
Advanced Algorithmic Techniques  
(COMP523)

Recursion and Divide and Conquer Techniques



Recap and plan



Recap and plan
• Last lecture: 

• Examples of algorithms (searching and sorting in linear time).


• Analysis of correctness, running time and memory.


• Asymptotic notation and asymptotic complexity.



Recap and plan
• Last lecture: 

• Examples of algorithms (searching and sorting in linear time).


• Analysis of correctness, running time and memory.


• Asymptotic notation and asymptotic complexity.

• This lecture: 

• Asymptotic complexity (cont.)


• Searching in logarithmic time.


• Finding majority in an array.



Asymptotic 
Complexity



Asymptotic Notation
O(g(n)) = f(n) : there exist positive constants c and n0 such that

0  f(n)  cg(n) for all n � n0.

⌦(g(n)) = f(n) : there exist positive constants c and n0 such that

0  cg(n)  f(n) for all n � n0.

⇥(g(n)) = f(n) : there exist positive constants c1, c2 and n0 such that

0  c1g(n)  f(n)  c2g(n) for all n � n0.

o(g(n)) = f(n) : for any constant c > 0, there exists a constant

n0 > 0 such that 0  f(n) < cg(n) for all n � n0.

!(g(n)) = f(n) : for any constant c > 0, there exists a constant

n0 > 0 such that 0  cg(n) < f(n) for all n � n0
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Comparing functions
• Asymptotic comparisons satisfy several relational 

properties.


• Transitivity


• Reflexivity


• Symmetry


• Transpose Symmetry


• Sum and maximum



Transitivity

• If f(n) = Θ(g(n)) and g(n) =  Θ(h(n)), then f(n) = Θ(h(n)). 

• If f(n) = O(g(n)) and g(n) =  O(h(n)), then f(n) = O(h(n)). 

• If f(n) = Ω(g(n)) and g(n) =  Ω(h(n)), then f(n) = Ω(h(n)). 

• If f(n) = ο(g(n)) and g(n) =  ο(h(n)), then f(n) = ο(h(n)). 

• If f(n) = ω(g(n)) and g(n) =  ω(h(n)), then f(n) = ω(h(n)).



Reflexivity

• f(n) = Θ(f(n)) 

• f(n) = O(f(n)) 

• f(n) = Ω(f(n)) 

• Is it true that f(n) is ο(f(n)) and ω(f(n))?



Symmetric Relations

• Symmetry:


• f(n) = Θ(g(n)) if and only if g(n) = Θ(f(n)).


• Transpose Symmetry:


• f(n) = O(g(n)) if and only if g(n) = Ω(f(n)).


• f(n) = o(g(n)) if any only if g(n) = ω(f(n)).



Sum and maximum



Sum and maximum
• f1(n) + f2(n) + … + fk(n) = Θ(max(f1(n), f2(n) ,…, fk(n)) 

• for any constant positive integer k.



Sum and maximum
• f1(n) + f2(n) + … + fk(n) = Θ(max(f1(n), f2(n) ,…, fk(n)) 

• for any constant positive integer k.

• If k is not constant, this is not true!


• Let fj(n) = j. 

• Let k = n 

• f1(n) + f2(n) + … + fk(n) = n(n+1)/2 = Θ(n2).



Searching in 
logarithmic time



Example: Running Time of LinearSearch

• Find if a number x exists in an array of sorted numbers. 

17 106421 14 17 19 21 24
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Example: Running Time of LinearSearch

• Find if a number x exists in an array of sorted numbers. 

17 106421 14 17 19 21 24

• We read through the array until we find the number.

• It requires at least n steps in the worst case.

• Are we using all the information we have?

• We never used the fact that the array is sorted!
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Searching faster with 
BinarySearch

• How to implement BinarySearch?

• We compare with the middle element, which tells us in which 
half we might find x.

• If only we had an algorithm for solving the problem on that half.

• Do we know of any such good algorithms?

• BinarySearch is such an algorithm! Just run it on half of the array.

• We stop running when we reach an array of length 1, which 
we can trivially check for x.



BinarySearch pseudocode
• Procedure BinarySearch(x, i, j):


• If i=j then


• If x = A[i], return yes


• If x ≠ A[i], return no


• Else


• If x = A[(i+j)/2], return yes


• If x < A[(i+j)/2], return BinarySearch(x, i, (i+j)/2 -1)


• If x > A[(i+j)/2], return BinarySearch(x, (i+j)/2, j)



BinarySearch pseudocode
• Procedure BinarySearch(x, i, j):


• If i=j then


• If x = A[i], return yes


• If x ≠ A[i], return no


• Else


• If x = A[(i+j)/2], return yes


• If x < A[(i+j)/2], return BinarySearch(x, i, (i+j)/2 -1)


• If x > A[(i+j)/2], return BinarySearch(x, (i+j)/2, j)

Then run BinarySearch(x, 1, n)



Design principle

• Recursion: A procedure that calls itself one or multiple 
times, on different inputs.



