Advanced Algorithmic Techniques
(COMP523)

Recursion and Divide and Conquer Techniques

Recap and plan

Recap and plan

e Last lecture:
e Examples of algorithms (searching and sorting in linear time).
* Analysis of correctness, running time and memory.

* Asymptotic notation and asymptotic complexity.

Recap and plan

e Last lecture:
e Examples of algorithms (searching and sorting in linear time).
* Analysis of correctness, running time and memory.
* Asymptotic notation and asymptotic complexity.
* This lecture:
* Asymptotic complexity (cont.)
e Searching in logarithmic time.

* Finding majority in an array.

Asymptotic
Complexity

Asymptotic Notation

O(g(n)) = f(n) : there exist positive constants ¢ and ng such that
0 < f(n) <cg(n) for all n > ny.

Q(g(n)) = f(n) : there exist positive constants ¢ and ng such that
0 <cg(n) < f(n) for all n > ny.

O(g(n)) = f(n) : there exist positive constants ¢y, co and ng such that
0 <cig(n) < f(n) < cog(n) for all n > ny.

o(g(n)) = f(n) : for any constant ¢ > 0, there exists a constant
ng > 0 such that 0 < f(n) < cg(n) for all n > ny.

w(g(n)) = f(n) : for any constant ¢ > 0, there exists a constant
ng > 0 such that 0 < cg(n) < f(n) for all n > ng

Comparing functions

e Asymptotic comparisons satisfy several relational
properties.

e Transitivity
e Reflexivity
e Symmetry
e Transpose Symmetry

e Sum and maximum

Transitivity

if f(n) = ©(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n).
If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n).
If f(n) = Q(g(n)) and g(n) = Q(h(n)), then f(n) = Q(h(n)).
If f(n) = o(g(n) and g(n) = o(h(n)), then f(n) = o(h(n)).

If f(n) = w(g(n)) and g(n) = w(h(n)), then f(n) = w(h(n)).

Reflexivity

® 7(n) = O(f(n))
® 7(n) = O(f(n))

® 7(n) = ()(f(n))

e |s it true that f(n) is o(f(n)) and w(f(n))?

Symmetric Relations

e Symmetry:

e f(n) = ©(g(n)) if and only if g(n) = O(f(n)).
e Transpose Symmetry:

e f(n) = O(g(n)) if and only if g(n) = Q(f(n)).

* f(n) =o0(g(n) if any only if g(n) = w(f(n)).

Sum and maximum

Sum and maximum

® fi(n) + fo(n) + ... + fk(n) = O(max(fi(n), f2(n) ,..., fk(n))

e for any constant positive integer K.

Sum and maximum

® fi(n) + fo(n) + ... + f(n) = ©(max(fi(n), fo(n) ,..., fk(n))
e for any constant positive integer K.

e If kis not constant, this is not truel!
o Letfin) =j.
e letk=n

® fi(n) + fo(n) + ... + f(n) = n(n+1)/2 = O(nN3).

Searching in
logarithmic time

Example: Running Time of LinearSearch

e Find if a number x exists in an array of sorted numbers.

Example: Running Time of LinearSearch

e Find if a number x exists in an array of sorted numbers.

 \We read through the array until we find the number.

Example: Running Time of LinearSearch

e Find if a number x exists in an array of sorted numbers.

 \We read through the array until we find the number.

e |t requires at least n steps in the worst case.

Example: Running Time of LinearSearch

e Find if a number x exists in an array of sorted numbers.

 \We read through the array until we find the number.

e |t requires at least n steps in the worst case.

* Are we using all the information we have?

Example: Running Time of LinearSearch

e Find if a number x exists in an array of sorted numbers.

 \We read through the array until we find the number.

e |t requires at least n steps in the worst case.
* Are we using all the information we have?

 We never used the fact that the array is sorted!

Searching faster with
BinarySearch

e Find if a number x exists in an array of sorted numbers.

Searching faster with
BinarySearch

e Find if a number x exists in an array of sorted numbers.

