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Recap and plan
• Previously lecture: 

• Approximation algorithms: approach and challenges.


• Greedy method 


• Application: Load Balancing on identical machines.


• Approximation Ratio.


• This lecture: 

• The Pricing Method.


• Application: Vertex Cover.



Methods for approximation 
algorithms

• Greedy algorithms.


• Pricing method (also known as the Primal-Dual method).


• Linear Programming and Rounding.


• Dynamic Programming on rounded inputs.



Vertex Cover

• Definition: A vertex cover C of a graph G=(V, E) is a subset 
of the nodes such that every edge e in the graph has at 
least one endpoint in C.


• Definition: A minimum vertex cover is a vertex cover of 
the smallest possible size.


• Vertex Cover 
Input: A graph G=(V, E) 
Output: A minimum vertex cover.
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A minimum vertex cover
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Vertex Cover
• We proved that Vertex Cover is NP-complete.

• To be more precise: 

• We proved that the decision version is NP-complete.

• This implies that the optimisation version is NP-hard.

• This means that we can not hope to solve it optimally in 
polynomial time.

• Can we solve it approximately?



Vertex Cover
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Vertex Cover
• Definition: A vertex cover C of a graph G=(V, E) is a subset of the nodes 

such that every edge e in the graph has at least one endpoint in C.

• Each vertex i has a weight wi.

• Definition: A minimum vertex cover is a vertex cover of the smallest 
possible total weight.

• Vertex Cover 
Input: A graph G=(V, E) 
Output: A minimum (weight) vertex cover.

• If we can solve the weighted version of vertex cover, we can solve the 
unweighted version (why?)



Vertex Cover

• We will design a polynomial time approximation algorithm 
for the weighted vertex cover problem.
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The Pricing Method
• Consider a vertex cover S.


• Every vertex i has a cost, 
which is equal to wi.


• If i is included in S, the 
edges that “use it” have to 
pay for (some of) the cost.


• Each edge e in the graph 
pays a price pe.



Fair Pricing

• Given a vertex i, we never ask the edges that “use it” to 
pay more than the cost of the vertex.

∑
e=(i,j)

pe ≤ wi

wi

wj



Fair Pricing Lemma
• Lemma: Let S be any vertex cover and let pe be any non-

negative fair prices. Then, it holds that:

∑
e∈E

pe ≤ w(S)
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• By fairness, we have that:
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• Let’s look at this expression.
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Proof of the lemma
• By fairness, we have that:

• Adding up over all nodes, we have: 
 

• Let’s look at this expression.

• Since S is a vertex cover, each edge contributes at least 
on term pe to the expression.

• From this, we get that:

∑
e=(i,j)

pe ≤ wi

∑
i∈S

∑
e=(i,j)

pe ≤ ∑
i∈S

wi = w(S)

∑
e∈E

pe ≤ ∑
i∈S

∑
e=(i,j)

pe



The algorithm

• Terminology: We will say that node i is “tight” if


Vertex-Cover-Approx(G,w) 
 
    Set pe = 0 for all e in E. 
    While there is an edge e=(i, j) such that neither i nor j is tight 
         Select such an edge e 
         Increase pe without violating fairness 
    EndWhile 
    Let S be the set of all tight nodes 
    Return S.

∑
e=(i,j)

pe = wi
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Set pe = 0 for all e in E.

While there is an edge e=(i, j) such that neither i nor j is tight 
         Select such an edge e
 Increase pe without violating fairness
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Example

3 35

4

0 1

0

Set pe = 0 for all e in E.

While there is an edge e=(i, j) such that neither i nor j is tight 
         Select such an edge e
 Increase pe without violating fairness

3

3

4

2 3

Let S be the set of all tight nodes 
    Return S



Intuition



Intuition
• Consider any node i in the vertex cover S.



Intuition
• Consider any node i in the vertex cover S.

• Since i is tight, its cost is exactly covered by the edges 
that are incident to it. 



Intuition
• Consider any node i in the vertex cover S.

• Since i is tight, its cost is exactly covered by the edges 
that are incident to it. 

• However, an edge (i, j) might be incident to two nodes i 
and j that are in the vertex cover.



Intuition
• Consider any node i in the vertex cover S.

• Since i is tight, its cost is exactly covered by the edges 
that are incident to it. 

• However, an edge (i, j) might be incident to two nodes i 
and j that are in the vertex cover.

• We will overcharge this edge.



Intuition
• Consider any node i in the vertex cover S.

• Since i is tight, its cost is exactly covered by the edges 
that are incident to it. 

• However, an edge (i, j) might be incident to two nodes i 
and j that are in the vertex cover.

