Advanced Algorithmic Techniques (COMP523)

Recursion and Divide and Conquer Techniques

Recap and plan

Recap and plan

- Last lecture:
- Examples of algorithms (searching and sorting in linear time).
- Analysis of correctness, running time and memory.
- Asymptotic notation and asymptotic complexity.

Recap and plan

- Last lecture:
- Examples of algorithms (searching and sorting in linear time).
- Analysis of correctness, running time and memory.
- Asymptotic notation and asymptotic complexity.
- This lecture:
- Asymptotic complexity (cont.)
- Searching in logarithmic time.
- Finding majority in an array.

Asymptotic Complexity

Asymptotic Notation

$\mathbf{O}(\mathbf{g}(\mathbf{n}))=\mathbf{f}(\mathbf{n})$: there exist positive constants c and n_{0} such that

$$
0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}
$$

$\boldsymbol{\Omega}(\mathbf{g}(\mathbf{n}))=\mathbf{f}(\mathbf{n}):$ there exist positive constants c and n_{0} such that

$$
0 \leq c g(n) \leq f(n) \text { for all } n \geq n_{0}
$$

$\boldsymbol{\Theta}(\mathbf{g}(\mathbf{n}))=\mathbf{f}(\mathbf{n})$: there exist positive constants c_{1}, c_{2} and n_{0} such that

$$
0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n) \text { for all } n \geq n_{0}
$$

$\mathbf{o}(\mathbf{g}(\mathbf{n}))=\mathbf{f}(\mathbf{n}):$ for any constant $c>0$, there exists a constant $n_{0}>0$ such that $0 \leq f(n)<c g(n)$ for all $n \geq n_{0}$.
$\omega(\mathbf{g}(\mathbf{n}))=\mathbf{f}(\mathbf{n}):$ for any constant $c>0$, there exists a constant $n_{0}>0$ such that $0 \leq c g(n)<f(n)$ for all $n \geq n_{0}$

Comparing functions

- Asymptotic comparisons satisfy several relational properties.
- Transitivity
- Reflexivity
- Symmetry
- Transpose Symmetry
- Sum and maximum

Transitivity

- If $f(n)=\Theta(g(n))$ and $g(n)=\Theta(h(n))$, then $f(n)=\Theta(h(n))$.
- If $f(n)=O(g(n))$ and $g(n)=O(h(n))$, then $f(n)=O(h(n))$.
- If $f(n)=\Omega(g(n))$ and $g(n)=\Omega(h(n))$, then $f(n)=\Omega(h(n))$.
- If $f(n)=O(g(n))$ and $g(n)=o(h(n))$, then $f(n)=o(h(n))$.
- If $f(n)=\omega(g(n))$ and $g(n)=\omega(h(n))$, then $f(n)=\omega(h(n))$.

Reflexivity

- $f(n)=\Theta(f(n))$
- $f(n)=O(f(n))$
- $f(n)=\Omega(f(n))$
- Is it true that $f(n)$ is $o(f(n))$ and $\omega(f(n))$?

Symmetric Relations

- Symmetry:
- $f(n)=\Theta(g(n))$ if and only if $g(n)=\Theta(f(n))$.
- Transpose Symmetry:
- $f(n)=O(g(n))$ if and only if $g(n)=\Omega(f(n))$.
- $f(n)=o(g(n))$ if any only if $g(n)=\omega(f(n))$.

Sum and maximum

Sum and maximum

- $f_{1}(n)+f_{2}(n)+\ldots+f_{k}(n)=\Theta\left(\max \left(f_{1}(n), f_{2}(n), \ldots, f_{k}(n)\right)\right.$
- for any constant positive integer k.

Sum and maximum

- $f_{1}(n)+f_{2}(n)+\ldots+f_{k}(n)=\Theta\left(\max \left(f_{1}(n), f_{2}(n), \ldots, f_{k}(n)\right)\right.$
- for any constant positive integer k .
- If k is not constant, this is not true!
- Let $f_{j}(n)=j$.
- Let $\mathrm{k}=\mathrm{n}$
- $f_{1}(n)+f_{2}(n)+\ldots+f_{k}(n)=n(n+1) / 2=\Theta\left(n^{2}\right)$.

Searching in logarithmic time

Example: Running Time of LinearSearch

- Find if a number x exists in an array of sorted numbers.

Example: Running Time of LinearSearch

- Find if a number x exists in an array of sorted numbers.

- We read through the array until we find the number.

Example: Running Time of LinearSearch

- Find if a number x exists in an array of sorted numbers.

- We read through the array until we find the number.
- It requires at least n steps in the worst case.

Example: Running Time of LinearSearch

- Find if a number x exists in an array of sorted numbers.

