Advanced Algorithmic Techniques (COMP523)

Recursion and Divide and Conquer Techniques

Recap and plan

Recap and plan

• Last lecture:

- Examples of algorithms (searching and sorting in linear time).
- Analysis of correctness, running time and memory.
- Asymptotic notation and asymptotic complexity.

Recap and plan

• Last lecture:

- Examples of algorithms (searching and sorting in linear time).
- Analysis of correctness, running time and memory.
- Asymptotic notation and asymptotic complexity.

• This lecture:

- Asymptotic complexity (cont.)
- Searching in logarithmic time.
- Finding *majority* in an array.

Asymptotic Complexity

Asymptotic Notation

 $\mathbf{O}(\mathbf{g}(\mathbf{n})) = \mathbf{f}(\mathbf{n})$: there exist positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

 $\Omega(\mathbf{g}(\mathbf{n})) = \mathbf{f}(\mathbf{n})$: there exist positive constants c and n_0 such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$.

 $\Theta(\mathbf{g}(\mathbf{n})) = \mathbf{f}(\mathbf{n})$: there exist positive constants c_1, c_2 and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$.

 $\mathbf{o}(\mathbf{g}(\mathbf{n})) = \mathbf{f}(\mathbf{n})$: for any constant c > 0, there exists a constant $n_0 > 0$ such that $0 \le f(n) < cg(n)$ for all $n \ge n_0$.

 $\omega(\mathbf{g}(\mathbf{n})) = \mathbf{f}(\mathbf{n})$: for any constant c > 0, there exists a constant $n_0 > 0$ such that $0 \le cg(n) < f(n)$ for all $n \ge n_0$

Comparing functions

- Asymptotic comparisons satisfy several relational properties.
 - Transitivity
 - Reflexivity
 - Symmetry
 - Transpose Symmetry
 - Sum and maximum

Transitivity

- If $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$, then $f(n) = \Theta(h(n))$.
- If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).
- If $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$, then $f(n) = \Omega(h(n))$.
- If f(n) = o(g(n)) and g(n) = o(h(n)), then f(n) = o(h(n)).
- If $f(n) = \omega(g(n))$ and $g(n) = \omega(h(n))$, then $f(n) = \omega(h(n))$.

Reflexivity

- $f(n) = \Theta(f(n))$
- f(n) = O(f(n))
- $f(n) = \Omega(f(n))$

Is it true that f(n) is o(f(n)) and ω(f(n))?

Symmetric Relations

- Symmetry:
 - $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$.
- Transpose Symmetry:
 - f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$.
 - f(n) = o(g(n)) if any only if $g(n) = \omega(f(n))$.

Sum and maximum

Sum and maximum

• $f_1(n) + f_2(n) + \ldots + f_k(n) = \Theta(\max(f_1(n), f_2(n), \ldots, f_k(n)))$

• for any constant positive integer k.

Sum and maximum

- $f_1(n) + f_2(n) + \ldots + f_k(n) = \Theta(\max(f_1(n), f_2(n), \ldots, f_k(n)))$
 - for any constant positive integer k.
- If k is not constant, this is not true!
 - Let $f_j(n) = j$.
 - Let k = n
 - $f_1(n) + f_2(n) + \ldots + f_k(n) = n(n+1)/2 = \Theta(n^2).$

Searching in logarithmic time

17	1	2	4	6	10	14	17	19	21	24

• Find if a number **x** exists in an **array** of **sorted numbers**.

17	1	2	4	6	10	14	17	19	21	24

• We read through the array until we find the number.

17	1	2	4	6	10	14	17	19	21	24

- We read through the array until we find the number.
- It requires at least n steps in the worst case.

17	1	2	4	6	10	14	17	19	21	24

- We read through the array until we find the number.
- It requires at least n steps in the worst case.
- Are we using all the information we have?

17	1	2	4	6	10	14	17	19	21	24

- We read through the array until we find the number.
- It requires at least n steps in the worst case.
- Are we using all the information we have?
 - We never used the fact that the array is sorted!

