
Advanced Algorithmic Techniques
(COMP523)

Recursion and Divide and Conquer Techniques

Recap and plan

Recap and plan
• Last lecture:

• Examples of algorithms (searching and sorting in linear time).

• Analysis of correctness, running time and memory.

• Asymptotic notation and asymptotic complexity.

Recap and plan
• Last lecture:

• Examples of algorithms (searching and sorting in linear time).

• Analysis of correctness, running time and memory.

• Asymptotic notation and asymptotic complexity.

• This lecture:

• Asymptotic complexity (cont.)

• Searching in logarithmic time.

• Finding majority in an array.

Asymptotic
Complexity

Asymptotic Notation
O(g(n)) = f(n) : there exist positive constants c and n0 such that

0  f(n)  cg(n) for all n � n0.

⌦(g(n)) = f(n) : there exist positive constants c and n0 such that

0  cg(n)  f(n) for all n � n0.

⇥(g(n)) = f(n) : there exist positive constants c1, c2 and n0 such that

0  c1g(n)  f(n)  c2g(n) for all n � n0.

o(g(n)) = f(n) : for any constant c > 0, there exists a constant

n0 > 0 such that 0  f(n) < cg(n) for all n � n0.

!(g(n)) = f(n) : for any constant c > 0, there exists a constant

n0 > 0 such that 0  cg(n) < f(n) for all n � n0
<latexit sha1_base64="fePnXgwN4wvPbU5pG4kSP+v1yUk=">AAACknicbVFNb9NAEF2brxI+mgI3LiMiqlRCkV1AQAWhqBcOHIpE2kpxFK03Y2fV9a67O0aNLP8g/g43/g1rN0XQMpd9evN23nykpZKOouhXEN64eev2nY27vXv3Hzzc7G89OnKmsgInwihjT1LuUEmNE5Kk8KS0yItU4XF6etDmj7+jddLob7QqcVbwXMtMCk6emvd/JAWnZZrViSkw58N8qHd24ANk/m1gew8SwnOqM2OB6xUIox1xTdCAGEcv1lmgJVoEPPf9OuB/VE2S9Lb1PIJxdKl0lVh6OW8reFLhGYjWE953lpeyzk8pL9JJ7jW+yLw/iEZRF3AdxGswYOs4nPd/JgsjqgI1CcWdm8ZRSbOaW5JCYdNLKoclF6c8x6mHmhfoZnW30gaee2bRtZEZP27H/v2j5oVzqyL1ynaB7mquJf+Xm1aUvZ3VUpcVoRYXRlmlgAy094GFtChIrTzgwkrfK4glt1yQv2LPLyG+OvJ1cLQ7il+Odr++Guy/W69jgz1lz9iQxewN22ef2SGbMBFsBq+DcfAxfBLuhZ/CgwtpGKz/PGb/RPjlNyORwx0=</latexit>

Comparing functions
• Asymptotic comparisons satisfy several relational

properties.

• Transitivity

• Reflexivity

• Symmetry

• Transpose Symmetry

• Sum and maximum

Transitivity

• If f(n) = Θ(g(n)) and g(n) = Θ(h(n)), then f(n) = Θ(h(n)).

• If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).

• If f(n) = Ω(g(n)) and g(n) = Ω(h(n)), then f(n) = Ω(h(n)).

• If f(n) = ο(g(n)) and g(n) = ο(h(n)), then f(n) = ο(h(n)).

• If f(n) = ω(g(n)) and g(n) = ω(h(n)), then f(n) = ω(h(n)).

Reflexivity

• f(n) = Θ(f(n))

• f(n) = O(f(n))

• f(n) = Ω(f(n))

• Is it true that f(n) is ο(f(n)) and ω(f(n))?

Symmetric Relations

• Symmetry:

• f(n) = Θ(g(n)) if and only if g(n) = Θ(f(n)).

• Transpose Symmetry:

• f(n) = O(g(n)) if and only if g(n) = Ω(f(n)).

• f(n) = o(g(n)) if any only if g(n) = ω(f(n)).

Sum and maximum

Sum and maximum
• f1(n) + f2(n) + … + fk(n) = Θ(max(f1(n), f2(n) ,…, fk(n))

• for any constant positive integer k.