Searching faster with
BinarySearch

e Find if a number x exists in an array of sorted numbers.

compare with element n/2

Searching faster with
BinarySearch

e Find if a number x exists in an array of sorted numbers.

compare with element n/2
is 17 > 10?

17

Searching faster with
BinarySearch

e Find if a number x exists in an array of sorted numbers.

compare with element n/2
is 17 > 10?

We never have to search the blue region again.

17

Searching faster with
BinarySearch

e Find if a number x exists in an array of sorted numbers.

We never have to search the blue region again.

17

Searching faster with
BinarySearch

e Find if a number x exists in an array of sorted numbers.

compare with element n4/2

We never have to search the blue region again.

17

Searching faster with
BinarySearch

e Find if a number x exists in an array of sorted numbers.

compare with element n4/2
is 14 > 19?

We never have to search the blue region again.

17

Searching faster with
BinarySearch

e Find if a number x exists in an array of sorted numbers.

compare with element n4/2
is 14 > 19?

We never have to search the blue region again.

17

Searching faster with
BinarySearch

e Find if a number x exists in an array of sorted numbers.

compare with element n4/2
is 14 > 19?

We never have to search the blue region again.

17

Searching faster with
BinarySearch

e Find if a number x exists in an array of sorted numbers.

We never have to search the blue region again.

17

Searching faster with
BinarySearch

e Find if a number x exists in an array of sorted numbers.

compare with element n2/2

We never have to search the blue region again.

17

Searching faster with
BinarySearch

e Find if a number x exists in an array of sorted numbers.

compare with element n2/2
is14 > 17?

We never have to search the blue region again.

17

Searching faster with
BinarySearch

e Find if a number x exists in an array of sorted numbers.

compare with element n2/2
is14 > 17?

We never have to search the blue region again.

17

Searching faster with
BinarySearch

e Find if a number x exists in an array of sorted numbers.

We never have to search the blue region again.

17

Searching faster with
BinarySearch

e Find if a number x exists in an array of sorted numbers.

We never have to search the blue region again.

Searching faster with
BinarySearch

Searching faster with
BinarySearch

e How to implement BinarySearch?

Searching faster with
BinarySearch

e How to implement BinarySearch?

* We compare with the middle element, which tells us in which
half we might find x.

Searching faster with
BinarySearch

e How to implement BinarySearch?

* We compare with the middle element, which tells us in which
half we might find x.

* |f only we had an algorithm for solving the problem on that half.

Searching faster with
BinarySearch

e How to implement BinarySearch?

* We compare with the middle element, which tells us in which
half we might find x.

* |f only we had an algorithm for solving the problem on that half.

* Do we know of any such good algorithms?

Searching faster with
BinarySearch

e How to implement BinarySearch?

* We compare with the middle element, which tells us in which
half we might find x.

* |f only we had an algorithm for solving the problem on that half.
* Do we know of any such good algorithms?

e BinarySearch is such an algorithm! Just run it on half of the array.

Searching faster with
BinarySearch

e How to implement BinarySearch?

* We compare with the middle element, which tells us in which
half we might find x.

* |f only we had an algorithm for solving the problem on that half.
* Do we know of any such good algorithms?

e BinarySearch is such an algorithm! Just run it on half of the array.

* We stop running when we reach an array of length 1, which
we can trivially check for x.

BinarySearch pseudocode

e Procedure BinarySearch(x, /, j):
e |fi=f then
o If x = AJf], return yes
e If x 2 A[l], return no
* Else
e If x = A|(i+)/2], return yes

e If x < A[(i+))/2], return BinarySearch(x, /, (i+j)/2 -1)

e If x > A[(i+))/2], return BinarySearch(x, (i+/)/2, j)

BinarySearch pseudocode

e Procedure BinarySearch(x, /, j):

e If =/ then
Then run BinarySearch(x, 1, n)
o If x = AJf], return yes
e If x 2 A[l], return no
 Else

e If x = A|(i+)/2], return yes

e If x < A[(i+))/2], return BinarySearch(x, /, (i+j)/2 -1)

e If x > A[(i+))/2], return BinarySearch(x, (i+/)/2, j)

Design principle

* Recursion: A procedure that calls itself one or multiple
times, on different inputs.