17	1	2	4	6	10	14	17	19	21	24

17	1	2	4	6	10	14	17	19	21	24	
					<u>A</u>						

• Find if a number **x** exists in an **array** of **sorted numbers**.

17	1	2	4	6	10	14	17	19	21	24
		7 1 - 7 - 5 - 1 7 7 7 7			Ŷ					

compare with element n/2

• Find if a number **x** exists in an **array** of **sorted numbers**.

17	14	17	19	21	24	
			Ą			*

• Find if a number **x** exists in an **array** of **sorted numbers**.

• Find if a number **x** exists in an **array** of **sorted numbers**.

• Find if a number **x** exists in an **array** of **sorted numbers**.

• Find if a number **x** exists in an **array** of **sorted numbers**.

• Find if a number **x** exists in an **array** of **sorted numbers**.

• Find if a number **x** exists in an **array** of **sorted numbers**.

• Find if a number **x** exists in an **array** of **sorted numbers**.

17 14 17 17 fcompare with element n₂/2 is 14 > 17?

• Find if a number **x** exists in an **array** of **sorted numbers**.

17 17 17 \mathbf{k} \mathbf{k}

• Find if a number **x** exists in an **array** of **sorted numbers**.

• Find if a number **x** exists in an **array** of **sorted numbers**.

• How to implement BinarySearch?

- How to implement BinarySearch?
 - We compare with the middle element, which tells us in which half we might find x.

- How to implement **BinarySearch**?
 - We compare with the middle element, which tells us in which half we might find x.
 - If only we had an algorithm for solving the problem on that half.

- How to implement **BinarySearch**?
 - We compare with the middle element, which tells us in which half we might find x.
 - If only we had an algorithm for solving the problem on that half.
 - Do we know of any such good algorithms?

- How to implement **BinarySearch**?
 - We compare with the middle element, which tells us in which half we might find x.
 - If only we had an algorithm for solving the problem on that half.
 - Do we know of any such good algorithms?
 - **BinarySearch** is such an algorithm! Just run it on half of the array.

- How to implement **BinarySearch**?
 - We compare with the middle element, which tells us in which half we might find x.
 - If only we had an algorithm for solving the problem on that half.
 - Do we know of any such good algorithms?
 - **BinarySearch** is such an algorithm! Just run it on half of the array.
 - We stop running when we reach an array of length 1, which we can trivially check for x.

BinarySearch pseudocode

- **Procedure BinarySearch**(x, *i*, *j*):
 - If *i=j* then
 - If **x** = A[*i*], return **yes**
 - If $x \neq A[i]$, return no
 - Else
 - If **x** = A[*(i+j)/2*], return **yes**
 - If x < A[(i+j)/2], return BinarySearch(x, i, (i+j)/2 1)
 - If x > A[(i+j)/2], return BinarySearch(x, (i+j)/2, j)

BinarySearch pseudocode

- Procedure BinarySearch(x, i, j):
 - If *i=j* then
 - If **x** = A[*i*], return **yes**
 - If $x \neq A[i]$, return no
 - Else
 - If x = A[(i+j)/2], return yes
 - If x < A[(i+j)/2], return BinarySearch(x, i, (i+j)/2 1)
 - If x > A[(i+j)/2], return BinarySearch(x, (i+j)/2, j)

Then run BinarySearch(x, 1, n)

Design principle

 Recursion: A procedure that calls itself one or multiple times, on different inputs.

 All operations take constant time and there is only a constant number of non-comparison operations.

- All operations take constant time and there is only a constant number of non-comparison operations.
- We will measure the number of comparisons.

- All operations take constant time and there is only a constant number of non-comparison operations.
- We will measure the number of comparisons.

- All operations take constant time and there is only a constant number of non-comparison operations.
- We will measure the number of comparisons.

• Every call of the procedure performs at most 4 comparisons.