Sum and maximum
• f1(n) + f2(n) + … + fk(n) = Θ(max(f1(n), f2(n) ,…, fk(n))

• for any constant positive integer k.

• If k is not constant, this is not true!

• Let fj(n) = j.

• Let k = n

• f1(n) + f2(n) + … + fk(n) = n(n+1)/2 = Θ(n2).

Searching in
logarithmic time

Example: Running Time of LinearSearch

• Find if a number x exists in an array of sorted numbers.

17 106421 14 17 19 21 24

Example: Running Time of LinearSearch

• Find if a number x exists in an array of sorted numbers.

17 106421 14 17 19 21 24

• We read through the array until we find the number.

Example: Running Time of LinearSearch

• Find if a number x exists in an array of sorted numbers.

17 106421 14 17 19 21 24

• We read through the array until we find the number.

• It requires at least n steps in the worst case.

Example: Running Time of LinearSearch

• Find if a number x exists in an array of sorted numbers.

17 106421 14 17 19 21 24

• We read through the array until we find the number.

• It requires at least n steps in the worst case.

• Are we using all the information we have?

Example: Running Time of LinearSearch

• Find if a number x exists in an array of sorted numbers.

17 106421 14 17 19 21 24

• We read through the array until we find the number.

• It requires at least n steps in the worst case.

• Are we using all the information we have?

• We never used the fact that the array is sorted!

Searching faster with
BinarySearch

• Find if a number x exists in an array of sorted numbers.

17 106421 14 17 19 21 24

Searching faster with
BinarySearch

• Find if a number x exists in an array of sorted numbers.

17 106421 14 17 19 21 24

Searching faster with
BinarySearch

• Find if a number x exists in an array of sorted numbers.

17 106421 14 17 19 21 24

compare with element n/2

Searching faster with
BinarySearch

• Find if a number x exists in an array of sorted numbers.

17 106421 14 17 19 21 24

compare with element n/2
is 17 > 10?

Searching faster with
BinarySearch

• Find if a number x exists in an array of sorted numbers.

17 106421 14 17 19 21 24

compare with element n/2
is 17 > 10?

We never have to search the blue region again.

Searching faster with
BinarySearch

• Find if a number x exists in an array of sorted numbers.

17 106421 14 17 19 21 24

We never have to search the blue region again.

Searching faster with
BinarySearch

• Find if a number x exists in an array of sorted numbers.

17 106421 14 17 19 21 24

We never have to search the blue region again.

compare with element n1/2

Searching faster with
BinarySearch

• Find if a number x exists in an array of sorted numbers.

17 106421 14 17 19 21 24

We never have to search the blue region again.

compare with element n1/2
is 14 > 19?

Searching faster with
BinarySearch

• Find if a number x exists in an array of sorted numbers.

17 106421 14 17 19 21 24

We never have to search the blue region again.

compare with element n1/2
is 14 > 19?

Searching faster with
BinarySearch

• Find if a number x exists in an array of sorted numbers.

17 106421 14 17 19 21 24

We never have to search the blue region again.

compare with element n1/2
is 14 > 19?

Searching faster with
BinarySearch

• Find if a number x exists in an array of sorted numbers.

17 106421 14 17 19 21 24

We never have to search the blue region again.

Searching faster with
BinarySearch

• Find if a number x exists in an array of sorted numbers.

17 106421 14 17 19 21 24

We never have to search the blue region again.

compare with element n2/2

Searching faster with
BinarySearch

• Find if a number x exists in an array of sorted numbers.

17 106421 14 17 19 21 24

We never have to search the blue region again.

compare with element n2/2
is 14 > 17?

Searching faster with
BinarySearch

• Find if a number x exists in an array of sorted numbers.

17 106421 14 17 19 21 24

We never have to search the blue region again.

compare with element n2/2
is 14 > 17?

Searching faster with
BinarySearch

• Find if a number x exists in an array of sorted numbers.

17 106421 14 17 19 21 24

We never have to search the blue region again.

Searching faster with
BinarySearch

• Find if a number x exists in an array of sorted numbers.

17 106421 14 17 19 21 24

We never have to search the blue region again.

Searching faster with
BinarySearch

Searching faster with
BinarySearch

• How to implement BinarySearch?