Running time of BinarySearch

Running time of BinarySearch

o All operations take constant time and there is only a
constant number of non-comparison operations.

Running time of BinarySearch

o All operations take constant time and there is only a
constant number of non-comparison operations.

e We will measure the number of comparisons.

Running time of BinarySearch

o All operations take constant time and there is only a
constant number of non-comparison operations.

e We will measure the number of comparisons.

Running time of BinarySearch

o All operations take constant time and there is only a
constant number of non-comparison operations.

e We will measure the number of comparisons.

e Every call of the procedure performs at most 4
comparisons.

BinarySearch pseudocode

e Procedure BinarySearch(x, /, j):
e |fi=f then
o If x = AJf], return yes
e If x 2 A[l], return no
* Else
e If x = A|(i+)/2], return yes

e If x < A[(i+))/2], return BinarySearch(x, /, (i+j)/2 -1)

e If x > A[(i+))/2], return BinarySearch(x, (i+/)/2, j)

Running time

Running time

e The number of comparisons performed by BinarySearch is

T(n) < T(n/2) + 4

Running time

e The number of comparisons performed by BinarySearch is
Tn)<T(n/2) +4
e |et’s try to calculate this:

Tn)<T(n/2) + 4
<[T(n/4)+ 4] +4 =T(n/4) + 8
< T(n/8] + 12

< T(n/2)) + 4]

;T(n/2'09 n-1) + 4(log n - 1)
= T[n/(n/2)] + 4(logn - 1) =
<4 +4(logn-1)=4logn

T(2) + 4(log n - 1)

How to do this formally

* By (strong) induction:

e Base case: Show that it holds for input size n=17 or
n=2.

* |Induction step: Assume that it holds for all inputs of
size at most n-7 (induction hypothesis).

Prove that it holds for input size n.

Running time

Running time

e The number of comparisons performed by BinarySearch is

T(n) < T(n/2) + 4

Running time

e The number of comparisons performed by BinarySearch is

T(n) < T(n/2) + 4

e |et’s try to prove that T(n) < 4 log n

Running time

e The number of comparisons performed by BinarySearch is

T(n) < T(n/2) + 4

e |et’s try to prove that T(n) < 4 log n

e Base Case: n=2, straightforwardly T(2) <4 <4 log 2

Running time

e The number of comparisons performed by BinarySearch is
T(n) < T(n/2) + 4
e |et’s try to prove that T(n) < 4 log n
e Base Case: n=2, straightforwardly T(2) <4 <4 log 2

* Inductive step: Assume T(n/2) < 4 log (n/2)

Running time

e The number of comparisons performed by BinarySearch is
T(n) < T(n/2) + 4
e |et’s try to prove that T(n) < 4 log n
e Base Case: n=2, straightforwardly T(2) <4 <4 log 2
* Inductive step: Assume T(n/2) < 4 log (n/2)

* |t holds that T(n) < T(n/2) + 4 < 4log(n/2) + 4
< 4log n - 4log2 +4 < 4log n

Divide-and-Conquer

Divide-and-Conquer

e Split the input into smaller sub-instances.

Divide-and-Conquer

e Split the input into smaller sub-instances.

e Solve each sub-instance separately.

Divide-and-Conquer

e Split the input into smaller sub-instances.
e Solve each sub-instance separately.

e Combine the solutions of the sub-instances into a
solution for the problem.

Divide-and-Conquer

Split the input into smaller sub-instances.
Solve each sub-instance separately.

Combine the solutions of the sub-instances into a
solution for the problem.

Often: For each sub-instance, the algorithm calls itself to
solve it (recursion).