- We read through the array until we find the number.
- It requires at least n steps in the worst case.
- Are we using all the information we have?

Example: Running Time of LinearSearch

- Find if a number x exists in an array of sorted numbers.

- We read through the array until we find the number.
- It requires at least n steps in the worst case.
- Are we using all the information we have?
- We never used the fact that the array is sorted!

Searching faster with BinarySearch

- Find if a number x exists in an array of sorted numbers.

Searching faster with BinarySearch

- Find if a number x exists in an array of sorted numbers.

Searching faster with BinarySearch

- Find if a number x exists in an array of sorted numbers.

compare with element $\mathbf{n} / 2$

Searching faster with BinarySearch

- Find if a number x exists in an array of sorted numbers.

compare with element $\mathbf{n} / 2$ is $17 \mathbf{1 0}$?

Searching faster with BinarySearch

- Find if a number x exists in an array of sorted numbers.

compare with element $\mathbf{n} / 2$ is $17>10$?

We never have to search the blue region again.

Searching faster with BinarySearch

- Find if a number x exists in an array of sorted numbers.

We never have to search the blue region again.

Searching faster with BinarySearch

- Find if a number x exists in an array of sorted numbers.

We never have to search the blue region again.

Searching faster with BinarySearch

- Find if a number x exists in an array of sorted numbers.

compare with element $\mathbf{n}_{1} / 2$
is $14>19 ?$
We never have to search the blue region again.

Searching faster with BinarySearch

- Find if a number x exists in an array of sorted numbers.

We never have to search the blue region again.

Searching faster with BinarySearch

- Find if a number x exists in an array of sorted numbers.

compare with element $\mathbf{n}_{1} / 2$
is $14>19 ?$
We never have to search the blue region again.

Searching faster with BinarySearch

- Find if a number x exists in an array of sorted numbers.

We never have to search the blue region again.

Searching faster with BinarySearch

- Find if a number x exists in an array of sorted numbers.

compare with element $\mathrm{n}_{2} / 2$

We never have to search the blue region again.

Searching faster with BinarySearch

- Find if a number x exists in an array of sorted numbers.

compare with element $\mathrm{n}_{2} / 2$
is $14>17$?
We never have to search the blue region again.

Searching faster with BinarySearch

- Find if a number x exists in an array of sorted numbers.

compare with element $\mathrm{n}_{2} / 2$
is $14>17$?
We never have to search the blue region again.

Searching faster with BinarySearch

- Find if a number x exists in an array of sorted numbers.

We never have to search the blue region again.

Searching faster with BinarySearch

- Find if a number x exists in an array of sorted numbers.

We never have to search the blue region again.

Searching faster with BinarySearch

Searching faster with BinarySearch

- How to implement BinarySearch?

Searching faster with BinarySearch

- How to implement BinarySearch?
- We compare with the middle element, which tells us in which half we might find x .

Searching faster with BinarySearch

- How to implement BinarySearch?
- We compare with the middle element, which tells us in which half we might find x .
- If only we had an algorithm for solving the problem on that half.

Searching faster with BinarySearch

- How to implement BinarySearch?
- We compare with the middle element, which tells us in which half we might find x .
- If only we had an algorithm for solving the problem on that half.
- Do we know of any such good algorithms?

Searching faster with BinarySearch

- How to implement BinarySearch?
- We compare with the middle element, which tells us in which half we might find x .
- If only we had an algorithm for solving the problem on that half.
- Do we know of any such good algorithms?
- BinarySearch is such an algorithm! Just run it on half of the array.

Searching faster with BinarySearch

- How to implement BinarySearch?
- We compare with the middle element, which tells us in which half we might find x .
- If only we had an algorithm for solving the problem on that half.
- Do we know of any such good algorithms?
- BinarySearch is such an algorithm! Just run it on half of the array.
- We stop running when we reach an array of length 1 , which we can trivially check for x.

BinarySearch pseudocode

- Procedure BinarySearch(x, i, j):
- If $i=j$ then
- If $x=A[1]$, return yes
- If $x \neq A[1]$, return no
- Else
- If $x=A[(i+j) / 2]$, return yes
- If $x<A[(i+j) / 2]$, return BinarySearch $(x, i,(i+j) / 2-1)$
- If $x>A[(i+j) / 2]$, return BinarySearch $(x,(i+j) / 2, j)$

BinarySearch pseudocode

- Procedure BinarySearch(x, i, j):
- If $i=j$ then
- If $x=A[1]$, return yes

Then run BinarySearch(x, 1, n)

- If $x \neq A[1]$, return no
- Else
- If $x=A[(i+j) / 2]$, return yes
- If $x<A[(i+j) / 2]$, return BinarySearch $(x, i,(i+j) / 2-1)$
- If $x>A[(i+j) / 2]$, return BinarySearch $(x,(i+j) / 2, j)$

Design principle

- Recursion: A procedure that calls itself one or multiple times, on different inputs.