Searching faster with
BinarySearch

• How to implement BinarySearch?

• We compare with the middle element, which tells us in which
half we might find x.

Searching faster with
BinarySearch

• How to implement BinarySearch?

• We compare with the middle element, which tells us in which
half we might find x.

• If only we had an algorithm for solving the problem on that half.

Searching faster with
BinarySearch

• How to implement BinarySearch?

• We compare with the middle element, which tells us in which
half we might find x.

• If only we had an algorithm for solving the problem on that half.

• Do we know of any such good algorithms?

Searching faster with
BinarySearch

• How to implement BinarySearch?

• We compare with the middle element, which tells us in which
half we might find x.

• If only we had an algorithm for solving the problem on that half.

• Do we know of any such good algorithms?

• BinarySearch is such an algorithm! Just run it on half of the array.

Searching faster with
BinarySearch

• How to implement BinarySearch?

• We compare with the middle element, which tells us in which
half we might find x.

• If only we had an algorithm for solving the problem on that half.

• Do we know of any such good algorithms?

• BinarySearch is such an algorithm! Just run it on half of the array.

• We stop running when we reach an array of length 1, which
we can trivially check for x.

BinarySearch pseudocode
• Procedure BinarySearch(x, i, j):

• If i=j then

• If x = A[i], return yes

• If x ≠ A[i], return no

• Else

• If x = A[(i+j)/2], return yes

• If x < A[(i+j)/2], return BinarySearch(x, i, (i+j)/2 -1)

• If x > A[(i+j)/2], return BinarySearch(x, (i+j)/2, j)

BinarySearch pseudocode
• Procedure BinarySearch(x, i, j):

• If i=j then

• If x = A[i], return yes

• If x ≠ A[i], return no

• Else

• If x = A[(i+j)/2], return yes

• If x < A[(i+j)/2], return BinarySearch(x, i, (i+j)/2 -1)

• If x > A[(i+j)/2], return BinarySearch(x, (i+j)/2, j)

Then run BinarySearch(x, 1, n)

Design principle

• Recursion: A procedure that calls itself one or multiple
times, on different inputs.

Running time of BinarySearch

Running time of BinarySearch

• All operations take constant time and there is only a
constant number of non-comparison operations.

Running time of BinarySearch

• All operations take constant time and there is only a
constant number of non-comparison operations.

• We will measure the number of comparisons.

Running time of BinarySearch

• All operations take constant time and there is only a
constant number of non-comparison operations.

• We will measure the number of comparisons.

Running time of BinarySearch

• All operations take constant time and there is only a
constant number of non-comparison operations.

• We will measure the number of comparisons.

• Every call of the procedure performs at most 4
comparisons.

BinarySearch pseudocode
• Procedure BinarySearch(x, i, j):

• If i=j then

• If x = A[i], return yes

• If x ≠ A[i], return no

• Else

• If x = A[(i+j)/2], return yes

• If x < A[(i+j)/2], return BinarySearch(x, i, (i+j)/2 -1)

• If x > A[(i+j)/2], return BinarySearch(x, (i+j)/2, j)

Running time

Running time
• The number of comparisons performed by BinarySearch is  

 
 T(n) ≤ T(n/2) + 4

Running time
• The number of comparisons performed by BinarySearch is  

 
 T(n) ≤ T(n/2) + 4

• Let’s try to calculate this: 
 
T(n) ≤ T(n/2) + 4  
 ≤ [T(n/4) + 4] + 4 = T(n/4) + 8 
 ≤ T(n/8] + 12 
 … 
 ≤ T(n/2j) + 4j 
 … 
 ≤ T(n/2log n -1) + 4(log n - 1) 
 = T[n/(n/2)] + 4(log n - 1) = T(2) + 4(log n - 1) 
 ≤ 4 + 4(log n -1) = 4 log n

How to do this formally

• By (strong) induction:

• Base case: Show that it holds for input size n=1 or
n=2.

• Induction step: Assume that it holds for all inputs of
size at most n-1 (induction hypothesis).  
 
Prove that it holds for input size n.