The instances become so small that they can be solved
via a brute force algorithm.

Question

e Could we have stopped the BinarySearch procedure earlier

and used brute-force on the remaining sequence without
changing its asymptotic running time?

How much earlier?

Memory requirements of
BinarySearch

e Memory used as part of the input:
n (to store the array) + 7 (to store the number x).

e Auxiliary memory:
 The algorithm calls itself within its execution.
* Needs to maintain these executions “active” in memory.

e How many executions do we have?

e O(log n).

Tree structure

Search for number 5

height = 3

8 leaves

We have to store the path from the root to the leaf.

BinarySearch vs LinearSearch

BinarySearch LinearSearch
Running time: O(log n) Running time: O(n)
Memory: O(log n) Memory: O(1)

Which one we choose depends on the application.

Finding majority in an array

e (iven an array of n numbers, a majority element is one
that appears more than n/2 times in the array.

e (Ignoring rounding issues, otherwise ceil(n/2) times).

* Question: Given such an array, find a majority element if
It exists, or return that it doesn'’t.

Majority pseudocode

e Algorithm Majority(A[7,...,n]) e Majority(B[7,...,/])

* If |A| =0 output no, if |[A| =1 output e |f B[7,...,/] returns a value x

Nl
| e [terate through the array A and count
* (Assume n = [A| is even). the number of occurrences of x.
* Initialise array B of size |A|/2. e if these are more at least n/2, output
X.
* Set /=0

e else, output no.

Fori=1ton/2, do
e if A[2/-1] = A[2]] then
* /=j+1

e B[] = A[2]]

Majority Example

Majority Example

e Algorithm Majority(A[7,...,n])

e |f |A| = 0 output no, if |[A| = 1 output
Alil.

 (Assume n = |A| is even).

LT webammmoTT

Majority Example

e Algorithm Majority(A[7,...,n])

e If |A| = 0 output no, if |A| = 1 output
Alil.

 (Assume n = |A| is even).

T webmmmonT

Majority Example

e Algorithm Majority(A[7,...,n])
e |f |A| = 0 output no, if |[A| = 1 output w
Alil.

 (Assume n = |A| is even). \/

B e ——eeedepmmnc

Majority Example

Majority Example

* |nitialise array B of size |A|/2.

e Set /=0

N a

Majority Example

* |nitialise array B of size |A|/2.

e Set /=0

N a

Majority Example

Majority Example

* Fori=1ton/2, do

* if A[2/-1] = A[2]] then
* /=j+1

* B[] =A[2]]

Majority Example

* Fori=1ton/2,do i—1
A[1]=1
* if A[2/-7] = A[2/] then A[2]=10
* /=j+1

* B[] =A[2]]

B e SwetammerT

Majority Example

* Fori=1ton/2,do i—1
A[1]=1
* if A[2/-7] = A[2/] then A[2]=10
* /=j+1

* B[] =A[2]]

B e SwetammerT

Majority Example

* Fori=1ton/2,do i—1
A[1]=1
* if A[2/-7] = A[2/] then A[2]=10
* /=j+1

* B[] =A[2]]

B e SwetammerT

Majority Example

* Fori=1ton/2,do i=1 =2
A[1]=1 A[3]=10
* if A[2/-7] = A[2/] then A[2]=10 A[4]=7
* /=j+1

* B[] =A[2]]

Majority Example

* Fori=1ton/2,do i=1 =2
A[1]=1 A[3]=10
* if A[2/-7] = A[2/] then A[2]=10 A[4]=7
* j=j+1

* B[] =A[2]]

Majority Example

* Fori=1ton/2,do i=1 =2
A[1]=1 A[3]=10
* if A[2/-7] = A[2/] then A[2]=10 A[4]=7
* j=j+1

* B[] =A[2]]

Majority Example

* Fori=1ton/2, do

e if A[2i-1] = A[21] then
o j=j+1

* B[] =A[2]]