Running time of BinarySearch

Running time of BinarySearch

- All operations take constant time and there is only a constant number of non-comparison operations.

Running time of BinarySearch

- All operations take constant time and there is only a constant number of non-comparison operations.
- We will measure the number of comparisons.

Running time of BinarySearch

- All operations take constant time and there is only a constant number of non-comparison operations.
- We will measure the number of comparisons.

Running time of BinarySearch

- All operations take constant time and there is only a constant number of non-comparison operations.
- We will measure the number of comparisons.
- Every call of the procedure performs at most 4 comparisons.

BinarySearch pseudocode

- Procedure BinarySearch(x, i, j):
- If $i=j$ then
- If $x=A[1]$, return yes
- If $x \neq A[1]$, return no
- Else
- If $x=A[(i+j) / 2]$, return yes
- If $x<A[(i+j) / 2]$, return BinarySearch $(x, i,(i+j) / 2-1)$
- If $x>A[(i+j) / 2]$, return BinarySearch $(x,(i+j) / 2, j)$

Running time

Running time

- The number of comparisons performed by BinarySearch is

$$
T(n) \leq T(n / 2)+4
$$

Running time

- The number of comparisons performed by BinarySearch is

$$
T(n) \leq T(n / 2)+4
$$

- Let's try to calculate this:

$$
\begin{aligned}
T(n) & \leq T(n / 2)+4 \\
& \leq[T(n / 4)+4]+4=T(n / 4)+8 \\
& \leq T(n / 8]+12 \\
& \cdots \\
& \leq T(n / 2 j)+4 j \\
& \cdots \\
& \leq T(n / 2 \log n-1)+4(\log n-1) \\
& =T[n /(n / 2)]+4(\log n-1)=T(2)+4(\log n-1) \\
& \leq 4+4(\log n-1)=4 \log n
\end{aligned}
$$

How to do this formally

- By (strong) induction:
- Base case: Show that it holds for input size $\mathrm{n}=1$ or n=2.
- Induction step: Assume that it holds for all inputs of size at most $n-1$ (induction hypothesis).

Prove that it holds for input size n.

Running time

Running time

- The number of comparisons performed by BinarySearch is

$$
T(n) \leq T(n / 2)+4
$$

Running time

- The number of comparisons performed by BinarySearch is

$$
T(n) \leq T(n / 2)+4
$$

- Let's try to prove that $T(n) \leq 4 \log n$

Running time

- The number of comparisons performed by BinarySearch is

$$
T(n) \leq T(n / 2)+4
$$

- Let's try to prove that $T(n) \leq 4 \log n$
- Base Case: $\mathrm{n}=2$, straightforwardly $\mathrm{T}(2) \leq 4 \leq 4 \log 2$

Running time

- The number of comparisons performed by BinarySearch is

$$
T(n) \leq T(n / 2)+4
$$

- Let's try to prove that $T(n) \leq 4 \log n$
- Base Case: $\mathrm{n}=2$, straightforwardly $\mathrm{T}(2) \leq 4 \leq 4 \log 2$
- Inductive step: Assume $T(n / 2) \leq 4 \log (n / 2)$

Running time

- The number of comparisons performed by BinarySearch is

$$
T(n) \leq T(n / 2)+4
$$

- Let's try to prove that $T(n) \leq 4 \log n$
- Base Case: $\mathrm{n}=2$, straightforwardly $\mathrm{T}(2) \leq 4 \leq 4 \log 2$
- Inductive step: Assume $T(n / 2) \leq 4 \log (n / 2)$
- It holds that $T(n) \leq T(n / 2)+4 \leq 4 \log (n / 2)+4$

$$
\leq 4 \log n-4 \log 2+4 \leq 4 \log n
$$

Divide-and-Conquer

Divide-and-Conquer

- Split the input into smaller sub-instances.

Divide-and-Conquer

- Split the input into smaller sub-instances.
- Solve each sub-instance separately.

Divide-and-Conquer

- Split the input into smaller sub-instances.
- Solve each sub-instance separately.
- Combine the solutions of the sub-instances into a solution for the problem.

Divide-and-Conquer

- Split the input into smaller sub-instances.
- Solve each sub-instance separately.
- Combine the solutions of the sub-instances into a solution for the problem.
- Often: For each sub-instance, the algorithm calls itself to solve it (recursion).

The instances become so small that they can be solved via a brute force algorithm.

Question

- Could we have stopped the BinarySearch procedure earlier and used brute-force on the remaining sequence without changing its asymptotic running time?

How much earlier?