BinarySearch pseudocode

- **Procedure BinarySearch**(x, *i*, *j*):
 - If *i=j* then
 - If **x** = A[*i*], return **yes**
 - If $x \neq A[i]$, return no
 - Else
 - If **x** = A[*(i+j)/2*], return **yes**
 - If x < A[(i+j)/2], return BinarySearch(x, i, (i+j)/2 1)
 - If x > A[(i+j)/2], return BinarySearch(x, (i+j)/2, j)

• The number of comparisons performed by BinarySearch is

 $\mathsf{T}(\mathsf{n}) \leq \mathsf{T}(\mathsf{n}/2) + 4$

• The number of comparisons performed by BinarySearch is

 $\mathsf{T}(\mathsf{n}) \leq \mathsf{T}(\mathsf{n}/2) + 4$

• Let's try to calculate this:

```
\begin{array}{l} \mathsf{T}(\mathsf{n}) \leq \mathsf{T}(\mathsf{n}/2) + 4 \\ \leq [\mathsf{T}(\mathsf{n}/4) + 4] + 4 = \mathsf{T}(\mathsf{n}/4) + 8 \\ \leq \mathsf{T}(\mathsf{n}/8] + 12 \\ \cdots \\ \leq \mathsf{T}(\mathsf{n}/2^{\mathsf{i}}) + 4^{\mathsf{j}} \\ \cdots \\ \leq \mathsf{T}(\mathsf{n}/2^{\mathsf{l}}\mathfrak{g} \, \mathsf{n}^{-1}) + 4(\mathsf{log} \, \mathsf{n} - 1) \\ = \mathsf{T}[\mathsf{n}/(\mathsf{n}/2)] + 4(\mathsf{log} \, \mathsf{n} - 1) = \mathsf{T}(2) + 4(\mathsf{log} \, \mathsf{n} - 1) \\ \leq 4 + 4(\mathsf{log} \, \mathsf{n} - 1) = 4 \, \mathsf{log} \, \mathsf{n} \end{array}
```

How to do this formally

- By (strong) induction:
 - Base case: Show that it holds for input size n=1 or n=2.
 - Induction step: Assume that it holds for all inputs of size at most n-1 (induction hypothesis).

Prove that it holds for input size *n*.

• The number of comparisons performed by BinarySearch is

 $\mathsf{T}(\mathsf{n}) \leq \mathsf{T}(\mathsf{n}/2) + 4$

• The number of comparisons performed by BinarySearch is

 $\mathsf{T}(\mathsf{n}) \leq \mathsf{T}(\mathsf{n}/2) + 4$

• Let's try to prove that $T(n) \le 4 \log n$

• The number of comparisons performed by BinarySearch is

 $T(n) \leq T(n/2) + 4$

- Let's try to prove that $T(n) \le 4 \log n$
 - **Base Case:** n=2, straightforwardly $T(2) \le 4 \le 4 \log 2$

• The number of comparisons performed by BinarySearch is

 $T(n) \leq T(n/2) + 4$

- Let's try to prove that $T(n) \le 4 \log n$
 - **Base Case:** n=2, straightforwardly $T(2) \le 4 \le 4 \log 2$
 - Inductive step: Assume $T(n/2) \le 4 \log (n/2)$

• The number of comparisons performed by BinarySearch is

 $T(n) \leq T(n/2) + 4$

- Let's try to prove that $T(n) \le 4 \log n$
 - **Base Case:** n=2, straightforwardly $T(2) \le 4 \le 4 \log 2$
 - Inductive step: Assume $T(n/2) \le 4 \log (n/2)$
 - It holds that $T(n) \le T(n/2) + 4 \le 4\log(n/2) + 4 \le 4\log n 4\log 2 + 4 \le 4\log n$

• Split the input into smaller sub-instances.

- Split the input into smaller sub-instances.
- Solve each sub-instance separately.

- Split the input into smaller sub-instances.
- Solve each sub-instance separately.
- Combine the solutions of the sub-instances into a solution for the problem.