=1
Al1]=1
Al2]=10

i=3
A[5]=10
Al6]=10

=2
A[3]=10
A[4]=7

Majority Example

* Fori=1ton/2, do

e if A[2i-1] = A[21] then
o j=j+1

* B[] =A[2]]

=1
Al1]=1
Al2]=10

i=3
A[5]=10
Al6]=10

=2
A[3]=10
A[4]=7

Majority Example

* Fori=1ton/2, do

e if A[2i-1] = A[21] then
o j=j+1

* B[] =A[2]

=1
A[1]=1
A[2]=10

i=3
A[5]=10
Al6]=10

=2
A[3]=10
A[4]=7

Majority Example

* Fori=1ton/2, do

e if A[2i-1] = A[21] then
o j=j+1

* B[] =A[2]

=1
A[1]=1
A[2]=10

i=3
A[5]=10
Al6]=10

=2
A[3]=10
A[4]=7

Majority Example

* Fori=1ton/2,do i=1 =2
A[1]=1 A[3]=10
* if A[2/-7] = A[2/] then A2]1=10 A[4]=7
el =3 =4

A[5]=10 A[7]=6

* Bll=ALI AlBl=10 A[8]=6

Majority Example

* Fori=1ton/2,do i=1 =2
A[1]=1 A[3]=10
* if A[2/-7] = A[2/] then A2]1=10 A[4]=7
el =3 =4

A[5]=10 A[7]=6

* Bll=ALI AlBl=10 A[8]=6

Majority Example

* Fori=1ton/2,do i=1 =2
A[1]=1 A[3]=10
* if A[2/-7] = A[2/] then A2]1=10 A[4]=7
el =3 =4

A[5]=10 A[7]=6

* Bll=ALI AlBl=10 A[8]=6

Majority Example

* Fori=1ton/2,do i=1 =2
A[1]=1 A[3]=10
* if A[2/-7] = A[2/] then A2]1=10 A[4]=7
el =3 =4

A[5]=10 A[7]=6

* Bll=ALI AlBl=10 A[8]=6

Majority Example

* Fori=1ton/2,do i=1 =2
A[1]=1 A[3]=10
* if A[2/-7] = A[2/] then A2]1=10 A[4]=7
el =3 =4

A[5]=10 A[7]=6

* Bll=ALI AlBl=10 A[8]=6

=5
A[9]=10
A[10]=10

Majority Example

* Fori=1ton/2,do i=1 =2
A[1]l=1 A3]=10
* if A[2/-7] = A[2/] then A2]1=10 A[4]=7
i =3 =4

A[5]=10 A[7]=6

* Bll=Al2] AlBl=10 A[8]=6

=5
A[9]=10
A[10]=10

Majority Example

* Fori=1ton/2,do i=1 =2
A[1]l=1 A3]=10
* if A[2/-7] = A[2/] then A2]1=10 A[4]=7
i =3 =4

A[5]=10 A[7]=6

* Bll=Al2] AlBl=10 A[8]=6

=5
A[9]=10
A[10]=10

Majority Example

* Fori=1ton/2,do i=1 =2
A[1]l=1 A3]=10
* if A[2/-7] = A[2/] then A2]1=10 A[4]=7
i =3 =4

A[5]=10 A[7]=6

* Bll=Al2] AlBl=10 A[8]=6

=5
A[9]=10
A[10]=10

Majority Example

Majority Example

e Majority(BJ[7,...,/])

R T

Majority Example

e Majority(B[7,...,/])

JE——— —tustammntT

Majority Example

e Majority(BJ[7,...,/])
e Algorithm Majority(A[7,...,n])

e If |A| = 0 output no, if |A| = 1 output
Alil.

* (Assume n = |A| is even).

B —seebeapmmeT T

Majority Example

e Majority(B[7,...,/])
e Algorithm Majority(A[7,...,n])

e If |A| = 0 output no, if |A| = 1 output
Alil.

* (Assume n = |A| is even).

