
Advanced Algorithmic Techniques
(COMP523)

Approximation Algorithms 2

Recap and plan
• Previously lecture:

• Approximation algorithms: approach and challenges.

• Greedy method

• Application: Load Balancing on identical machines.

• Approximation Ratio.

• This lecture:

• The Pricing Method.

• Application: Vertex Cover.

Methods for approximation
algorithms

• Greedy algorithms.

• Pricing method (also known as the Primal-Dual method).

• Linear Programming and Rounding.

• Dynamic Programming on rounded inputs.

Vertex Cover

• Definition: A vertex cover C of a graph G=(V, E) is a subset
of the nodes such that every edge e in the graph has at
least one endpoint in C.

• Definition: A minimum vertex cover is a vertex cover of
the smallest possible size.

• Vertex Cover 
Input: A graph G=(V, E) 
Output: A minimum vertex cover.

Example

Example

Example

Example

Example

A vertex cover

Example

Example

Example

Example

A minimum vertex cover

Vertex Cover
• We proved that Vertex Cover is NP-complete.

Vertex Cover
• We proved that Vertex Cover is NP-complete.

• To be more precise:

Vertex Cover
• We proved that Vertex Cover is NP-complete.

• To be more precise:

• We proved that the decision version is NP-complete.

Vertex Cover
• We proved that Vertex Cover is NP-complete.

• To be more precise:

• We proved that the decision version is NP-complete.

• This implies that the optimisation version is NP-hard.

Vertex Cover
• We proved that Vertex Cover is NP-complete.

• To be more precise:

• We proved that the decision version is NP-complete.

• This implies that the optimisation version is NP-hard.

• This means that we can not hope to solve it optimally in
polynomial time.

Vertex Cover
• We proved that Vertex Cover is NP-complete.

• To be more precise:

• We proved that the decision version is NP-complete.

• This implies that the optimisation version is NP-hard.

• This means that we can not hope to solve it optimally in
polynomial time.

• Can we solve it approximately?

Vertex Cover
• Definition: A vertex cover C of a graph G=(V, E) is a subset of the nodes

such that every edge e in the graph has at least one endpoint in C.

• Each vertex i has a weight wi.

• Definition: A minimum vertex cover is a vertex cover of the smallest
possible total weight.

• Vertex Cover 
Input: A graph G=(V, E) 
Output: A minimum (weight) vertex cover.

Vertex Cover
• Definition: A vertex cover C of a graph G=(V, E) is a subset of the nodes

such that every edge e in the graph has at least one endpoint in C.

• Each vertex i has a weight wi.

• Definition: A minimum vertex cover is a vertex cover of the smallest
possible total weight.

• Vertex Cover 
Input: A graph G=(V, E) 
Output: A minimum (weight) vertex cover.

• If we can solve the weighted version of vertex cover, we can solve the
unweighted version (why?)

Vertex Cover

• We will design a polynomial time approximation algorithm
for the weighted vertex cover problem.

The Pricing Method
• Consider a vertex cover S.

The Pricing Method
• Consider a vertex cover S.

• Every vertex i has a cost,
which is equal to wi.

The Pricing Method
• Consider a vertex cover S.

• Every vertex i has a cost,
which is equal to wi.

• If i is included in S, the
edges that “use it” have to
pay for (some of) the cost.

The Pricing Method
• Consider a vertex cover S.

• Every vertex i has a cost,
which is equal to wi.

• If i is included in S, the
edges that “use it” have to
pay for (some of) the cost.

• Each edge e in the graph
pays a price pe.

The Pricing Method
• Consider a vertex cover S.

• Every vertex i has a cost,
which is equal to wi.

• If i is included in S, the
edges that “use it” have to
pay for (some of) the cost.

• Each edge e in the graph
pays a price pe.

Fair Pricing

• Given a vertex i, we never ask the edges that “use it” to
pay more than the cost of the vertex.

∑
e=(i,j)

pe ≤ wi

wi

wj

Fair Pricing Lemma
• Lemma: Let S be any vertex cover and let pe be any non-

negative fair prices. Then, it holds that:

∑
e∈E

pe ≤ w(S)

Proof of the lemma

Proof of the lemma
• By fairness, we have that: ∑

e=(i,j)

pe ≤ wi

Proof of the lemma
• By fairness, we have that:

• Adding up over all nodes, we have: 
 

∑
e=(i,j)

pe ≤ wi

∑
i∈S

∑
e=(i,j)

pe ≤ ∑
i∈S

wi = w(S)

Proof of the lemma
• By fairness, we have that:

• Adding up over all nodes, we have: 
 

• Let’s look at this expression.