Running time

Running time
• The number of comparisons performed by BinarySearch is  

 
 T(n) ≤ T(n/2) + 4

Running time
• The number of comparisons performed by BinarySearch is  

 
 T(n) ≤ T(n/2) + 4

• Let’s try to prove that T(n) ≤ 4 log n

Running time
• The number of comparisons performed by BinarySearch is  

 
 T(n) ≤ T(n/2) + 4

• Let’s try to prove that T(n) ≤ 4 log n

• Base Case: n=2, straightforwardly T(2) ≤ 4 ≤ 4 log 2

Running time
• The number of comparisons performed by BinarySearch is  

 
 T(n) ≤ T(n/2) + 4

• Let’s try to prove that T(n) ≤ 4 log n

• Base Case: n=2, straightforwardly T(2) ≤ 4 ≤ 4 log 2

• Inductive step: Assume T(n/2) ≤ 4 log (n/2)

Running time
• The number of comparisons performed by BinarySearch is  

 
 T(n) ≤ T(n/2) + 4

• Let’s try to prove that T(n) ≤ 4 log n

• Base Case: n=2, straightforwardly T(2) ≤ 4 ≤ 4 log 2

• Inductive step: Assume T(n/2) ≤ 4 log (n/2)

• It holds that T(n) ≤ T(n/2) + 4 ≤ 4log(n/2) + 4  
 ≤ 4log n - 4log2 +4 ≤ 4log n

Divide-and-Conquer

Divide-and-Conquer
• Split the input into smaller sub-instances.

Divide-and-Conquer
• Split the input into smaller sub-instances.

• Solve each sub-instance separately.

Divide-and-Conquer
• Split the input into smaller sub-instances.

• Solve each sub-instance separately.

• Combine the solutions of the sub-instances into a
solution for the problem.

Divide-and-Conquer
• Split the input into smaller sub-instances.

• Solve each sub-instance separately.

• Combine the solutions of the sub-instances into a
solution for the problem.

• Often: For each sub-instance, the algorithm calls itself to
solve it (recursion). 
 
The instances become so small that they can be solved
via a brute force algorithm.

Question

• Could we have stopped the BinarySearch procedure earlier
and used brute-force on the remaining sequence without
changing its asymptotic running time? 
 
How much earlier?

Memory requirements of
BinarySearch

• Memory used as part of the input:  
n (to store the array) + 1 (to store the number x).

• Auxiliary memory:

• The algorithm calls itself within its execution.

• Needs to maintain these executions “active” in memory.

• How many executions do we have?

• O(log n).

Tree structure
4

2 6

31 5 7

1 2 3 4 5 6 7 8

Search for number 5

height = 3

8 leaves

We have to store the path from the root to the leaf.

BinarySearch vs LinearSearch
BinarySearch LinearSearch

Running time: O(log n)

Memory: O(log n)

Running time: O(n)

Memory: O(1)

Which one we choose depends on the application.

Finding majority in an array

• Given an array of n numbers, a majority element is one
that appears more than n/2 times in the array.

• (Ignoring rounding issues, otherwise ceil(n/2) times).

• Question: Given such an array, find a majority element if
it exists, or return that it doesn’t.

Majority pseudocode
• Algorithm Majority(A[1,…,n])

• If |A| = 0 output no, if |A| = 1 output
A[i].

• (Assume n = |A| is even).

• Initialise array B of size |A|/2.

• Set j=0

• For i = 1 to n/2, do

• if A[2i-1] = A[2i] then

• j=j+1

• B[j] = A[2i]

• Majority(B[1,…,j])

• If B[1,…,j] returns a value x

• Iterate through the array A and count
the number of occurrences of x.

• if these are more at least n/2, output
x.

• else, output no.