B e tsebapmmeT T

Majority Example

e Majority(B[7,...,/])
e Algorithm Majority(A[7,...,n])
’ \\/
e If |A| = 0 output no, if |A| = 1 output R
Alil.

' .\\/'
 (Assume n = |A| is even). %

B —eebammmeTTT

Majority pseudocode

o Algorithm Majority(A[7,...,n]) e Majority(BJ[7,...,/])

e |f |A| =0 output no, if |A| =1 output A[|]

T —— s ® 1T B[1,...,]] returns a value x
f Check |f A[n] |samajor|ty ‘

e [terate through the array A and count
e Count the number of occurrences. } the number of occurrences of x.

e Di ditifiti t. :
/,_t,'ar '_u,' ,Is n * if these are more at least n/2, output
X.

Initialise array B of size |Al/2.

Set j=0 e else, output no.

Fori=11ton/2, do
e if A[2i-7] = A[2]] then
° j=j+1

* B[] = A[2]

Majority Example

e Majority(B[7,...,/])
e Algorithm Majority(A[7,...,n])
’ \\/
e If |A| = 0 output no, if |A| = 1 output R
Alil.

' .\\/'
 (Assume n = |A| is even). %

B —eebammmeTTT

Majority Example

e Majority(B[7,...,/])

JE——— —tustammntT

Majority Example

e Majority(B[7,...,/])

TR RSt e ettt

e Check if A[n] is a majority
e Count the number of occurrences.

e Discarditifitis not.
TT—— ettt

Majority Example

e Majority(B[7,...,/])

TR RSt e ettt

The function returns 10.

e Check if A[n] is a majority
e Count the number of occurrences.

e Discarditifitis not.
TT—— ettt

Majority Example

e Majority(BJ[7,...,/])

TRt et

The function returns 10.

Majority Example

e Majority(B[7,...,j])

Tpe———— ——e—
The function returns 10.

* [fB[7,...,/] returns a value x

* |terate through the array A and count
the number of accurrences of x.

* if these are more at least n/2, output
X,

* else, output no.

B SetwstmmmESETT

e Majority(B[7,...,/])

g "

. 10 appears 6 times in the array.

Majority element!
* [fB[7,...,/] returns a value x

* [terate through the array A and count
the number of accurrences of x.

* |f these are more at least n/2, output
X,

* else, output no.

Correctness

Correctness

Correctness

Proof by induction:

Correctness

Proof by induction:

Base case: Majority(B) works correctly for array B of size 1.

Correctness

Proof by induction:

Base case: Majority(B) works correctly for array B of size 1.

Inductive step: Assume that Majority(B) works correctly for array B of size
smaller than |A| (inductive hypothesis).

Correctness

Proof by induction:

Base case: Majority(B) works correctly for array B of size 1.

Inductive step: Assume that Majority(B) works correctly for array B of size
smaller than |A| (inductive hypothesis).

Case 1 (There is a majority element in A): Then by the Lemma, it is also a
majority element in B. Majority(B) will output it, by the inductive hypothesis and

the last step of Majority(A) will output it.

Correctness

Proof by induction:

Base case: Majority(B) works correctly for array B of size 1.

Inductive step: Assume that Majority(B) works correctly for array B of size
smaller than |A| (inductive hypothesis).

Case 1 (There is a majority element in A): Then by the Lemma, it is also a
majority element in B. Majority(B) will output it, by the inductive hypothesis and

the last step of Majority(A) will output it.

Case 2 (There is not a majority element in A): Then the last step of
Majority(A) will reject any candidate majority elements returned from Majority(B).

Proof by contradiction

Proof by contradiction

* We want to prove that statement S is true.
e We assume that the statement is not true.

e We reach a conclusion which cannot possibly be true.

Proof of the lemma

Proof of the lemma

* Assumption: Suppose to the contrary, that x is a majority element in A but not a majority
element in B.

Proof of the lemma

* Assumption: Suppose to the contrary, that x is a majority element in A but not a majority
element in B.

e Let m be the number of occurrences of x in A.

