
Advanced Algorithmic Techniques  
(COMP523)

Approximation Algorithms



Recap and plan
• Previously on COMP523: 

• We designed polynomial-time algorithms for several problems.


• We saw that some problems do not have polynomial time algorithms  
(NP-hard problems).


• Next 4 lectures: 

• Approximation algorithms.


• This lecture: 

• Greedy approximation algorithms.


• Load balancing on identical machines.
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Why approximation algorithms?

• For some problems (e.g., knapsack), we do not expect to 
find polynomial time algorithms.

• How should we approach these problems?

• We can design approximation algorithms, which

• Run in polynomial time.

• Compute a solution that is “close” to the optimal.



Challenges



Challenges

• What does “close” to the optimal mean? How do we 
measure that?



Challenges

• What does “close” to the optimal mean? How do we 
measure that?

• How do we make such an argument, if we cannot really 
find the optimal?



Challenges

• What does “close” to the optimal mean? How do we 
measure that?

• How do we make such an argument, if we cannot really 
find the optimal?

• How do we know if our algorithm is the best possible? 
Can we get “closer” to the optimal?



Methods for approximation 
algorithms

• Greedy algorithms.


• Pricing method (also known as the Primal-Dual method).


• Linear Programming and Rounding.


• Dynamic Programming on rounded inputs.



Application: Load Balancing
• We have a set of m identical machines M1, … , Mm


• We have a set of n jobs, with job j having processing time tj. 


• We want to assign every job to some machine.


• Let A(i) be the set of jobs assigned to machine i.


• The load of machine i is


• The goal is to minimise the makespan, i.e., 
 
   T = maxi Ti 

Ti = ∑
j∈A(i)

tj
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Load Balancing

• The load balancing problem on identical machines is NP-hard.


• We will design greedy approximation algorithms for it.



Greedy algorithm
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Greedy algorithm
• Pick any job.


• Assign it to the machine with the smallest load so far.


• Remove it from the pile of jobs.

Algorithm Greedy-Balance 
 
Start with no jobs assigned 
Set Ti = 0 and A(i) = ∅ for all machines Mi 

For j = 1 , …, n 
       Let Mi be the machine that achieves the minimum mink Tk 
       Assign job j to machine Mi 
       Set A(i)  = A(i) U { j } 
       Set Ti = Ti + tj 
EndFor
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6

jobs M1 M2 M3

makespan = 8
A makespan of 7 is possible



Notation

• Let T be the makespan achieved by Greedy-Balance.


• Let T* be the optimal makespan.
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Arguing about the optimal
• Challenge: We don’t know T*! How are we supposed to argue about it?

• We want to prove that T is not far from T*.

• We will show that T is not far from something which is smaller than T*.

• Then it is certainly not far from T*.

• Fundamental technique in approximation algorithms analysis:

• Bounding the optimal from below (for minimisation problems) and 
from above (for maximisation problems).
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Arguing about the optimal

optimal 
makespan 

T*

algorithm 
makespan 

T

lower bound 
on T*

We will bound this

This certainly  
bounds this
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Lower bounding the optimal

• What is a bound that we can use for the optimal?

• Consider the total processing time of all the jobs (the sum 
of the processing times tj).

• One of the m machines must be allocated at least an 1/m 
fraction of the total work.

• We have that: T * ≥
1
m

n

∑
j=1

tj



Is this a good bound?



Is this a good bound?

Taking the average sum of processing 
times assumes that this job can be split.



Is this a good bound?

Taking the average sum of processing 
times assumes that this job can be split.

In reality, OPT will assign this job to some

machine and the makespan will be its 

processing time.



Is this a good bound?

Taking the average sum of processing 
times assumes that this job can be split.

In reality, OPT will assign this job to some

machine and the makespan will be its 

processing time.

Our bound assumes that OPT is 
approximately m times better 

than it is.



Is this a good bound?

Taking the average sum of processing 
times assumes that this job can be split.

In reality, OPT will assign this job to some

machine and the makespan will be its 

processing time.

Our bound assumes that OPT is 
approximately m times better 

than it is.

The bound can be good in situation where 
jobs have fairly similar processing times.
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Lower bounding the optimal

• Can we think of another bound?

• Every job must be scheduled to some machine. 

• The makespan is certainly at least the largest processing 
time tj of any job.

• We have that: 
T * ≥ max

j
tj
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Is this a good bound?

In this example, this is a good bound 
as the maximum processing time is  

very large.

In other cases, it might not be 
such a good bound.

But we will actually use both bounds!



Lower bounding the optimal

• Two lower bounds:

T * ≥ max
j

tjT * ≥
1
m

n

∑
j=1

tj



The performance of Greedy-Balance

• Theorem: Algorithm Greedy-Balance produces an assignment 
of jobs to machines with makespan T ≤ 2T*.
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• Consider a job j that was assigned to machine Mi by 
Greedy-Balance.

• Consider the time when this assignment took place.

• The load of machine j was Ti - tj.

• This was the smallest load among all machines (why?)

• Every other machine has load at least Ti - tj.



The proof
• Every other machine has load at least Ti - tj.



The proof
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• Summing up over all machines we get:
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k
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1
m ∑

k

Tk
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The proof

• Consider a job j that was assigned to machine Mi by 
Greedy-Balance.


• Consider the time when this assignment took place.


• The load of machine j was Ti - tj.


• This was before we added the job.


• After we add the job, the load is Ti - tj + tj.
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The proof

Ti − tj ≤ T* (first lower bound)

tj ≤ T* (second lower bound)

Ti ≤ 2T*

T ≤ 2T* (since j was the final job)
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“Tight” examples
• We have shown that the makespan of the solution of Greedy-

Balance is at most a 2 factor away from the optimal makespan. 