∑
e=(i,j)

pe ≤ wi

∑
i∈S

∑
e=(i,j)

pe ≤ ∑
i∈S

wi = w(S)

Proof of the lemma
• By fairness, we have that:

• Adding up over all nodes, we have: 
 

• Let’s look at this expression.

• Since S is a vertex cover, each edge contributes at least
on term pe to the expression.

∑
e=(i,j)

pe ≤ wi

∑
i∈S

∑
e=(i,j)

pe ≤ ∑
i∈S

wi = w(S)

Proof of the lemma
• By fairness, we have that:

• Adding up over all nodes, we have: 
 

• Let’s look at this expression.

• Since S is a vertex cover, each edge contributes at least
on term pe to the expression.

• From this, we get that:

∑
e=(i,j)

pe ≤ wi

∑
i∈S

∑
e=(i,j)

pe ≤ ∑
i∈S

wi = w(S)

∑
e∈E

pe ≤ ∑
i∈S

∑
e=(i,j)

pe

The algorithm

• Terminology: We will say that node i is “tight” if

Vertex-Cover-Approx(G,w) 
 
 Set pe = 0 for all e in E. 
 While there is an edge e=(i, j) such that neither i nor j is tight 
 Select such an edge e 
 Increase pe without violating fairness 
 EndWhile 
 Let S be the set of all tight nodes 
 Return S.

∑
e=(i,j)

pe = wi

Example

3 35

4

Example

3 35

4

Set pe = 0 for all e in E.

Example

3 35

4
0

Set pe = 0 for all e in E.

Example

3 35

4
0 0

Set pe = 0 for all e in E.

Example

3 35

4
0 0 0

Set pe = 0 for all e in E.

Example

3 35

4
0 0 0

0

Set pe = 0 for all e in E.

Example

3 35

4
0 0 0

0 0

Set pe = 0 for all e in E.

Example

3 35

4
0 0 0

0 0

Set pe = 0 for all e in E.

While there is an edge e=(i, j) such that neither i nor j is tight 
 Select such an edge e

Example

3 35

4
0 0 0

0 0

Set pe = 0 for all e in E.

While there is an edge e=(i, j) such that neither i nor j is tight 
 Select such an edge e

Example

3 35

4
0 0 0

0 0

Set pe = 0 for all e in E.

While there is an edge e=(i, j) such that neither i nor j is tight 
 Select such an edge e
 Increase pe without violating fairness

Example

3 35

4

0 0

0 0

Set pe = 0 for all e in E.

While there is an edge e=(i, j) such that neither i nor j is tight 
 Select such an edge e
 Increase pe without violating fairness

3

Example

3 35

4

0 0

0 0

Set pe = 0 for all e in E.

While there is an edge e=(i, j) such that neither i nor j is tight 
 Select such an edge e
 Increase pe without violating fairness

3

3

Example

3 35

4

0 0

0 0

Set pe = 0 for all e in E.

While there is an edge e=(i, j) such that neither i nor j is tight 
 Select such an edge e
 Increase pe without violating fairness

3

3

Example

3 35

4

0

0 0

Set pe = 0 for all e in E.

While there is an edge e=(i, j) such that neither i nor j is tight 
 Select such an edge e
 Increase pe without violating fairness

3

3

1

Example

3 35

4

0

0 0

Set pe = 0 for all e in E.

While there is an edge e=(i, j) such that neither i nor j is tight 
 Select such an edge e
 Increase pe without violating fairness

3

3

1
4

Example

3 35

4

0 1

0 0

Set pe = 0 for all e in E.

While there is an edge e=(i, j) such that neither i nor j is tight 
 Select such an edge e
 Increase pe without violating fairness

3

3

4

Example

3 35

4

0 1

0

Set pe = 0 for all e in E.

While there is an edge e=(i, j) such that neither i nor j is tight 
 Select such an edge e
 Increase pe without violating fairness

3

3

4

2

Example

3 35

4

0 1

0

Set pe = 0 for all e in E.

While there is an edge e=(i, j) such that neither i nor j is tight 
 Select such an edge e
 Increase pe without violating fairness

3

3

4

2 3

Example

3 35

4

0 1

0

Set pe = 0 for all e in E.