Majority Example

10710101 10 6 6 10 10

Majority Example

10710101 10 6 6 10 10

Majority Example

10710101 10 6 6 10 10

Majority Example

10710101 10 6 6 10 10

Majority Example

10710101 10 6 6 10 10

Majority Example

10710101 10 6 6 10 10

Majority Example

10710101 10 6 6 10 10

Majority Example

10710101 10 6 6 10 10

Majority Example

10710101 10 6 6 10 10

Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7

Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7

Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7

Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7

i=3

A[5]=10

A[6]=10

Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7

i=3

A[5]=10

A[6]=10

Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7

i=3

A[5]=10

A[6]=10

Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7

i=3

A[5]=10

A[6]=10

10

Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7

i=3

A[5]=10

A[6]=10

10

i=4

A[7]=6

A[8]=6

Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7

i=3

A[5]=10

A[6]=10

10

i=4

A[7]=6

A[8]=6

Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7

i=3

A[5]=10

A[6]=10

10

i=4

A[7]=6

A[8]=6

Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7

i=3

A[5]=10

A[6]=10

10

i=4

A[7]=6

A[8]=6

6

Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7

i=3

A[5]=10

A[6]=10

10

i=4

A[7]=6

A[8]=6

i=5

A[9]=10

A[10]=106

Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7

i=3

A[5]=10

A[6]=10

10

i=4

A[7]=6

A[8]=6

i=5

A[9]=10

A[10]=106

Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7

i=3

A[5]=10

A[6]=10

10

i=4

A[7]=6

A[8]=6

i=5

A[9]=10

A[10]=106

Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7

i=3

A[5]=10

A[6]=10

10

i=4

A[7]=6

A[8]=6

i=5

A[9]=10

A[10]=106 10

Majority Example

10710101 10 6 6 10 10

10 6 10

Majority Example

10710101 10 6 6 10 10

10 6 10

Majority Example
10 6 10

Majority Example
10 6 10

Majority Example
10 6 10

Majority Example
10 6 10

Majority pseudocode
• Algorithm Majority(A[1,…,n])

• If |A| = 0 output no, if |A| = 1 output A[i].

• Check if A[n] is a majority

• Count the number of occurrences.

• Discard it if it is not.

• Initialise array B of size |A|/2.

• Set j=0

• For i = 1 to n/2, do

• if A[2i-1] = A[2i] then

• j=j+1

• B[j] = A[2i]

• Majority(B[1,…,j])

• If B[1,…,j] returns a value x

• Iterate through the array A and count
the number of occurrences of x.

• if these are more at least n/2, output
x.

• else, output no.

Majority Example
10 6 10

Majority Example
10 6 10

Majority Example
10 6 10

Majority Example
10 6 10

The function returns 10.

Majority Example

10710101 10 6 6 10 10

The function returns 10.

Majority Example

10710101 10 6 6 10 10

The function returns 10.

Majority Example

10710101 10 6 6 10 10

The function returns 10. 10 appears 6 times in the array.

Majority element!

Correctness

Correctness
Lemma: If x is a majority element in A, then x is a majority element in B.

Correctness
Lemma: If x is a majority element in A, then x is a majority element in B.

Proof by induction:

Correctness
Lemma: If x is a majority element in A, then x is a majority element in B.

Proof by induction:

Base case: Majority(B) works correctly for array B of size 1.

Correctness
Lemma: If x is a majority element in A, then x is a majority element in B.

Proof by induction:

Base case: Majority(B) works correctly for array B of size 1.

Inductive step: Assume that Majority(B) works correctly for array B of size
smaller than |A| (inductive hypothesis).

Correctness
Lemma: If x is a majority element in A, then x is a majority element in B.

Proof by induction:

Base case: Majority(B) works correctly for array B of size 1.

Inductive step: Assume that Majority(B) works correctly for array B of size
smaller than |A| (inductive hypothesis).

Case 1 (There is a majority element in A): Then by the Lemma, it is also a
majority element in B. Majority(B) will output it, by the inductive hypothesis and
the last step of Majority(A) will output it.

Correctness
Lemma: If x is a majority element in A, then x is a majority element in B.

Proof by induction:

Base case: Majority(B) works correctly for array B of size 1.

Inductive step: Assume that Majority(B) works correctly for array B of size
smaller than |A| (inductive hypothesis).

Case 1 (There is a majority element in A): Then by the Lemma, it is also a
majority element in B. Majority(B) will output it, by the inductive hypothesis and
the last step of Majority(A) will output it.

Case 2 (There is not a majority element in A): Then the last step of
Majority(A) will reject any candidate majority elements returned from Majority(B).

Proof by contradiction

Proof by contradiction

• We want to prove that statement S is true.

• We assume that the statement is not true.

• We reach a conclusion which cannot possibly be true.

Proof of the lemma

Proof of the lemma
• Assumption: Suppose to the contrary, that x is a majority element in A but not a majority

element in B.