• Can we show that it is also at least a 2 factor away in the 
worst case?

• In other words, is there an example (an instance) of the 
load balancing problem for which the algorithm actually 
produces a makespan which is twice as much as the 
optimal makespan?

• In other words, is our analysis of the algorithm tight?
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Tight example for Greedy-Balance
1

jobs M1 M2 Mm

1

1
…

m(m-1) jobs

m 1 job

…

Greedy-Balance assigns m-1 “small” jobs to 
each machine and then finally assigns the 
“large” job to one machine. 
 
Makespan:  2m-1

The optimal assigns the “large” job to one  
machine, and evenly spread the “small” jobs 
over the remaining m-1 machines.  
 
Makespan:  m



Approximation Ratio
• Consider a minimisation problem P and an objective obj.


• Here: Load Balancing on identical machines and makespan.


• Consider an approximation algorithm A.


• Consider an input x to the problem P.


• Let obj(A(x)) be the value of the objective from the solution 
of A on x. 


• Let opt(x) be the minimum possible value of the objective 
on x.



Approximation ratio

• The approximation ratio of A is defined as 
 
                   maxx  obj(A(x)) / opt(x)


• i.e., the worst case ratio of the objective achieved by 
the algorithm over the optimal value of the objective, 
over all possible inputs to the problem.
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Approximation ratio

All inputs to the problem P

Input …

Algorithm A Optimal

compute obj on 
Input …

compute obj on 
Input …

Ratio on Input A
Ratio on Input B

…Take the maximum



Approximation Ratio

• That means that:


• In order to prove an upper bound on the approximation 
ratio, we have to somehow argue about all inputs to the 
problem. 


• In order to prove a lower bound on the approximation 
ratio, we have to argue about one input to the problem.



Approximation ratio
• For maximisation problems, we define 

 
                   maxx  opt(x) / obj(A(x))


• i.e., the worst case ratio of the optimal value of the 
objective over the value of the objective achieved by the 
algorithm, over all possible inputs to the problem.


• Convention, to have approximation ratios always be ≥ 1. 
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Challenges

• What does “close” to the optimal mean? How do we 
measure that? Approximation ratio.


• How do we make such an argument, if we cannot really 
find the optimal? We lower or upper bound the optimal.


• How do we know if our algorithm is the best possible? 
Can we get “closer” to the optimal?
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A better greedy algorithm 
for load balancing

• Greedy-Balanced was:


• Pick any job.


• Assign it to the machine with the smallest load so far.


• Remove it from the pile of jobs.

We did not really take into account the order  
in which we consider the jobs.



A better greedy algorithm 
for load balancing

• Sorted-Balance:


• Sort the jobs in non-increasing order of processing times.


• Pick a job according to this order.


• Assign it to the machine with the smallest load so far.


• Remove it from the pile of jobs.
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Intuition

• Assume that we have at most m jobs.

• What is the approximation ratio of Sorted-Balance?

• Each job goes to a different machine.

• Sorted-Balance produces an optimal allocation.

• The same was actually true for Greedy-Balance. 
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A third lower bound for opt
• Assume that we have more than m jobs.

• Then, it holds that T* ≤ 2tm+1

• Consider the first m+1 jobs in sorted order.

• Each one of them takes at least tm+1 time.

• Since there are m machines, there must be one 
machine that receives at least two of these jobs. 

• The load on this machine will be at least 2tm+1.
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Lower bounding the optimal

• Three lower bounds:

T * ≥ max
j

tjT * ≥
1
m

n

∑
j=1

tj T * ≥ 2tm+1



The performance of Sorted-Balance

• Theorem: Algorithm Sorted-Balance produces an assignment 
of jobs to machines with makespan T ≤ (3/2)T*.



The proof
• Let Mi be the machine with the maximum load according 

to the assignment of Sorted-Balance.


• If Mi  is assigned a single job, the outcome is optimal.


• Assume Mi that is assigned at least two jobs and let j be 
the last job assigned to the machine.


• Note that j ≥ m+1


• Therefore, tj ≤ tm+1 ≤ (1/2)T*



The proof  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• Every other machine has load at least Ti - tj.


• Summing up over all machines we get:

∑
k
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• Consider a job j that was assigned to machine Mi by 
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The proof 
(new argument)

• Consider a job j that was assigned to machine Mi by 
Greedy-Balance.


• Consider the time when this assignment took place.


• The load of machine j was Ti - tj.


• This was before we added the job.


• After we add the final job, the load is Ti - tj + tj.


• We established that tj ≤ tm+1 ≤ (1/2)T*
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Ti − tj ≤ T* (first lower bound)

tj ≤
1
2

T* (third lower bound)

Ti ≤
3
2

T*

T ≤
3
2

T*



Challenges

• What does “close” to the optimal mean? How do we 
measure that? Approximation ratio.


• How do we make such an argument, if we cannot really 
find the optimal? We lower or upper bound the optimal.


• How do we know if our algorithm is the best possible? 
Can we get “closer” to the optimal?
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As a matter of fact

• The Sorted-Balance algorithm actually gives a 4/3 
approximation ratio, with a better analysis.

• For the load balancing problem on identical machines, 
there is a Polynomial Time Approximation Scheme 
(PTAS).

• An algorithm which, given an input and a constant 
parameter ε, runs in polynomial time and produces an 
outcome which is (1+ε) far from the optimal.
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Inapproximability
• Generally:

• A PTAS (or an FPTAS, more about that later) is the best 
approximation we can hope for, for an NP-hard 
problem.

• Sometimes it is impossible to get that close.

• Inapproximability α of problem P: 

• There is no polynomial time algorithm that achieves 
an approximation ratio better than α.