- Split the input into smaller sub-instances.
- Solve each sub-instance separately.
- Combine the solutions of the sub-instances into a solution for the problem.
- Often: For each sub-instance, the algorithm calls itself to solve it (recursion).

The instances become so small that they can be solved via a **brute force** algorithm.

Question

 Could we have stopped the BinarySearch procedure earlier and used brute-force on the remaining sequence without changing its asymptotic running time?

How much earlier?

Memory requirements of BinarySearch

- Memory used as part of the input:
 n (to store the array) + 1 (to store the number x).
- Auxiliary memory:
 - The algorithm calls itself within its execution.
 - Needs to maintain these executions "active" in memory.
 - How many executions do we have?
 - O(log n).

Tree structure

8 leaves

We have to store the path from the root to the leaf.

BinarySearch vs LinearSearch

BinarySearch

Running time: O(log n)

Memory: O(log n)

LinearSearch

Running time: O(n)

Memory: O(1)

Which one we choose depends on the application.

Finding majority in an array

- Given an array of n numbers, a majority element is one that appears more than n/2 times in the array.
 - (Ignoring rounding issues, otherwise ceil(n/2) times).
- Question: Given such an array, find a majority element if it exists, or return that it doesn't.

Majority pseudocode

- Algorithm Majority(A[1,...,n])
 - If |A| = 0 output no, if |A| = 1 output
 A[i].
 - (Assume n = |A| is even).
 - Initialise array **B** of size |A|/2.
 - Set *j*=0
 - For i = 1 to n/2, do
 - if **A**[2*i*-1] = **A**[2*i*] then
 - *j=j*+1
 - **B**[*j*] = **A**[2*i*]

- Majority(**B**[**1**,...,**j**])
- If **B**[1,...,j] returns a value x
 - Iterate through the array **A** and count the number of occurrences of **x**.
 - if these are more at least n/2, output x.
 - else, output no.

- Algorithm Majority(A[1,...,n])
 - If |A| = 0 output no, if |A| = 1 output
 A[i].
 - (Assume n = |A| is even).

- Algorithm Majority(A[1,...,n])
 - If |A| = 0 output no, if |A| = 1 output
 A[i].
 - (Assume n = |A| is even).

- Algorithm Majority(A[1,...,n])
 - If |A| = 0 output no, if |A| = 1 output
 A[i].
 - (Assume n = |A| is even).

- Initialise array **B** of size |A|/2.
- Set *j*=0

- Initialise array **B** of size |A|/2.
- Set *j*=0

		A CONTRACTOR OF A CONTRACTOR		
Second and the second	and the second s	A TOTAL ADVICE . IN SIDE BALLAND	A REAL PROPERTY AND A REAL	and the second sec

- For i = 1 to n/2, do
 - if **A**[2*i*-1] = **A**[2*i*] then
 - *j=j*+1
 - **B**[*j*] = **A**[2*i*]

- For i = 1 to n/2, do
 - if **A**[2*i*-1] = **A**[2*i*] then
 - *j=j*+1
 - **B**[*j*] = **A**[2*i*]

i=1 A[1]=1 A[2]=10

- For i = 1 to n/2, do
 - if **A**[2*i*-1] = **A**[2*i*] then
 - *j=j*+1
 - **B**[*j*] = **A**[2*i*]

i=1 A[1]=1 A[2]=10

- For i = 1 to n/2, do
 - if **A**[2*i*-1] = **A**[2*i*] then
 - *j=j*+1
 - **B**[*j*] = **A**[2*i*]

i=1 A[1]=1 A[2]=10

- For i = 1 to n/2, do
 - if **A**[2*i*-1] = **A**[2*i*] then
 - *j=j*+1
 - **B**[*j*] = **A**[2*i*]

- For i = 1 to n/2, do
 - if **A**[2*i*-1] = **A**[2*i*] then
 - *j=j*+1
 - **B**[*j*] = **A**[2*i*]

- For i = 1 to n/2, do
 - if **A**[2*i*-1] = **A**[2*i*] then
 - *j=j*+1
 - **B**[*j*] = **A**[2*i*]

