0 0 0 0 0 0 2
W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ x3) ⌃ (x1 ⌵ x2 ⌵ x3)

S must contain exactly one of z and y  
for each index i, otherwise the sum is not W.

The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0
s1 0 0 0 1 0 0 0
t1 0 0 0 2 0 0 0
s2 0 0 0 0 1 0 0
t2 0 0 0 0 2 0 0
s3 0 0 0 0 0 1 0
t3 0 0 0 0 0 2 0
s4 0 0 0 0 0 0 1
t4 0 0 0 0 0 0 2
W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ x3) ⌃ (x1 ⌵ x2 ⌵ x3)

S must contain exactly one of z and y  
for each index i, otherwise the sum is not W.

Set xi = 1 if S contains zi and xi = 0 otherwise.

The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0
s1 0 0 0 1 0 0 0
t1 0 0 0 2 0 0 0
s2 0 0 0 0 1 0 0
t2 0 0 0 0 2 0 0
s3 0 0 0 0 0 1 0
t3 0 0 0 0 0 2 0
s4 0 0 0 0 0 0 1
t4 0 0 0 0 0 0 2
W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ x3) ⌃ (x1 ⌵ x2 ⌵ x3)

S must contain exactly one of z and y  
for each index i, otherwise the sum is not W.

Set xi = 1 if S contains zi and xi = 0 otherwise.

Consider an arbitrary clause Cj.

The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0
s1 0 0 0 1 0 0 0
t1 0 0 0 2 0 0 0
s2 0 0 0 0 1 0 0
t2 0 0 0 0 2 0 0
s3 0 0 0 0 0 1 0
t3 0 0 0 0 0 2 0
s4 0 0 0 0 0 0 1
t4 0 0 0 0 0 0 2
W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ x3) ⌃ (x1 ⌵ x2 ⌵ x3)

S must contain exactly one of z and y  
for each index i, otherwise the sum is not W.

Set xi = 1 if S contains zi and xi = 0 otherwise.

Consider an arbitrary clause Cj.

Consider the corresponding “clause digits”.

The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0
s1 0 0 0 1 0 0 0
t1 0 0 0 2 0 0 0
s2 0 0 0 0 1 0 0
t2 0 0 0 0 2 0 0
s3 0 0 0 0 0 1 0
t3 0 0 0 0 0 2 0
s4 0 0 0 0 0 0 1
t4 0 0 0 0 0 0 2
W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ x3) ⌃ (x1 ⌵ x2 ⌵ x3)

S must contain exactly one of z and y  
for each index i, otherwise the sum is not W.

Set xi = 1 if S contains zi and xi = 0 otherwise.

Consider an arbitrary clause Cj.

Consider the corresponding “clause digits”.

Since these add up to “4”, it must 
receive at least “1” from the z or y numbers.

The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0
s1 0 0 0 1 0 0 0
t1 0 0 0 2 0 0 0
s2 0 0 0 0 1 0 0
t2 0 0 0 0 2 0 0
s3 0 0 0 0 0 1 0
t3 0 0 0 0 0 2 0
s4 0 0 0 0 0 0 1
t4 0 0 0 0 0 0 2
W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ x3) ⌃ (x1 ⌵ x2 ⌵ x3)

S must contain exactly one of z and y  
for each index i, otherwise the sum is not W.

Set xi = 1 if S contains zi and xi = 0 otherwise.

Consider an arbitrary clause Cj.

Consider the corresponding “clause digits”.

Since these add up to “4”, it must 
receive at least “1” from the 

chosen z or y numbers.

The reduction
x1 x2 x3 C1 C2 C3 C4

z1 1 0 0 1 0 0 1
y1 1 0 0 0 1 1 0
z2 0 1 0 0 0 0 1
y2 0 1 0 1 1 1 0
z3 0 0 1 0 0 1 1
y3 0 0 1 1 1 0 0
s1 0 0 0 1 0 0 0
t1 0 0 0 2 0 0 0
s2 0 0 0 0 1 0 0
t2 0 0 0 0 2 0 0
s3 0 0 0 0 0 1 0
t3 0 0 0 0 0 2 0
s4 0 0 0 0 0 0 1
t4 0 0 0 0 0 0 2
W 1 1 1 4 4 4 4

φ = (x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x3) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ x3) ⌃ (x1 ⌵ x2 ⌵ x3)

S must contain exactly one of z and y  
for each index i, otherwise the sum is not W.

Set xi = 1 if S contains zi and xi = 0 otherwise.

Consider an arbitrary clause Cj.