Memory requirements of BinarySearch

- Memory used as part of the input: n (to store the array) +1 (to store the number x).
- Auxiliary memory:
- The algorithm calls itself within its execution.
- Needs to maintain these executions "active" in memory.
- How many executions do we have?
- $\mathrm{O}(\log \mathrm{n})$.

Tree structure

We have to store the path from the root to the leaf.

BinarySearch vs LinearSearch

BinarySearch

Running time: $\mathrm{O}(\log \mathrm{n})$

Memory: O(log n)

LinearSearch
Running time: O(n)
Memory: O(1)

Which one we choose depends on the application.

Finding majority in an array

- Given an array of n numbers, a majority element is one that appears more than $n / 2$ times in the array.
- (lgnoring rounding issues, otherwise ceil(n/2) times).
- Question: Given such an array, find a majority element if it exists, or return that it doesn't.

Ma 0.

- Algorithm Majority($\mathbf{A}[1, \ldots, n])$
- If $|\mathbf{A}|=0$ output no, if $|\mathbf{A}|=1$ output A[i].
- (Assume $n=|A|$ is even).
- Initialise array B of size $|A| / 2$.
- Set $j=0$
- For $\mathrm{i}=1$ to $\mathrm{n} / 2$, do
- if $\mathbf{A}[2 i-1]=\mathbf{A}[2 i]$ then
- $j=j+1$
- $B[j]=A[21]$
- $\operatorname{Majority(B[1,\ldots ,j])}$
- If $\mathbf{B}[1, \ldots, j]$ returns a value x
- Iterate through the array \mathbf{A} and count the number of occurrences of x.
- if these are more at least $\mathrm{n} / 2$, output X.
- else, output no.

Majority Example

Majority Example

- Algorithm Majority(A[1,..,n])
- If $|\mathbf{A}|=0$ output no, if $|\mathbf{A}|=1$ output A[i].
- (Assume $\mathrm{n}=|\mathrm{A}|$ is even).

Majority Example

- Algorithm Majority($\mathbf{A}[1, \ldots, n])$
- If $|\mathbf{A}|=0$ output no, if $|\mathbf{A}|=1$ output A[i].
- (Assume $n=|A|$ is even).

Majority Example

- Algorithm Majority($\mathbf{A}[1, \ldots, n])$
- If $|\mathbf{A}|=0$ output no, if $|\mathbf{A}|=1$ output A[i].
- (Assume $\mathrm{n}=|\mathrm{A}|$ is even).

Majority Example

Majority Example

- Initialise array B of size $|\mathrm{A}| / 2$.
- Set $j=0$

Majority Example

- Initialise array B of size $|\mathrm{A}| / 2$.
- Set $j=0$

Majority Example

Majority Example

- For $\mathrm{i}=1$ to $\mathrm{n} / 2$, do
- if $\mathbf{A}[2 i-1]=\mathbf{A}[21]$ then
- $j=j+1$
- $B[]=A[21]$

Majority Example

- For $\mathrm{i}=1$ to $\mathrm{n} / 2$, do
- if $\mathbf{A}[2 i-1]=\mathbf{A}[21]$ then
- $j=j+1$
- $\mathbf{B}[]]=\mathbf{A}[21]$

$$
\begin{gathered}
\mathrm{i}=1 \\
\mathrm{~A}[1]=1 \\
\mathrm{~A}[2]=10
\end{gathered}
$$

Majority Example

- For $\mathrm{i}=1$ to $\mathrm{n} / 2$, do
- if $\mathbf{A}[2 i-1]=\mathbf{A}[21]$ then
- $j=j+1$
- $\mathbf{B}[]]=\mathbf{A}[21]$

$$
\begin{gathered}
\mathrm{i}=1 \\
\mathrm{~A}[1]=1 \\
\mathrm{~A}[2]=10
\end{gathered}
$$

Majority Example

- For $\mathrm{i}=1$ to $\mathrm{n} / 2$, do
- if $\mathbf{A}[2 i-1]=\mathbf{A}[21]$ then
- $j=j+1$
- $\mathbf{B}[]]=\mathbf{A}[21]$

$$
\begin{gathered}
\mathrm{i}=1 \\
\mathrm{~A}[1]=1 \\
\mathrm{~A}[2]=10
\end{gathered}
$$

Majority Example

- For $\mathrm{i}=1$ to $\mathrm{n} / 2$, do
- if $\mathbf{A}[2 i-1]=\mathbf{A}[21]$ then

$$
\begin{array}{cc}
\mathrm{i}=1 & \mathrm{i}=2 \\
\mathrm{~A}[1]=1 & \mathrm{~A}[3]=10 \\
\mathrm{~A}[2]=10 & \mathrm{~A}[4]=7
\end{array}
$$