- For i = 1 to n/2, do
 - if **A**[2*i*-1] = **A**[2*i*] then
 - *j=j*+1
 - **B**[*j*] = **A**[2*i*]

- For i = 1 to n/2, do
 - if **A**[2*i*-1] = **A**[2*i*] then
 - *j=j*+1
 - **B**[*j*] = **A**[2*i*]

- For i = 1 to n/2, do
 - if **A**[2*i*-1] = **A**[2*i*] then
 - *j=j*+1
 - **B**[*j*] = **A**[2*i*]

- For i = 1 to n/2, do
 - if **A**[2*i*-1] = **A**[2*i*] then
 - *j=j*+1
 - **B**[*j*] = **A**[2*i*]

i=1 i=2 A[1]=1 A[3]=10 A[2]=10 A[4]=7

- For i = 1 to n/2, do
 - if **A**[2*i*-1] = **A**[2*i*] then
 - *j=j*+1
 - **B**[*j*] = **A**[2*i*]

i=1	i=2
A[1]=1	A[3]=10
A[2]=10	A[4]=7
i=3	i=4
A[5]=10	A[7]=6
A[6]=10	A[8]=6

- For i = 1 to n/2, do
 - if **A**[2*i*-1] = **A**[2*i*] then
 - *j=j*+1
 - **B**[*j*] = **A**[2*i*]

i=1	i=2
A[1]=1	A[3]=10
A[2]=10	A[4]=7
i=3	i=4
A[5]=10	A[7]=6
A[6]=10	A[8]=6

- For i = 1 to n/2, do
 - if **A**[2*i*-1] = **A**[2*i*] then
 - *j=j*+1
 - **B**[*j*] = **A**[2*i*]

i=1	i=2
A[1]=1	A[3]=10
A[2]=10	A[4]=7
i=3	i=4
A[5]=10	A[7]=6
A[6]=10	A[8]=6

- For i = 1 to n/2, do
 - if **A**[2*i*-1] = **A**[2*i*] then
 - *j=j*+1
 - **B**[*j*] = **A**[2*i*]

i=1	i=2
A[1]=1	A[3]=10
A[2]=10	A[4]=7
i=3	i=4
A[5]=10	A[7]=6
A[6]=10	A[8]=6

- For i = 1 to n/2, do
 - if **A**[2*i*-1] = **A**[2*i*] then
 - *j=j*+1
 - **B**[*j*] = **A**[2*i*]

- For i = 1 to n/2, do
 - if **A**[2*i*-1] = **A**[2*i*] then
 - *j=j*+1
 - **B**[*j*] = **A**[2*i*]

i=1	i=2
A[1]=1	A[3]=10
A[2]=10	A[4]=7
i=3	i=4
A[5]=10	A[7]=6
A[6]=10	A[8]=6
i=5 A[9]=10 A[10]=10	

- For i = 1 to n/2, do
 - if **A**[2*i*-1] = **A**[2*i*] then
 - *j=j*+1
 - **B**[*j*] = **A**[2*i*]

- For i = 1 to n/2, do
 - if **A**[2*i*-1] = **A**[2*i*] then
 - *j=j*+1
 - **B**[*j*] = **A**[2*i*]

- Algorithm Majority(A[1,...,n])
 - If |A| = 0 output no, if |A| = 1 output
 A[i].
 - (Assume n = |A| is even).

- Algorithm Majority(A[1,...,n])
 - If |A| = 0 output no, if |A| = 1 output
 A[i].
 - (Assume n = |A| is even).

- Algorithm Majority(A[1,...,n])
 - If |A| = 0 output no, if |A| = 1 output
 A[i].
 - (Assume n = |A| is even).