Running time of BinarySearch
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Running time of BinarySearch

• All operations take constant time and there is only a 
constant number of non-comparison operations.

• We will measure the number of comparisons.

• Every call of the procedure performs at most 4 
comparisons.



BinarySearch pseudocode
• Procedure BinarySearch(x, i, j):


• If i=j then


• If x = A[i], return yes


• If x ≠ A[i], return no


• Else


• If x = A[(i+j)/2], return yes


• If x < A[(i+j)/2], return BinarySearch(x, i, (i+j)/2 -1)


• If x > A[(i+j)/2], return BinarySearch(x, (i+j)/2, j)
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Running time
• The number of comparisons performed by BinarySearch is  

 
                            T(n) ≤ T(n/2) + 4

• Let’s try to calculate this: 
 
T(n) ≤ T(n/2) + 4  
       ≤ [T(n/4) + 4] + 4 = T(n/4) + 8 
       ≤ T(n/8] + 12 
       … 
       ≤ T(n/2j) + 4j 
       … 
       ≤ T(n/2log n -1) + 4(log n - 1) 
       = T[n/(n/2)] + 4(log n - 1) = T(2) + 4(log n - 1) 
       ≤ 4 + 4(log n -1) = 4 log n



How to do this formally

• By (strong) induction: 

• Base case: Show that it holds for input size n=1 or 
n=2.


• Induction step: Assume that it holds for all inputs of 
size at most n-1 (induction hypothesis).  
 
Prove that it holds for input size n.
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Running time
• The number of comparisons performed by BinarySearch is  

 
                            T(n) ≤ T(n/2) + 4

• Let’s try to prove that T(n) ≤ 4 log n 

• Base Case: n=2, straightforwardly T(2) ≤ 4 ≤ 4 log 2

• Inductive step: Assume T(n/2) ≤ 4 log (n/2)

• It holds that T(n) ≤ T(n/2) + 4 ≤ 4log(n/2) + 4  
                           ≤ 4log n - 4log2 +4 ≤ 4log n
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Divide-and-Conquer
• Split the input into smaller sub-instances.

• Solve each sub-instance separately.

• Combine the solutions of the sub-instances into a 
solution for the problem.

• Often: For each sub-instance, the algorithm calls itself to 
solve it (recursion). 
 
The instances become so small that they can be solved 
via a brute force algorithm.



Question

• Could we have stopped the BinarySearch procedure earlier 
and used brute-force on the remaining sequence without 
changing its asymptotic running time? 
 
How much earlier?



Memory requirements of 
BinarySearch

• Memory used as part of the input:  
n (to store the array) + 1 (to store the number x).


• Auxiliary memory:


• The algorithm calls itself within its execution.


• Needs to maintain these executions “active” in memory.


• How many executions do we have?


• O(log n).



Tree structure
4

2 6

31 5 7

1 2 3 4 5 6 7 8

Search for number 5

height = 3

8 leaves

We have to store the path from the root to the leaf.



BinarySearch vs LinearSearch
BinarySearch LinearSearch

Running time: O(log n)

Memory: O(log n)

Running time: O(n)

Memory: O(1)

Which one we choose depends on the application.



Finding majority in an array

• Given an array of n numbers, a majority element is one 
that appears more than n/2 times in the array.


• (Ignoring rounding issues, otherwise ceil(n/2) times). 


• Question: Given such an array, find a majority element if 
it exists, or return that it doesn’t.



Majority pseudocode
• Algorithm Majority(A[1,…,n])


• If |A| = 0 output no, if |A| = 1 output 
A[i].


• (Assume n = |A| is even). 


• Initialise array B of size |A|/2.


• Set j=0


• For i = 1 to n/2, do


• if A[2i-1] = A[2i] then


• j=j+1


• B[j] = A[2i]

• Majority(B[1,…,j])


• If B[1,…,j] returns a value x


• Iterate through the array A and count 
the number of occurrences of x.


• if these are more at least n/2, output 
x.


• else, output no.