- $j=j+1$
- $B[]=A[21]$

Majority Example

- For $\mathrm{i}=1$ to $\mathrm{n} / 2$, do
- if $\mathbf{A}[2 i-1]=\mathbf{A}[21]$ then

$$
\begin{array}{cc}
\mathrm{i}=1 & \mathrm{i}=2 \\
\mathrm{~A}[1]=1 & \mathrm{~A}[3]=10 \\
\mathrm{~A}[2]=10 & \mathrm{~A}[4]=7
\end{array}
$$

- $j=j+1$
- $B[]=A[21]$

Majority Example

- For $\mathrm{i}=1$ to $\mathrm{n} / 2$, do
- if $\mathbf{A}[2 i-1]=\mathbf{A}[21]$ then

$$
\begin{array}{cc}
\mathrm{i}=1 & \mathrm{i}=2 \\
\mathrm{~A}[1]=1 & \mathrm{~A}[3]=10 \\
\mathrm{~A}[2]=10 & \mathrm{~A}[4]=7
\end{array}
$$

- $j=j+1$
- $B[]=A[21]$

Majority Example

- For $i=1$ to $n / 2$, do
- if $\mathbf{A}[2 i-1]=\mathbf{A}[21]$ then
- $j=j+1$
- $B[]=A[21]$

$$
\begin{array}{cc}
i=1 & i=2 \\
A[1]=1 & A[3]=10 \\
A[2]=10 & A[4]=7 \\
i=3 & \\
A[5]=10 & \\
A[6]=10 &
\end{array}
$$

Majority Example

- For $\mathrm{i}=1$ to $\mathrm{n} / 2$, do
- if $\mathbf{A}[2 i-1]=\mathbf{A}[21]$ then
- $j=j+1$
- $B[]=A[21]$

$$
\begin{array}{cc}
i=1 & i=2 \\
A[1]=1 & A[3]=10 \\
A[2]=10 & A[4]=7 \\
i=3 & \\
A[5]=10 & \\
A[6]=10 &
\end{array}
$$

Majority Example

- For $\mathrm{i}=1$ to $\mathrm{n} / 2$, do
- if $\mathbf{A}[2 i-1]=\mathbf{A}[21]$ then
- $j=j+1$
- $B[]=A[21]$

$$
\begin{array}{cc}
i=1 & i=2 \\
A[1]=1 & A[3]=10 \\
A[2]=10 & A[4]=7 \\
i=3 & \\
A[5]=10 & \\
A[6]=10 &
\end{array}
$$

Majority Example

- For $i=1$ to $n / 2$, do
- if $\mathbf{A}[2 i-1]=\mathbf{A}[21]$ then
- $j=j+1$
- $B[]=A[21]$

$$
\begin{array}{cc}
i=1 & i=2 \\
A[1]=1 & A[3]=10 \\
A[2]=10 & A[4]=7 \\
i=3 & \\
A[5]=10 & \\
A[6]=10 &
\end{array}
$$

Majority Example

- For $i=1$ to $n / 2$, do
- if $\mathbf{A}[2 i-1]=\mathbf{A}[21]$ then
- $j=j+1$
- $B[]=A[21]$

$$
\begin{array}{cc}
i=1 & i=2 \\
A[1]=1 & A[3]=10 \\
A[2]=10 & A[4]=7 \\
& \\
i=3 & i=4 \\
A[5]=10 & A[7]=6 \\
A[6]=10 & A[8]=6
\end{array}
$$

Majority Example

- For $i=1$ to $n / 2$, do
- if $\mathbf{A}[2 i-1]=\mathbf{A}[21]$ then
- $j=j+1$
- $B[]=A[21]$

$$
\begin{array}{cc}
i=1 & i=2 \\
A[1]=1 & A[3]=10 \\
A[2]=10 & A[4]=7 \\
& \\
i=3 & i=4 \\
A[5]=10 & A[7]=6 \\
A[6]=10 & A[8]=6
\end{array}
$$

Majority Example

- For $i=1$ to $n / 2$, do
- if $\mathbf{A}[2 i-1]=\mathbf{A}[21]$ then
- $j=j+1$
- $B[]=A[21]$

$$
\begin{array}{cc}
i=1 & i=2 \\
A[1]=1 & A[3]=10 \\
A[2]=10 & A[4]=7 \\
& \\
i=3 & i=4 \\
A[5]=10 & A[7]=6 \\
A[6]=10 & A[8]=6
\end{array}
$$

Majority Example

- For $i=1$ to $n / 2$, do
- if $\mathbf{A}[2 i-1]=\mathbf{A}[21]$ then
- $j=j+1$
- $B[]=A[21]$

$$
\begin{array}{cc}
i=1 & i=2 \\
A[1]=1 & A[3]=10 \\
A[2]=10 & A[4]=7 \\
& \\
i=3 & i=4 \\
A[5]=10 & A[7]=6 \\
A[6]=10 & A[8]=6
\end{array}
$$