Majority pseudocode

- Algorithm Majority(A[1,...,n])
 - If |**A**| = 0 output **no**, if |**A**| = 1 output **A**[i].
 - Check if A[n] is a majority
 - Count the number of occurrences.
 - Discard it if it is not.
 - Initialise array **B** of size |A|/2.
 - Set *j*=0
 - For i = 1 to n/2, do
 - if **A**[2*i*-1] = **A**[2*i*] then
 - *j=j*+1
 - **B**[*j*] = **A**[2*i*]

- Majority(**B**[*1,...,j*])
- If B[1,...,j] returns a value x
 - Iterate through the array **A** and count the number of occurrences of **x**.
 - if these are more at least n/2, output x.
 - else, output no.

- Algorithm Majority(A[1,...,n])
 - If |A| = 0 output no, if |A| = 1 output
 A[i].
 - (Assume n = |A| is even).

Majority(B[1,...,j])

- Check if A[n] is a majority
 - Count the number of occurrences.
 - Discard it if it is not.

Majority(B[1,...,j])

The function returns 10.

- Check if A[n] is a majority
 - Count the number of occurrences.
 - Discard it if it is not.

Majority(B[1,...,j])

The function returns 10.

Majority(**B**[1,...,j])

The function returns 10.

- If B[1,...,j] returns a value x
 - Iterate through the array A and count the number of occurrences of x.
 - if these are more at least n/2, output x.
 - else, output no.

Majority(B[1,...,j])

The function returns 10.

- If B[1,...,j] returns a value x
 - Iterate through the array A and count the number of occurrences of x.
 - if these are more at least n/2, output x.
 - else, output no.

10 appears 6 times in the array. Majority element!

Lemma: If **x** is a majority element in **A**, then **x** is a majority element in **B**.

Lemma: If **x** is a majority element in **A**, then **x** is a majority element in **B**.

Proof by induction:

Lemma: If **x** is a majority element in **A**, then **x** is a majority element in **B**.

Proof by induction:

Base case: Majority(B) works correctly for array B of size 1.

Lemma: If **x** is a majority element in **A**, then **x** is a majority element in **B**.

Proof by induction:

Base case: Majority(B) works correctly for array B of size 1.

Inductive step: Assume that Majority(B) works correctly for array B of size smaller than |A| (inductive hypothesis).

Lemma: If \mathbf{x} is a majority element in \mathbf{A} , then \mathbf{x} is a majority element in \mathbf{B} .

Proof by induction:

Base case: Majority(B) works correctly for array B of size 1.

Inductive step: Assume that Majority(B) works correctly for array B of size smaller than |A| (inductive hypothesis).

Case 1 (There is a majority element in A): Then by the Lemma, it is also a majority element in **B**. Majority(**B**) will output it, by the inductive hypothesis and the last step of Majority(A) will output it.

Lemma: If \mathbf{x} is a majority element in \mathbf{A} , then \mathbf{x} is a majority element in \mathbf{B} .

Proof by induction:

Base case: Majority(B) works correctly for array B of size 1.

Inductive step: Assume that Majority(B) works correctly for array B of size smaller than |A| (inductive hypothesis).

Case 1 (There is a majority element in A): Then by the Lemma, it is also a majority element in **B**. Majority(**B**) will output it, by the inductive hypothesis and the last step of Majority(**A**) will output it.

Case 2 (There is not a majority element in A): Then the last step of Majority(A) will reject any candidate majority elements returned from Majority(B).

Proof by contradiction

Proof by contradiction

- We want to prove that statement **S** is true.
- We assume that the statement is not true.
- We reach a conclusion which cannot possibly be true.

Assumption: Suppose to the *contrary*, that x is a majority element in A but *not* a majority element in B.

- Assumption: Suppose to the *contrary*, that x is a majority element in A but *not* a majority element in B.
 - Let **m** be the number of occurrences of **x** in **A**.

- Assumption: Suppose to the *contrary*, that x is a majority element in A but *not* a majority element in B.
 - Let **m** be the number of occurrences of **x** in **A**.
 - Let **k** be the number of occurrences of **x** in **B**.