Proof of the lemma

* Assumption: Suppose to the contrary, that x is a majority element in A but not a majority
element in B.

e Let m be the number of occurrences of x in A.

e | et k be the number of occurrences of x in B.

Proof of the lemma

* Assumption: Suppose to the contrary, that x is a majority element in A but not a majority
element in B.

e Let m be the number of occurrences of x in A.
e | et k be the number of occurrences of x in B.

By the assumption, it follows that other values appear at least k times in B.

Proof of the lemma

* Assumption: Suppose to the contrary, that x is a majority element in A but not a majority
element in B.

e Let m be the number of occurrences of x in A.
e | et k be the number of occurrences of x in B.

By the assumption, it follows that other values appear at least k times in B.

* This means that other values appear in A:

Proof of the lemma

* Assumption: Suppose to the contrary, that x is a majority element in A but not a majority
element in B.

e Let m be the number of occurrences of x in A.
e | et k be the number of occurrences of x in B.

* By the assumption, it follows that other values appear at least k times in B.

* This means that other values appear in A:

e at least 2k times from the pairs that are represented in B by a value different than x plus

Proof of the lemma

* Assumption: Suppose to the contrary, that x is a majority element in A but not a majority
element in B.

e Let m be the number of occurrences of x in A.
e | et k be the number of occurrences of x in B.

* By the assumption, it follows that other values appear at least k times in B.
* This means that other values appear in A:
e at least 2k times from the pairs that are represented in B by a value different than x plus

* m-2k times, since each occurrence of x in A that is not paired with another x is paired with
some other value (since there are 2k pairs xx, there are m-2k other occurrences of x in A).

Proof of the lemma

Assumption: Suppose to the contrary, that x is a majority element in A but not a majority
element in B.

* |Let m be the number of occurrences of x in A.
* Let k be the number of occurrences of x in B.
By the assumption, it follows that other values appear at least k times in B.
This means that other values appear in A:
e at least 2k times from the pairs that are represented in B by a value different than x plus

* m-2k times, since each occurrence of x in A that is not paired with another x is paired with
some other value (since there are 2k pairs xx, there are m-2k other occurrences of x in A).

In total, this gives 2k+(m-k) = m occurrences, which contradicts the fact that x is a majority in
A. Contradiction!

Running time of Majority

Majority pseudocode

o Algorithm Majority(A[7,...,n]) e Majority(BJ[7,...,/])

If |A| = 0 output no, if |A| = 1 output A[i]. e If B[7,...,/] returns a value x

Check if A[n] is a majority
e [terate through the array A and count
e Count the number of occurrences. the number of occurrences of x.

e Discard it if it is not. :
* if these are more at least n/2, output

X.

Initialise array B of size |Al/2.

Set j=0 e else, output no.

Fori=1ton/2,do
e if A[2i-7] = A[2]] then
° j=j+1

* Bl =Af2]

Running time of Majority

Running time of Majority

e Recursive formula for the running time:

Running time of Majority

e Recursive formula for the running time:

e T(n) < T(n/2) + cn for some constant ¢

Running time of Majority

e Recursive formula for the running time:
e T(n) < T(n/2) + cn for some constant c

 We will prove that T(n) < 2cn

Running time of Majority

e Recursive formula for the running time:
e T(n) < T(n/2) + cn for some constant c
 We will prove that T(n) < 2cn

* By induction:

Running time of Majority

e Recursive formula for the running time:
e T(n) < T(n/2) + cn for some constant c
 We will prove that T(n) < 2cn

* By induction:

e Base case: T(7) <c

Running time of Majority

e Recursive formula for the running time:
e T(n) < T(n/2) + cn for some constant c
 We will prove that T(n) < 2cn

* By induction:
e Base case: T(7) <c

* Induction step: Assume that T(n/2) < 2c(n/2) (induction
hypothesis).

We have that T(n) < T(n/2) + cn < 2c(n/2) + cn = 2c¢cn