While there is an edge e=(i, j) such that neither i nor j is tight 
 Select such an edge e
 Increase pe without violating fairness

3

3

4

2 3

Let S be the set of all tight nodes 
 Return S

Intuition

Intuition
• Consider any node i in the vertex cover S.

Intuition
• Consider any node i in the vertex cover S.

• Since i is tight, its cost is exactly covered by the edges
that are incident to it.

Intuition
• Consider any node i in the vertex cover S.

• Since i is tight, its cost is exactly covered by the edges
that are incident to it.

• However, an edge (i, j) might be incident to two nodes i
and j that are in the vertex cover.

Intuition
• Consider any node i in the vertex cover S.

• Since i is tight, its cost is exactly covered by the edges
that are incident to it.

• However, an edge (i, j) might be incident to two nodes i
and j that are in the vertex cover.

• We will overcharge this edge.

Intuition
• Consider any node i in the vertex cover S.

• Since i is tight, its cost is exactly covered by the edges
that are incident to it.

• However, an edge (i, j) might be incident to two nodes i
and j that are in the vertex cover.

• We will overcharge this edge.

• But we only overcharge it by a factor of 2.

Second lemma
• Lemma: The set S and the prices p returned by the Vertex-

Cover-Approx algorithm satisfy the following inequality:

w(S) ≤ 2∑
e∈E

pe

Proof of the second lemma

Proof of the second lemma
• Consider a node i in S.

Proof of the second lemma
• Consider a node i in S.

• This means that i is tight.

Proof of the second lemma
• Consider a node i in S.

• This means that i is tight.

• This means that ∑
e=(i,j)

pe = wi

Proof of the second lemma
• Consider a node i in S.

• This means that i is tight.

• This means that

• Summing up over all nodes i in S:  
 

∑
e=(i,j)

pe = wi

w(S) = ∑
i∈S

= ∑
i∈S

∑
e=(i,j)

pe

Proof of the second lemma
• Consider a node i in S.

• This means that i is tight.

• This means that

• Summing up over all nodes i in S:  
 

• An edge e=(i, j) can be included at most twice in this.

∑
e=(i,j)

pe = wi

w(S) = ∑
i∈S

= ∑
i∈S

∑
e=(i,j)

pe

Proof of the second lemma
• Consider a node i in S.

• This means that i is tight.

• This means that

• Summing up over all nodes i in S:  
 

• An edge e=(i, j) can be included at most twice in this.

• We get that 

∑
e=(i,j)

pe = wi

w(S) = ∑
i∈S

= ∑
i∈S

∑
e=(i,j)

pe

w(S) = ∑
i∈S

∑
e=(i,j)

pe ≤ 2∑
e∈E

pe

From the two lemmas

∑
e∈E

pe ≤ w(S)

From the two lemmas

w(S) ≤ 2∑
e∈E

pe∑
e∈E

pe ≤ w(S)

Correctness
• First, S is a vertex cover.

Correctness
• First, S is a vertex cover.

• Suppose that it is not.

Correctness
• First, S is a vertex cover.

• Suppose that it is not.

• Then there is an edge e=(i, j) such that i and j are not in S.

ji

Correctness
• First, S is a vertex cover.

• Suppose that it is not.

• Then there is an edge e=(i, j) such that i and j are not in S.

• This means that neither i or j are tight.

ji

Correctness
• First, S is a vertex cover.

• Suppose that it is not.

• Then there is an edge e=(i, j) such that i and j are not in S.

• This means that neither i or j are tight.

• But then why did the algorithm terminate?

ji

Correctness
• First, S is a vertex cover.

• Suppose that it is not.

• Then there is an edge e=(i, j) such that i and j are not in S.

• This means that neither i or j are tight.

• But then why did the algorithm terminate?

ji

“While there is an edge e=(i, j) such that neither i nor j is tight 
 Select such an edge e”

Approximation Ratio

• Let S* be the minimum weight vertex cover.

• Recall that S is the vertex cover returned by the algorithm.

From the two lemmas

w(S) ≤ 2∑
e∈E

pe∑
e∈E

pe ≤ w(S)

This holds for any vertex

cover S, also for S*

Approximation Ratio

• Let S* be the minimum weight vertex cover.

• Recall that S is the vertex cover returned by the algorithm.