- Assumption: Suppose to the *contrary*, that x is a majority element in A but *not* a majority element in B.
 - Let **m** be the number of occurrences of **x** in **A**.
 - Let **k** be the number of occurrences of **x** in **B**.
- By the **assumption**, it follows that other values appear at least **k** times in **B**.

- Assumption: Suppose to the *contrary*, that x is a majority element in A but *not* a majority element in B.
 - Let m be the number of occurrences of x in A.
 - Let **k** be the number of occurrences of **x** in **B**.
- By the **assumption**, it follows that other values appear at least **k** times in **B**.
- This means that other values appear in A:

- Assumption: Suppose to the *contrary*, that x is a majority element in A but *not* a majority element in B.
 - Let **m** be the number of occurrences of **x** in **A**.
 - Let **k** be the number of occurrences of **x** in **B**.
- By the **assumption**, it follows that other values appear at least **k** times in **B**.
- This means that other values appear in A:
 - at least **2k** times from the pairs that are represented in **B** by a value different than **x** *plus*

- Assumption: Suppose to the *contrary*, that x is a majority element in A but *not* a majority element in B.
 - Let **m** be the number of occurrences of **x** in **A**.
 - Let **k** be the number of occurrences of **x** in **B**.
- By the assumption, it follows that other values appear at least k times in B.
- This means that other values appear in A:
 - at least **2k** times from the pairs that are represented in **B** by a value different than **x** *plus*
 - m-2k times, since each occurrence of x in A that is not paired with another x is paired with some other value (since there are 2k pairs xx, there are m-2k other occurrences of x in A).

- Assumption: Suppose to the *contrary*, that x is a majority element in A but *not* a majority element in B.
 - Let **m** be the number of occurrences of **x** in **A**.
 - Let **k** be the number of occurrences of **x** in **B**.
- By the assumption, it follows that other values appear at least k times in B.
- This means that other values appear in A:
 - at least **2k** times from the pairs that are represented in **B** by a value different than **x** *plus*
 - **m-2k** times, since each occurrence of **x** in **A** that is not paired with another **x** is paired with some other value (since there are **2k** pairs **xx**, there are **m-2k** other occurrences of **x** in **A**).
- In total, this gives 2k+(m-k) = m occurrences, which contradicts the fact that x is a majority in
 A. Contradiction!

Majority pseudocode

- Algorithm Majority(A[1,...,n])
 - If |**A**| = 0 output **no**, if |**A**| = 1 output **A**[i].
 - Check if A[n] is a majority
 - Count the number of occurrences.
 - Discard it if it is not.
 - Initialise array **B** of size |A|/2.
 - Set *j*=0
 - For i = 1 to n/2, do
 - if **A**[2*i*-1] = **A**[2*i*] then
 - *j=j*+1
 - **B**[*j*] = **A**[2*i*]

- Majority(**B**[**1**,...,**j**])
- If **B**[1,...,j] returns a value x
 - Iterate through the array **A** and count the number of occurrences of **x**.
 - if these are more at least n/2, output
 x.
 - else, output no.

• Recursive formula for the running time:

- Recursive formula for the running time:
 - $T(n) \le T(n/2) + cn$ for some constant c

- Recursive formula for the running time:
 - $T(n) \le T(n/2) + cn$ for some constant c
 - We will prove that $T(n) \le 2cn$

- Recursive formula for the running time:
 - $T(n) \le T(n/2) + cn$ for some constant c
 - We will prove that $T(n) \le 2cn$
- By induction:

- Recursive formula for the running time:
 - $T(n) \le T(n/2) + cn$ for some constant c
 - We will prove that $T(n) \le 2cn$
- By induction:
 - **Base case:** $T(1) \le C$

- Recursive formula for the running time:
 - $T(n) \le T(n/2) + cn$ for some constant c
 - We will prove that $T(n) \le 2cn$
- By induction:
 - **Base case:** $T(1) \le C$
 - Induction step: Assume that T(n/2) ≤ 2c(n/2) (induction hypothesis).

We have that $T(n) \le T(n/2) + cn \le 2c(n/2) + cn = 2cn$