Majority Example

- For $\mathrm{i}=1$ to $\mathrm{n} / 2$, do
- if $\mathbf{A}[2 i-1]=\mathbf{A}[21]$ then
- $j=j+1$
- $B[]=A[21]$

$$
\begin{array}{cc}
\mathrm{i}=1 & \mathrm{i}=2 \\
\mathrm{~A}[1]=1 & \mathrm{~A}[3]=10 \\
\mathrm{~A}[2]=10 & \mathrm{~A}[4]=7
\end{array}
$$

$\mathrm{i}=3 \quad \mathrm{i}=4$
$A[5]=10 \quad A[7]=6$
$A[6]=10 \quad A[8]=6$
$i=5$
$\mathrm{A}[9]=10$
$A[10]=10$

Majority Example

- For $\mathrm{i}=1$ to $\mathrm{n} / 2$, do
- if $\mathbf{A}[2 i-1]=\mathbf{A}[2]$ then
- $j=j+1$
- $B[]=A[21]$

$$
\begin{array}{cc}
\mathrm{i}=1 & \mathrm{i}=2 \\
\mathrm{~A}[1]=1 & \mathrm{~A}[3]=10 \\
\mathrm{~A}[2]=10 & \mathrm{~A}[4]=7
\end{array}
$$

$\mathrm{i}=3 \quad \mathrm{i}=4$
$A[5]=10 \quad A[7]=6$
$A[6]=10 \quad A[8]=6$
$i=5$
$\mathrm{A}[9]=10$
$A[10]=10$

Majority Example

- For $\mathrm{i}=1$ to $\mathrm{n} / 2$, do
- if $\mathbf{A}[2 i-1]=\mathbf{A}[21]$ then
- $j=j+1$
- $\mathbf{B}[/]=\mathbf{A}[21]$

$$
\begin{array}{cc}
\mathrm{i}=1 & \mathrm{i}=2 \\
\mathrm{~A}[1]=1 & \mathrm{~A}[3]=10 \\
\mathrm{~A}[2]=10 & \mathrm{~A}[4]=7
\end{array}
$$

$\mathrm{i}=3 \quad \mathrm{i}=4$
$A[5]=10 \quad A[7]=6$
$A[6]=10 \quad A[8]=6$
$i=5$
$A[9]=10$
$A[10]=10$

Majority Example

- For $\mathrm{i}=1$ to $\mathrm{n} / 2$, do
- if $\mathbf{A}[2 i-1]=\mathbf{A}[21]$ then
- $j=j+1$
- $\mathbf{B}[f]=\mathbf{A}[21]$

$$
\begin{array}{cc}
i=1 & i=2 \\
A[1]=1 & A[3]=10 \\
A[2]=10 & A[4]=7
\end{array}
$$

$\mathrm{i}=3 \quad \mathrm{i}=4$
$A[5]=10 \quad A[7]=6$
$A[6]=10 \quad A[8]=6$
i=5
$A[9]=10$
$A[10]=10$

Majority Example

Majority Example

- Majority(B[1, $\ldots, \mathrm{f}])$

Majority Example

\author{

- Majority(B[1,..., $])$
}

Majority Example

- Majority(B[1, $\ldots, \mathrm{f}])$

- Algorithm Majority(A[1,..,n])
- If $|\mathbf{A}|=0$ output no, if $|\mathbf{A}|=1$ output A[i].
- (Assume $n=|A|$ is even).

Majority Example

- Majority(B[1,..., $]$)

- Algorithm Majority(A[1,..,n])
- If $|\mathbf{A}|=0$ output no, if $|\mathbf{A}|=1$ output A[i].
- (Assume $n=|A|$ is even).

Majority Example

- Majority(B[1, $\ldots, \mathrm{f}])$

- Algorithm Majority(A[1,..,n])
- If $|\mathbf{A}|=0$ output no, if $|\mathbf{A}|=1$ output A[i].
- (Assume $\mathrm{n}=|\mathrm{A}|$ is even).

Majority pseudocode

- Algorithm Majority(A[1, $\ldots, n])$
- If $|\mathbf{A}|=0$ output no, if $|\mathbf{A}|=1$ output $\mathbf{A}[i]$.
- Check if $\mathbf{A}[n]$ is a majority
- Count the number of occurrences.
- Discard it if it is not.
- Initialise array B of size $|A| / 2$.
- Set $j=0$
- For $\mathrm{i}=1$ to $\mathrm{n} / 2$, do
- if $\mathbf{A}[2 i-1]=\mathbf{A}[21]$ then
- $j=j+1$
- $\mathbf{B}[]=\mathbf{A}[21]$
- $\operatorname{Majority}(\mathbf{B}[1, \ldots, j])$
- If $\mathbf{B}[1, \ldots, j]$ returns a value x
- Iterate through the array \mathbf{A} and count the number of occurrences of x.
- if these are more at least $\mathrm{n} / 2$, output X.
- else, output no.