• We will overcharge this edge.

• But we only overcharge it by a factor of 2.



Second lemma
• Lemma: The set S and the prices p returned by the Vertex-

Cover-Approx algorithm satisfy the following inequality:

w(S) ≤ 2∑
e∈E

pe
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• Consider a node i in S. 

• This means that i is tight.

• This means that 

• Summing up over all nodes i in S:  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Proof of the second lemma
• Consider a node i in S. 

• This means that i is tight.

• This means that 

• Summing up over all nodes i in S:  
 

• An edge e=(i, j) can be included at most twice in this.

• We get that 

∑
e=(i,j)

pe = wi

w(S) = ∑
i∈S

= ∑
i∈S

∑
e=(i,j)

pe

w(S) = ∑
i∈S

∑
e=(i,j)

pe ≤ 2∑
e∈E

pe
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Correctness
• First, S is a vertex cover.

• Suppose that it is not.

• Then there is an edge e=(i, j) such that i and j are not in S.

• This means that neither i or j are tight.

• But then why did the algorithm terminate?

ji

“While there is an edge e=(i, j) such that neither i nor j is tight 
         Select such an edge e”



Approximation Ratio

• Let S* be the minimum weight vertex cover.


• Recall that S is the vertex cover returned by the algorithm.



From the two lemmas

w(S) ≤ 2∑
e∈E

pe∑
e∈E

pe ≤ w(S)

This holds for any vertex

cover S, also for S*



Approximation Ratio

• Let S* be the minimum weight vertex cover.

• Recall that S is the vertex cover returned by the algorithm.



Approximation Ratio

• Let S* be the minimum weight vertex cover.

• Recall that S is the vertex cover returned by the algorithm.

• We have: 
 
  ∑

e∈E

pe ≤ w(S*) w(S) ≤ 2∑
e∈E

pe



Approximation Ratio

• Let S* be the minimum weight vertex cover.

• Recall that S is the vertex cover returned by the algorithm.

• We have: 
 
 

• Which clearly implies:

∑
e∈E

pe ≤ w(S*) w(S) ≤ 2∑
e∈E

pe

w(S) ≤ 2W(S*)



Vertex Cover as an ILP
Minimise ∑

i∈V

xiwi

subject to xi + xj ≥ 1, for all (i, j) ∈ E

xi ≥ 0, for all i ∈ V

xi ∈ {0, 1}, for all i ∈ V



Vertex Cover as an ILP
Minimise ∑

i∈V

xiwi

subject to xi + xj ≥ 1, for all (i, j) ∈ E

xi ≥ 0, for all i ∈ V

xi ∈ {0, 1}, for all i ∈ V

For each edge, one of the 
endpoints has to be in 

the vertex cover.
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Vertex Cover LP-relaxation
Minimise ∑

i∈V

xiwi

subject to xi + xj ≥ 1, for all (i, j) ∈ E

xi ≥ 0, for all i ∈ VPossible fractional values, e.g., 
xi = 0.3, xj =0.7



The Dual
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The Dual
Minimise ∑

i∈V

xiwi

subject to xi + xj ≥ 1, for all (i, j) ∈ E

xi ≥ 0, for all i ∈ V

Maximise ∑
e∈E

pe

subject to ∑
e=(i,j)

pe ≤ wi, for all i ∈ V

pe ≥ 0, for all e ∈ E

Primal

Dual

Wait a sec,

I’ve seen 

this before.



Fair Pricing

• Given a vertex i, we never ask the edges that “use it” to 
pay more than the cost of the vertex.

∑
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wi

wj
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What are we really doing?

• We are taking a variable pe of the dual of the LP-
relaxation.

• We increase the value of this variable, until some 
constraint becomes tight.

• Because constraints of the dual correspond to variables 
of the primal, there is an associated variable xi of the 
primal.

• We set the value of that variable in the primal to 1.



Primal-dual method
• We start with an infeasible integral solution x to the primal and a feasible 

fractional solution y to the dual.


• We increase the value of some yj until some constraint (that contains yj) 
becomes tight.


• We obtain a better feasible fractional solution y to the dual.


• We increase the corresponding variable xi of the primal to obtain a still 
infeasible integral solution x to the primal, which however violates fewer 
constraints.


• We end up with a feasible integral solution x to the primal, and a feasible 
fractional solution y to the dual.


• We compare the two solutions.



The Primal-dual method

ALG(dual)

ALG(primal)

fractional opt 
(dual, primal)

integral opt 
(primal)

dual (maximisation)

primal (minimisation)

approximation 
ratio

what we  
actually 
bound


