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Recap and plan
• Previous lecture: 

• The Pricing Method (Primal-Dual Method).


• Application: Vertex Cover.


• This lecture:


• Linear Programming and Rounding.


• Application: Vertex Cover.


• Inapproximability of Vertex Cover.


• Vertex Cover on Bipartite Graphs.



Methods for approximation 
algorithms

• Greedy algorithms.


• Pricing method (also known as the Primal-Dual method).


• Linear Programming and Rounding.


• Dynamic Programming on rounded inputs.



Vertex Cover

• Definition: A vertex cover C of a graph G=(V, E) is a subset 
of the nodes such that every edge e in the graph has at 
least one endpoint in C.


• Definition: A minimum vertex cover is a vertex cover of 
the smallest possible size.


• Vertex Cover 
Input: A graph G=(V, E) 
Output: A minimum vertex cover.



Example



Example



Example



Example



Example

A vertex cover



Example



Example



Example



Example

A minimum vertex cover



Vertex Cover
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of the nodes such that every edge e in the graph has at 
least one endpoint in C.

• Each vertex i has a weight wi.
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Vertex Cover
• Definition: A vertex cover C of a graph G=(V, E) is a subset 

of the nodes such that every edge e in the graph has at 
least one endpoint in C.

• Each vertex i has a weight wi.

• Definition: A minimum vertex cover is a vertex cover of 
the smallest possible total weight.

• Vertex Cover 
Input: A graph G=(V, E) 
Output: A minimum (weight) vertex cover.



Vertex Cover

• Last time, we designed a polynomial time approximation 
algorithm for the weighted vertex cover problem.


• We will design another polynomial time approximation 
algorithm for the weighted vertex cover problem.


• The second algorithm will be based on a technique 
called “ILP relaxation and rounding”.



Vertex Cover as an ILP
Minimise ∑

i∈V

xiwi

subject to xi + xj ≥ 1, for all (i, j) ∈ E

xi ≥ 0, for all i ∈ V

xi ∈ {0, 1}, for all i ∈ V



Vertex Cover as an ILP
Minimise ∑

i∈V

xiwi

subject to xi + xj ≥ 1, for all (i, j) ∈ E

xi ≥ 0, for all i ∈ V

xi ∈ {0, 1}, for all i ∈ V

For each edge, one of the 
endpoints has to be in 

the vertex cover.

A vertex is either included in the vertex 
cover (value 1) or not (value 0).
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Vertex Cover LP-relaxation
Minimise ∑

i∈V

xiwi

subject to xi + xj ≥ 1, for all (i, j) ∈ E

xi ≥ 0, for all i ∈ VPossible fractional values, e.g., 
xi = 0.3, xj =0.7
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Solving the LP-relaxation

• We can solve the LP-relaxation in polynomial time, to find 
an optimal solution.

• The optimal solution is a “fractional” vertex cover, where 
variables can take values between 0 and 1.

• Is the value of this “fractional” vertex cover, smaller or 
larger than the value of the minimum weight vertex cover?



ILP vs LP-relaxation

feasible region

hyperplane

polytope

candidate optimal solution to the relaxation
candidate optimal solution to the ILP
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Back to vertex cover

• What can we use as a lower bound for the weight of the 
minimum weight vertex cover?

• The weight of the minimum weight “fractional” vertex 
cover.

• i.e., the optimal value of the LP-relaxation of the vertex 
cover ILP.



Recall: Load Balancing

optimal 
makespan 

T*

algorithm 
makespan 

T

lower bound 
on T*

We will bound this

This certainly  
bounds this

We do not know the optimal, so we will use 
a lower bound for the optimal.



Lower bounding the optimal

optimal 
VC weight 

(ILP solution)

algorithm 
VC weight

optimal fractional 
VC weight 

(LP-relaxation solution)

We will bound this

This certainly  
bounds this

We do not know the optimal, so we will use 
a lower bound for the optimal.
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1 1
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Min weight integral 
vertex cover. 
weight = 2

1 1

1

1 1

1

Min weight fractional 
vertex cover. 
weight = 3/2
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an optimal solution.


• The optimal solution is a “fractional” vertex cover, where 
variables can take values between 0 and 1.



Rounding the solution
• We can solve the LP-relaxation in polynomial time, to find an optimal 

solution.
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take values between 0 and 1.

• We round the fractional solution to an integer solution.
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Rounding the solution
• We can solve the LP-relaxation in polynomial time, to find an optimal 

solution.

• The optimal solution is a “fractional” vertex cover, where variables can 
take values between 0 and 1.