Approximation Ratio

• Let S* be the minimum weight vertex cover.

• Recall that S is the vertex cover returned by the algorithm.

• We have: 
 
  ∑

e∈E

pe ≤ w(S*) w(S) ≤ 2∑
e∈E

pe

Approximation Ratio

• Let S* be the minimum weight vertex cover.

• Recall that S is the vertex cover returned by the algorithm.

• We have: 
 
 

• Which clearly implies:

∑
e∈E

pe ≤ w(S*) w(S) ≤ 2∑
e∈E

pe

w(S) ≤ 2W(S*)

Vertex Cover as an ILP
Minimise ∑

i∈V

xiwi

subject to xi + xj ≥ 1, for all (i, j) ∈ E

xi ≥ 0, for all i ∈ V

xi ∈ {0, 1}, for all i ∈ V

Vertex Cover as an ILP
Minimise ∑

i∈V

xiwi

subject to xi + xj ≥ 1, for all (i, j) ∈ E

xi ≥ 0, for all i ∈ V

xi ∈ {0, 1}, for all i ∈ V

For each edge, one of the 
endpoints has to be in 

the vertex cover.

Vertex Cover LP-relaxation
Minimise ∑

i∈V

xiwi

subject to xi + xj ≥ 1, for all (i, j) ∈ E

xi ≥ 0, for all i ∈ V

Vertex Cover LP-relaxation
Minimise ∑

i∈V

xiwi

subject to xi + xj ≥ 1, for all (i, j) ∈ E

xi ≥ 0, for all i ∈ VPossible fractional values, e.g., 
xi = 0.3, xj =0.7

The Dual
Minimise ∑

i∈V

xiwi

subject to xi + xj ≥ 1, for all (i, j) ∈ E

xi ≥ 0, for all i ∈ V

Maximise ∑
e∈E

pe

subject to ∑
e=(i,j)

pe ≤ wi, for all i ∈ V

pe ≥ 0, for all e ∈ E

Primal

Dual

The Dual
Minimise ∑

i∈V

xiwi

subject to xi + xj ≥ 1, for all (i, j) ∈ E

xi ≥ 0, for all i ∈ V

Maximise ∑
e∈E

pe

subject to ∑
e=(i,j)

pe ≤ wi, for all i ∈ V

pe ≥ 0, for all e ∈ E

Primal

Dual

Wait a sec,

I’ve seen 

this before.

Fair Pricing

• Given a vertex i, we never ask the edges that “use it” to
pay more than the cost of the vertex.

∑
e=(i,j)

pe ≤ wi

wi

wj

What are we really doing?

• We are taking a variable pe of the dual of the LP-
relaxation.

• We increase the value of this variable, until some
constraint becomes tight.

∑
e=(i,j)

pe ≤ wi, for all i ∈ V pe

What are we really doing?

• We are taking a variable pe of the dual of the LP-
relaxation.

• We increase the value of this variable, until some
constraint becomes tight.

∑
e=(i,j)

pe = wi, for all i ∈ V

What are we really doing?

• We are taking a variable pe of the dual of the LP-
relaxation.

• We increase the value of this variable, until some
constraint becomes tight.

What are we really doing?

• We are taking a variable pe of the dual of the LP-
relaxation.

• We increase the value of this variable, until some
constraint becomes tight.

• Because constraints of the dual correspond to variables
of the primal, there is an associated variable xi of the
primal.

What are we really doing?

• We are taking a variable pe of the dual of the LP-
relaxation.

• We increase the value of this variable, until some
constraint becomes tight.

• Because constraints of the dual correspond to variables
of the primal, there is an associated variable xi of the
primal.

• We set the value of that variable in the primal to 1.

Primal-dual method
• We start with an infeasible integral solution x to the primal and a feasible

fractional solution y to the dual.

• We increase the value of some yj until some constraint (that contains yj)
becomes tight.

• We obtain a better feasible fractional solution y to the dual.

• We increase the corresponding variable xi of the primal to obtain a still
infeasible integral solution x to the primal, which however violates fewer
constraints.

• We end up with a feasible integral solution x to the primal, and a feasible
fractional solution y to the dual.

• We compare the two solutions.

The Primal-dual method

ALG(dual)

ALG(primal)

fractional opt 
(dual, primal)

integral opt 
(primal)

dual (maximisation)

primal (minimisation)

approximation 
ratio

what we  
actually 
bound