Proof of the lemma
• Assumption: Suppose to the contrary, that x is a majority element in A but not a majority

element in B.

• Let m be the number of occurrences of x in A.

Proof of the lemma
• Assumption: Suppose to the contrary, that x is a majority element in A but not a majority

element in B.

• Let m be the number of occurrences of x in A.

• Let k be the number of occurrences of x in B.

Proof of the lemma
• Assumption: Suppose to the contrary, that x is a majority element in A but not a majority

element in B.

• Let m be the number of occurrences of x in A.

• Let k be the number of occurrences of x in B.

• By the assumption, it follows that other values appear at least k times in B.

Proof of the lemma
• Assumption: Suppose to the contrary, that x is a majority element in A but not a majority

element in B.

• Let m be the number of occurrences of x in A.

• Let k be the number of occurrences of x in B.

• By the assumption, it follows that other values appear at least k times in B.

• This means that other values appear in A:

Proof of the lemma
• Assumption: Suppose to the contrary, that x is a majority element in A but not a majority

element in B.

• Let m be the number of occurrences of x in A.

• Let k be the number of occurrences of x in B.

• By the assumption, it follows that other values appear at least k times in B.

• This means that other values appear in A:

• at least 2k times from the pairs that are represented in B by a value different than x plus

Proof of the lemma
• Assumption: Suppose to the contrary, that x is a majority element in A but not a majority

element in B.

• Let m be the number of occurrences of x in A.

• Let k be the number of occurrences of x in B.

• By the assumption, it follows that other values appear at least k times in B.

• This means that other values appear in A:

• at least 2k times from the pairs that are represented in B by a value different than x plus

• m-2k times, since each occurrence of x in A that is not paired with another x is paired with
some other value (since there are 2k pairs xx, there are m-2k other occurrences of x in A).

Proof of the lemma
• Assumption: Suppose to the contrary, that x is a majority element in A but not a majority

element in B.

• Let m be the number of occurrences of x in A.

• Let k be the number of occurrences of x in B.

• By the assumption, it follows that other values appear at least k times in B.

• This means that other values appear in A:

• at least 2k times from the pairs that are represented in B by a value different than x plus

• m-2k times, since each occurrence of x in A that is not paired with another x is paired with
some other value (since there are 2k pairs xx, there are m-2k other occurrences of x in A).

• In total, this gives 2k+(m-k) = m occurrences, which contradicts the fact that x is a majority in
A. Contradiction!

Running time of Majority

Majority pseudocode
• Algorithm Majority(A[1,…,n])

• If |A| = 0 output no, if |A| = 1 output A[i].

• Check if A[n] is a majority

• Count the number of occurrences.

• Discard it if it is not.

• Initialise array B of size |A|/2.

• Set j=0

• For i = 1 to n/2, do

• if A[2i-1] = A[2i] then

• j=j+1

• B[j] = A[2i]

• Majority(B[1,…,j])

• If B[1,…,j] returns a value x

• Iterate through the array A and count
the number of occurrences of x.

• if these are more at least n/2, output
x.

• else, output no.

Running time of Majority

Running time of Majority
• Recursive formula for the running time:

Running time of Majority
• Recursive formula for the running time:

• T(n) ≤ T(n/2) + cn for some constant c

Running time of Majority
• Recursive formula for the running time:

• T(n) ≤ T(n/2) + cn for some constant c

• We will prove that T(n) ≤ 2cn

Running time of Majority
• Recursive formula for the running time:

• T(n) ≤ T(n/2) + cn for some constant c

• We will prove that T(n) ≤ 2cn

• By induction:

Running time of Majority
• Recursive formula for the running time:

• T(n) ≤ T(n/2) + cn for some constant c

• We will prove that T(n) ≤ 2cn

• By induction:

• Base case: T(1) ≤ c

Running time of Majority
• Recursive formula for the running time:

• T(n) ≤ T(n/2) + cn for some constant c

• We will prove that T(n) ≤ 2cn

• By induction:

• Base case: T(1) ≤ c

• Induction step: Assume that T(n/2) ≤ 2c(n/2) (induction
hypothesis). 
 
We have that T(n) ≤ T(n/2) + cn ≤ 2c(n/2) + cn = 2cn