• We round the fractional solution to an integer solution.

• We pick a variable xi and we set it to 1 or 0.

• If we set everything to 0, it is not a vertex cover.

• If we set everything to 1, we “pay” too much.

• We set variable xi to 1 if xi  ≥ 1/2 and to 0 otherwise.
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Feasibility
• Claim: The solution that we obtain this way is a vertex cover.

• Or, to put it differently, that the solution that the rounded solution is 
a feasible solution to the ILP.

• Easy proof: Assume that it is not.

• There there is an edge e = (i, j) such that both xi and xj were set to 0.

• This means that in the LP-relaxation, we had that  
xi  < 1/2 and xj  < 1/2.



Feasibility
• Claim: The solution that we obtain this way is a vertex cover.

• Or, to put it differently, that the solution that the rounded solution is 
a feasible solution to the ILP.

• Easy proof: Assume that it is not.

• There there is an edge e = (i, j) such that both xi and xj were set to 0.

• This means that in the LP-relaxation, we had that  
xi  < 1/2 and xj  < 1/2.

• But then the constraint xi  + xi  ≥  1 would be violated, and this 
would not be a feasible solution to the LP-relaxation.



Vertex Cover LP-relaxation
Minimise ∑

i∈V

xiwi

subject to xi + xj ≥ 1, for all (i, j) ∈ E

xi ≥ 0, for all i ∈ V
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Approximation ratio
• Claim: The vertex cover that we obtain this way has 

weight at most twice that of the minimum weight vertex 
cover. 

• Intuition is easy: We included all the vertices for which the 
LP-relaxation “paid” at least 1/2, and we rounded them 
up to 1, so we “paid” at most twice as much.

• One line proof: 

∑
i

wix*i ≥ ∑
i∈S

wix*i ≥
1
2 ∑

i∈S

wi = w(S)

weight of min-weight  
fractional VC

weight of the VC that 
we computed



Approximation ratio
• The LP-relaxation and round algorithm for vertex cover 

has an approximation ratio of 2.


• We already knew that 2 was possible, from the Pricing 
method algorithm (Primal-Dual).


• In this case, the ILP-relaxation and round algorithm 
seems conceptually simpler.


• In other cases, rounding the solution will not be so 
straightforward.



Limitations of algorithms
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Limitations of algorithms

• How do we know if our algorithm is the best possible? 
Can we get “closer” to the optimal?

• Maybe we can use the same technique but round more 
cleverly? 
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Lower bounding the optimal

optimal 
VC weight 

(ILP solution)

algorithm 
VC weight

optimal fractional 
VC weight 

(LP-relaxation solution)

We will bound this

This certainly  
bounds this

We do not know the optimal, so we will use 
a lower bound for the optimal.

Can you think of an inherent limitation 
of this technique? What is the best 


possible approximation ratio that we 
could hope for?

What is this quantity?

The integrality gap
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Limitations of the technique
• The LP-relaxation and round technique cannot provide approximation 

ratios better than the integrality gap of the ILP-LP formulation.

• Caution: The integrality gap is a quantity that has to do with the 
formulation of the ILP-LP, not the problem.

• An integrality gap of α does not mean that it is not possible to design 
an algorithm with approximation ratio better than α.

• Actually, it does not even mean that LP-relaxation and round 
technique cannot give you an algorithm with approximation ratio 
better than α.

• It means that with this formulation of the ILP-LP, α is the best you can 
hope for.
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Integrality gap of VC
• Do we know any lower bound on the integrality gap of 

vertex cover? 


• i.e., “the IG is at least this much”.
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weight = 2
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Min weight fractional 
vertex cover. 
weight = 3/2

IG ≥ 2/(3/2) = 4/3



Integrality gap of VC
• Do we know any lower bound on the integrality gap of 

vertex cover? 


• i.e., “the IG is at least this much”.

1 1

1

1

1

Min weight integral 
vertex cover. 
weight = 2

1 1

1

1 1

1

Min weight fractional 
vertex cover. 
weight = 3/2

IG ≥ 2/(3/2) = 4/3

We cannot hope

to design an algorithm 
 using this formulation


with ration better 
than 4/3.



Integrality gap of VC

• Can we get any better lower bounds?


• The integrality gap of VC approaches 2 as the number of 
vertices goes to infinity.


• 5-min exercise: Try to prove this statement.
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Limitations of algorithms

• How do we know if our algorithm is the best possible? 
Can we get “closer” to the optimal?

• Maybe we can use the same technique but round more 
cleverly? No.
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Inapproximability of VC
• We saw two different algorithms, both provided an approximation ratio 

of 2. 