Majority Example

- Majority(B[1, $\ldots, \mathrm{f}])$

- Algorithm Majority(A[1,..,n])
- If $|\mathbf{A}|=0$ output no, if $|\mathbf{A}|=1$ output A[i].
- (Assume $\mathrm{n}=|\mathrm{A}|$ is even).

Majority Example

\author{

- Majority(B[1,..., $])$
}

Majority Example

- Majority(B[1, .., $]$)

- Check if $\mathrm{A}[n]$ is a majority
- Count the number of occurrences.
- Discard it if it is not.

Majority Example

- Majority(B[1, $\ldots, \mathrm{f}])$

The function returns 10.

- Check if $\mathrm{A}[n]$ is a majority
- Count the number of occurrences.
- Discard it if it is not.

Majority Example

- Majority(B[1,..., $]$)

The function returns 10.

Majority Example

- Majority(B[1, $\ldots, j])$

The function returns 10.

- If $\mathbf{B}[1, \ldots, j]$ returns a value x
- Iterate through the array A and count the number of occurrences of x.
- if these are more at least $n / 2$, output x.
- else, output no.

Majority Example

- $\operatorname{Majority}(\mathbf{B}[1, \ldots]$,

The function returns 10.
10 appears 6 times in the array. Majority element!

- If $\mathbf{B}[1, \ldots$,$] returns a value x$
- Iterate through the array A and count the number of occurrences of x.
- if these are more at least $n / 2$, output x.
- else, output no.

Correctness

Correctness

Lemma: If x is a majority element in A, then x is a majority element in B.

Correctness

Lemma: If x is a majority element in A, then x is a majority element in B.
Proof by induction:

Correctness

Lemma: If x is a majority element in A , then x is a majority element in B .

Proof by induction:
Base case: Majority(B) works correctly for array B of size 1.

Correctness

Lemma: If x is a majority element in A , then x is a majority element in B .

Proof by induction:
Base case: Majority(B) works correctly for array B of size 1.

Inductive step: Assume that Majority(B) works correctly for array B of size smaller than |A| (inductive hypothesis).

Correctness

Lemma: If x is a majority element in A , then x is a majority element in B .

Proof by induction:
Base case: Majority(B) works correctly for array B of size 1.

Inductive step: Assume that Majority(B) works correctly for array B of size smaller than $|\mathrm{A}|$ (inductive hypothesis).

Case 1 (There is a majority element in A): Then by the Lemma, it is also a majority element in B. Majority(B) will output it, by the inductive hypothesis and the last step of Majority(A) will output it.

Correctness

Lemma: If x is a majority element in A , then x is a majority element in B .
Proof by induction:
Base case: Majority(B) works correctly for array B of size 1.

Inductive step: Assume that Majority(B) works correctly for array B of size smaller than |A| (inductive hypothesis).

Case 1 (There is a majority element in A): Then by the Lemma, it is also a majority element in B. Majority(B) will output it, by the inductive hypothesis and the last step of Majority(A) will output it.

Case 2 (There is not a majority element in A): Then the last step of Majority(A) will reject any candidate majority elements returned from Majority(B).

Proof by contradiction

Proof by contradiction

- We want to prove that statement S is true.
- We assume that the statement is not true.
- We reach a conclusion which cannot possibly be true.

Proof of the lemma

Proof of the lemma

- Assumption: Suppose to the contrary, that x is a majority element in A but not a majority element in B.

Proof of the lemma

- Assumption: Suppose to the contrary, that x is a majority element in A but not a majority element in B.
- Let m be the number of occurrences of x in A.

Proof of the lemma

- Assumption: Suppose to the contrary, that x is a majority element in A but not a majority element in B.
- Let m be the number of occurrences of x in A.
- Let \mathbf{k} be the number of occurrences of x in B .

Proof of the lemma

- Assumption: Suppose to the contrary, that x is a majority element in A but not a majority element in B.
- Let m be the number of occurrences of x in A.
- Let \mathbf{k} be the number of occurrences of x in B .
- By the assumption, it follows that other values appear at least k times in \mathbf{B}.