Majority Example

10710101 10 6 6 10 10



Majority Example

10710101 10 6 6 10 10



Majority Example

10710101 10 6 6 10 10



Majority Example

10710101 10 6 6 10 10



Majority Example

10710101 10 6 6 10 10



Majority Example

10710101 10 6 6 10 10



Majority Example

10710101 10 6 6 10 10



Majority Example

10710101 10 6 6 10 10



Majority Example

10710101 10 6 6 10 10



Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10



Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10



Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10



Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7



Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7



Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7



Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7

i=3

A[5]=10

A[6]=10



Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7

i=3

A[5]=10

A[6]=10



Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7

i=3

A[5]=10

A[6]=10



Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7

i=3

A[5]=10

A[6]=10

10



Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7

i=3

A[5]=10

A[6]=10

10

i=4

A[7]=6

A[8]=6



Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7

i=3

A[5]=10

A[6]=10

10

i=4

A[7]=6

A[8]=6



Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7

i=3

A[5]=10

A[6]=10

10

i=4

A[7]=6

A[8]=6



Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7

i=3

A[5]=10

A[6]=10

10

i=4

A[7]=6

A[8]=6

6



Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7

i=3

A[5]=10

A[6]=10

10

i=4

A[7]=6

A[8]=6

i=5

A[9]=10


A[10]=106



Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7

i=3

A[5]=10

A[6]=10

10

i=4

A[7]=6

A[8]=6

i=5

A[9]=10


A[10]=106



Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7

i=3

A[5]=10

A[6]=10

10

i=4

A[7]=6

A[8]=6

i=5

A[9]=10


A[10]=106



Majority Example

10710101 10 6 6 10 10

i=1

A[1]=1

A[2]=10

i=2

A[3]=10

A[4]=7

i=3

A[5]=10

A[6]=10

10

i=4

A[7]=6

A[8]=6

i=5

A[9]=10


A[10]=106 10
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Majority pseudocode
• Algorithm Majority(A[1,…,n])


• If |A| = 0 output no, if |A| = 1 output A[i].


• Check if A[n] is a majority 

• Count the number of occurrences. 

• Discard it if it is not. 

• Initialise array B of size |A|/2.


• Set j=0


• For i = 1 to n/2, do


• if A[2i-1] = A[2i] then


• j=j+1


• B[j] = A[2i]

• Majority(B[1,…,j])


• If B[1,…,j] returns a value x


• Iterate through the array A and count 
the number of occurrences of x.


• if these are more at least n/2, output 
x.


• else, output no.
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Majority Example

10710101 10 6 6 10 10

The function returns 10. 10 appears 6 times in the array.

Majority element!
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Correctness
Lemma: If x is a majority element in A, then x is a majority element in B.

Proof by induction:

Base case: Majority(B) works correctly for array B of size 1.

Inductive step: Assume that Majority(B) works correctly for array B of size  
smaller than |A| (inductive hypothesis).

Case 1 (There is a majority element in A): Then by the Lemma, it is also a 
majority element in B. Majority(B) will output it, by the inductive hypothesis and 
the last step of Majority(A) will output it.

Case 2 (There is not a majority element in A): Then the last step of 
Majority(A)  will reject any candidate majority elements returned from Majority(B).
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Proof by contradiction

• We want to prove that statement S is true.


• We assume that the statement is not true.


• We reach a conclusion which cannot possibly be true.
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Proof of the lemma
• Assumption: Suppose to the contrary, that x is a majority element in A but not a majority 

element in B.

• Let m be the number of occurrences of x in A.

• Let k be the number of occurrences of x in B.

• By the assumption, it follows that other values appear at least k times in B. 

• This means that other values appear in A:

• at least 2k times from the pairs that are represented in B by a value different than x plus

• m-2k times, since each occurrence of x in A that is not paired with another x is paired with 
some other value (since there are 2k pairs xx, there are m-2k other occurrences of x in A).

• In total, this gives 2k+(m-k) = m occurrences, which contradicts the fact that x is a majority in 
A.   Contradiction!
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Majority pseudocode
• Algorithm Majority(A[1,…,n])


• If |A| = 0 output no, if |A| = 1 output A[i].


• Check if A[n] is a majority


• Count the number of occurrences.


• Discard it if it is not.


• Initialise array B of size |A|/2.


• Set j=0


• For i = 1 to n/2, do


• if A[2i-1] = A[2i] then


• j=j+1


• B[j] = A[2i]

• Majority(B[1,…,j])


• If B[1,…,j] returns a value x


• Iterate through the array A and count 
the number of occurrences of x.


• if these are more at least n/2, output 
x.


• else, output no.
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Running time of Majority
• Recursive formula for the running time:

• T(n) ≤ T(n/2) + cn for some constant c

• We will prove that T(n) ≤ 2cn

• By induction:

• Base case: T(1) ≤ c

• Induction step: Assume that T(n/2) ≤ 2c(n/2) (induction 
hypothesis). 
 
We have that T(n) ≤ T(n/2) + cn ≤ 2c(n/2) + cn = 2cn