• Could we hope to design a better algorithm for the problem?

• The answer to this question depends on our definition of “hope”.

• Known fact 1: It is impossible (unless P=NP) to design an algorithm 
with approximation ratio better than 1.363.

• Known fact 2: It is impossible (unless Unique Games is an NP-hard 
problem) to design an algorithm with approximation ratio better than 2.

• Both facts are quite involved to prove.



Easier inapproximability
• Definition: A problem P is strongly NP-hard, when there is 

a polynomial time reduction from a strongly NP-hard to 
problem to it.


• For a strongly NP-hard problem P, 


• There is no Fully Polynomial Time Approximation 
Scheme (FPTAS - next lecture).


• There is no pseudopolynomial time algorithm that 
solves it exactly.



The approximation 
landscape for Vertex Cover
• Vertex Cover is strongly NP-hard.

approximation ratio1 1+ε 1.363 2

unless P = NP, by  
NP-hardness of VC

unless P = NP, by strong  
NP-hardness of VC

unless P = NP, by involved 
inapproximability proofs.

unless UG is NP-hard, by involved 
inapproximability proofs.

impossible

approximation algorithms  
Pricing Method


ILP relaxation and rounding

possibleimpossible



Vertex Cover on bipartite graphs

• Definition: A vertex cover C of a bipartite graph G=(A U B, 
E) is a subset of the nodes such that every edge e in the 
graph has at least one endpoint in C.


• Definition: A minimum vertex cover is a vertex cover of 
the smallest possible size.


• Vertex Cover on bipartite graphs 
Input: A bipartite graph G=(A U B, E). 
Output: A minimum vertex cover.



Vertex Cover on bipartite graphs

• We will establish via a series of arguments that VC on 
bipartite graphs can be solved in polynomial time.



Vertex Cover as an ILP
Minimise ∑
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xi
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Vertex Cover LP-relaxation
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The ILP corresponding to 
the dual

Maximise ∑
j∈E

yj

subject to ∑
j is incident to vertex i

yj ≤ 1, for all i ∈ V

yj ∈ {0,1} for all j ∈ E

Include as many edges as possible … 
such that for every vertex of the graph … 
among the edges that are incident to that vertex …
we take at most 1.

What is this?

maximum matching!



König’s Theorem

• In a bipartite graph, the size of the maximum matching is 
equal to the size of the minimum vertex cover.


• König’s proof is constructive: If starts from a maximum 
matching and produces a vertex cover, proving that it is 
minimum.


• Alternative proof based on total unimodularity.



This is Maximum Matching
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This is the LP-relaxation

Maximise ∑
j∈E

yj

subject to ∑
j is incident to vertex i

yj ≤ 1, for all i ∈ V

yj ≤ 1, for all j ∈ E

Fact: The incidence matrix of a bipartite graph is totally unimodular.

This means that size of maximum matching = size of maximum fractional matching.
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This is the LP-relaxation
Minimise ∑

i∈V

xi

subject to xi + xj ≥ 1, for all (i, j) ∈ E

xi ≥ 0, for all i ∈ V

Fact: The constraint matrix is also totally unimodular. 
It is just the transpose of the constraint matrix of the 

maximum bipartite matching problem.

This means that size of minimum VC = size of minimum fractional VC
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Putting everything together
This means that size of maximum matching = size of maximum fractional matching.

This means that size of minimum VC = size of minimum fractional VC.

But size of maximum fractional matching = size of minimum fractional VC (why?).

This means that size of maximum matching = size of minimum VC.
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• Solve the maximum matching on the same bipartite 
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• The size of this matching is the size of the minimum 
vertex cover.
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How do we find the minimum 
VC on a bipartite graph?

• Solve the maximum matching on the same bipartite 
graph.

• The size of this matching is the size of the minimum 
vertex cover.

• Find the minimum vertex cover using the size of the 
minimum vertex cover. 

• How?



From previous lecture…
• Pick a vertex v in the graph.


• Remove it (and the incident edges) to get graph G - {v}.


• Property: If v was in any minimum vertex cover, G - {v} has a 
minimum vertex cover of size k*-1.


• Check if the graph G - {v} has a vertex cover of size at most k*-1.


• Yes: Include v in the vertex cover.


• No: Do not include v in the vertex cover. 


• Then move to the next vertex. 



Summing up

• Vertex Cover is strongly NP-hard in general.


• In fact, hard to approximate better than 1.363.


• There exist 2-approximate polynomial time algorithms 
for the problem.


• On bipartite graphs, the problem is solvable in polynomial 
time.