Consider the corresponding “clause digits”.

Since these add up to “4”, it must 
receive at least “1” from the 

chosen z or y numbers.

This implies that the clause is satisfied.

Knapsack

• 0/1-Knapsack is also NP-complete.

• Define the decision problem, containment is easy to
see.

• How do we prove hardness?

• Which problem should we reduce from?

NP-complete problems

NP-complete problems
• Independent Set in graph G: A set of nodes in the graph,

such that there is no edge between any two nodes in the
set.

NP-complete problems
• Independent Set in graph G: A set of nodes in the graph,

such that there is no edge between any two nodes in the
set.

• Maximum Independent Set  
Given a graph G, find an independent set of maximum
size.

NP-complete problems
• Independent Set in graph G: A set of nodes in the graph,

such that there is no edge between any two nodes in the
set.

• Maximum Independent Set  
Given a graph G, find an independent set of maximum
size.

• Maximum Independent Set (decision version) 
Given a graph G, and an integer k, is there an
independent set of size at least k?

NP-complete problems

NP-complete problems
• Set Packing 

Given a set U of elements, a collection S1, … , Sm of
subsets of U and a number k, does there exist a
collection of at least k of these sets such that no two of
them intersect?

NP-complete problems
• Set Packing 

Given a set U of elements, a collection S1, … , Sm of
subsets of U and a number k, does there exist a
collection of at least k of these sets such that no two of
them intersect?

• Set Cover 
Given a set U of elements, a collection S1, … , Sm of
subsets of U and a number k, does there exist a
collection of at most k of these sets whose union is equal
to U?

NP-complete problems

NP-complete problems

• 3-Dimensional Matching 
Given disjoint sets X, Y and Z each of size n, and given a
set T (which is a subset of X x Y x Z) of ordered triples,
does there exist a set of n triples in T, so that each
element of X U Y U Z is contained in exactly in one of
these triples?

NP-complete problems

NP-complete problems

• k-Colouring of a graph G: A function f: V → {1, …, k} so
that for every edge (u, v) we have that f(u) ≠ f(v).

NP-complete problems

• k-Colouring of a graph G: A function f: V → {1, …, k} so
that for every edge (u, v) we have that f(u) ≠ f(v).

• 3-Colouring 
Given a graph G, does it have a 3-Colouring?

Interlude

• k-Colouring of a graph G: A function f: V → {1, …, k} so
that for every edge (u, v) we have that f(u) ≠ f(v).

• 3-Colouring 
Given a graph G, does it have a 3-Colouring?

• What about 2-Colouring? Is it NP-complete?

NP-complete problems

NP-complete problems
• Hamiltonian cycle in a directed graph G: A cycle in a directed

graph that visits each vertex exactly once.

NP-complete problems
• Hamiltonian cycle in a directed graph G: A cycle in a directed

graph that visits each vertex exactly once.

• Hamiltonian path in a directed graph G: A path in a directed graph
that contains each vertex exactly once.

NP-complete problems
• Hamiltonian cycle in a directed graph G: A cycle in a directed

graph that visits each vertex exactly once.

• Hamiltonian path in a directed graph G: A path in a directed graph
that contains each vertex exactly once.

• Hamiltonian Cycle 
Given a directed graph G, does it have a Hamiltonian Cycle?

NP-complete problems
• Hamiltonian cycle in a directed graph G: A cycle in a directed

graph that visits each vertex exactly once.

• Hamiltonian path in a directed graph G: A path in a directed graph
that contains each vertex exactly once.

• Hamiltonian Cycle 
Given a directed graph G, does it have a Hamiltonian Cycle?

• Hamiltonian Path 
Given a directed graph G, does it have a Hamiltonian Path?

NP-complete problems
• Hamiltonian cycle in a directed graph G: A cycle in a directed

graph that visits each vertex exactly once.

• Hamiltonian path in a directed graph G: A path in a directed graph
that contains each vertex exactly once.

• Hamiltonian Cycle 
Given a directed graph G, does it have a Hamiltonian Cycle?

• Hamiltonian Path 
Given a directed graph G, does it have a Hamiltonian Path?

• Traveling Salesman 
(def Kleinberg and Tardos, p. 474).

NP-completeness,  
a taxonomy

Independent Set
Set Packing

Vertex Cover
Set Cover

3D-Matching
Graph Colouring

Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

Subset Sum
Knapsack 3 SAT

Packing problems Covering problems Partitioning problems

Sequencing problems Numerical problems Constraint Satisfaction  
problems