Proof of the lemma

- Assumption: Suppose to the contrary, that x is a majority element in A but not a majority element in B.
- Let m be the number of occurrences of x in A.
- Let \mathbf{k} be the number of occurrences of x in B .
- By the assumption, it follows that other values appear at least \mathbf{k} times in \mathbf{B}.
- This means that other values appear in A:

Proof of the lemma

- Assumption: Suppose to the contrary, that x is a majority element in A but not a majority element in B.
- Let m be the number of occurrences of x in A.
- Let \mathbf{k} be the number of occurrences of x in B .
- By the assumption, it follows that other values appear at least \mathbf{k} times in \mathbf{B}.
- This means that other values appear in A:
- at least $2 k$ times from the pairs that are represented in B by a value different than \times plus

Proof of the lemma

- Assumption: Suppose to the contrary, that x is a majority element in A but not a majority element in B.
- Let m be the number of occurrences of x in A.
- Let \mathbf{k} be the number of occurrences of x in B .
- By the assumption, it follows that other values appear at least \mathbf{k} times in \mathbf{B}.
- This means that other values appear in A:
- at least $2 k$ times from the pairs that are represented in B by a value different than x plus
- $m-2 k$ times, since each occurrence of x in A that is not paired with another x is paired with some other value (since there are $2 k$ pairs $x x$, there are $m-2 k$ other occurrences of x in A).

Proof of the lemma

- Assumption: Suppose to the contrary, that x is a majority element in A but not a majority element in B.
- Let m be the number of occurrences of x in A.
- Let \mathbf{k} be the number of occurrences of x in B .
- By the assumption, it follows that other values appear at least \mathbf{k} times in \mathbf{B}.
- This means that other values appear in A:
- at least $2 k$ times from the pairs that are represented in B by a value different than x plus
- m-2k times, since each occurrence of x in A that is not paired with another x is paired with some other value (since there are $2 k$ pairs $x x$, there are $m-2 k$ other occurrences of x in A).
- In total, this gives $2 \mathbf{k}+(\mathrm{m}-\mathrm{k})=\mathrm{m}$ occurrences, which contradicts the fact that x is a majority in A. Contradiction!

Running time of Majority

Majority pseudocode

- Algorithm Majority(A[1, .., n])
- If $|\mathbf{A}|=0$ output no, if $|\mathbf{A}|=1$ output $\mathbf{A}[i]$.
- Check if $\mathbf{A}[n]$ is a majority
- Count the number of occurrences.
- Discard it if it is not.
- Initialise array B of size $|A| / 2$.
- Set $j=0$
- For $\mathrm{i}=1$ to $\mathrm{n} / 2$, do
- if $\mathbf{A}[2 i-1]=\mathbf{A}[21]$ then
- $j=j+1$
- $\mathbf{B}[]=\mathbf{A}[21]$
- $\operatorname{Majority}(\mathbf{B}[1, \ldots, j])$
- If $\mathbf{B}[1, \ldots, j]$ returns a value x
- Iterate through the array \mathbf{A} and count the number of occurrences of x.
- if these are more at least $\mathrm{n} / 2$, output X.
- else, output no.

Running time of Majority

Running time of Majority

- Recursive formula for the running time:

Running time of Majority

- Recursive formula for the running time:
- $\mathrm{T}(n) \leq \mathrm{T}(n / 2)+\mathrm{c}$ for some constant c

Running time of Majority

- Recursive formula for the running time:
- $\mathrm{T}(n) \leq \mathrm{T}(n / 2)+\mathrm{c}$ for some constant c
- We will prove that $\mathrm{T}(n) \leq 2 \mathrm{c} n$

Running time of Majority

- Recursive formula for the running time:
- $\mathrm{T}(n) \leq \mathrm{T}(n / 2)+\mathrm{c} n$ for some constant c
- We will prove that $\mathrm{T}(n) \leq 2 \mathrm{c} n$
- By induction:

Running time of Majority

- Recursive formula for the running time:
- $\mathrm{T}(n) \leq \mathrm{T}(n / 2)+\mathrm{c}$ for some constant c
- We will prove that $\mathrm{T}(n) \leq 2 \mathrm{c} n$
- By induction:
- Base case: $\mathrm{T}(1) \leq \mathrm{c}$

Running time of Majority

- Recursive formula for the running time:
- $\mathrm{T}(n) \leq \mathrm{T}(n / 2)+\mathrm{c} n$ for some constant c
- We will prove that $\mathrm{T}(n) \leq 2 \mathrm{c} n$
- By induction:
- Base case: $T(1) \leq c$
- Induction step: Assume that $\mathrm{T}(n / 2) \leq 2 \mathrm{c}(n / 2)$ (induction hypothesis).

We have that $\mathrm{T}(\mathrm{n}) \leq \mathrm{T}(n / 2)+\mathrm{c} n \leq 2 \mathrm{c}(n / 2)+\mathrm{c} n=2 \mathrm{c} n$

