Advanced Algorithmic Techniques
(COMP523)

Approximation Algorithms 4



Recap and plan

* Previous lecture:
e Linear Programming and Rounding.
e Application: Vertex Cover.
e |napproximability of Vertex Cover.
e \ertex Cover on Bipartite Graphs.
e This lecture:
e Dynamic programming on rounded inputs.
e Application: Knapsack

e PTAS and FPTAS



Methods for approximation
algorithms

Greedy algorithms.
Pricing method (also known as the Primal-Dual method).
Linear Programming and Rounding.

Dynamic Programming on rounded inputs.



The 0/1-knapsack problem

 We are given a set of nitems {7, 2, ..., n}.

 Each item / has a non-negative weight wiand a non-
negative value v..

e We are given a bound W.

e (Goal: Select a subset S of the items such that Z w, < W
eS
and Zv,- IS maximised.
ieS



/ minute exercise

Design a dynamic programming algorithm for 0/1 knapsack.

Algorithm SubsetSum(n,W)

Array M=[0 ... n, 0 ... W]
Initialise M[0, w] =0, foreachw=0,1, ..., W

Fori=1,2,...,n
Forw=0,..., W

If (wi> w)

M[i, w] = M[i-7, w]
Else

M[i, w] = max{M[i-7, w] , wi+ M[i-7, w-w; ]}
Endlf

Return M[n, W]



0/1-Knapsack in
Pseudopolynomial Time

The dynamic programming algorithm for 0/1 knapsack solves
knapsack optimally in time polynomial in n and W.

Algorithm Knapsack(n,\W)

Array M=[0 ... n, 0 ... W]
Initialise M[0, w] =0, foreachw=0,1, ..., W

Fori=1,2,...,n
Forw=0,..., W
If (wi> w)

M[i, w] = M[i-7, w]
Else

M[i, w] = max{M[i-7, w] , vi+ M[i-1, w-w;]}
Endlf

Return M[n, W]



Another pseudopolynomial time
algorithm for 0/1-Knapsack

Algorithm Knapsack(n,W)

Array M=[0 ... n,0 ... V]
Initialise M[/, 0] =0, fori=0,17,...,n

Fori=1,2,...,n ;

ForV=1,..., ) v
i— J=1
I (V>jvj)
j=1
M[i, V] = wi+ M[i-7, V]
Else
M[i, V] = max{M[i-1, V] , wi+ M[i-7, max(0, V-vi)]}
Endlf

Return the maximum value V such that M[n, V] < W.



Intuition

 We will create subproblems based on the values, not the
weights.

 Each subproblem will be defined by an index i and target
value V.



Another pseudopolynomial time
algorithm for 0/1-Knapsack

Algorithm Knapsack(n,W)

Array M=[0 ... n,0 ... V]
Initialise M[/, 0] =0, fori=0,7,...,n

Fori=1,2,...,n ;
ForV=1,...,Zv-

J

M[i, V] = max{M[i-1, V] , wi+ M[i-7, max(0, V-vi)]}
Endlf

Return the maximum value V such that M[n, V] < W.



Intuition

 We will create subproblems based on the values, not the weights.
e Each subproblem will be defined by an index / and target value V.

e M(, V) is the smallest knapsack weight W so that it is possible to
obtain a solution using a subset of the items {7, ..., i/} with total
value at least V.



Intuition

 We will create subproblems based on the values, not the weights.
e Each subproblem will be defined by an index / and target value V.

e M(, V) is the smallest knapsack weight W so that it is possible to
obtain a solution using a subset of the items {7, ..., i/} with total
value at least V.

* How many subproblems can we have?



Intuition

 We will create subproblems based on the values, not the weights.
e Each subproblem will be defined by an index / and target value V.

e M(, V) is the smallest knapsack weight W so that it is possible to
obtain a solution using a subset of the items {7, ..., i/} with total
value at least V.

* How many subproblems can we have?

* At most O(n2v*), where v* is the maximum value over all the
items.



Intuition

We will create subproblems based on the values, not the weights.
Each subproblem will be defined by an index / and target value V.

e M(, V) is the smallest knapsack weight W so that it is possible to
obtain a solution using a subset of the items {7, ..., i/} with total
value at least V.

How many subproblems can we have?

* At most O(n2v*), where v* is the maximum value over all the
items.

More details: Kleinberg and Tardos, Chapter 11, page 648-649.



What we know for knapsack

e A pseudo-polynomial algorithm for solving the problem
exactly (actually, a couple of those).



What we know for knapsack

e A pseudo-polynomial algorithm for solving the problem
exactly (actually, a couple of those).

e A polynomial time greedy approximation algorithm with
approximation ratio 2.



What we know for knapsack

e A pseudo-polynomial algorithm for solving the problem
exactly (actually, a couple of those).

e A polynomial time greedy approximation algorithm with
approximation ratio 2.

e Can we get better approximations?



Rounding the values

e We will use a rounding parameter b.
* Foreachitemi,let v = [v./b]b

e |t holds that for each item i, we have v, <V, <v.+b

e |ntuition: We divide all the values by some factor b, and
then we round up the result to get integer numbers.



Why are we doing this?

e Why are we scaling down the values of the knapsack
instance?



Why are we doing this?

e Why are we scaling down the values of the knapsack
instance?

e Because we know how to solve the problem in
polynomial time when the values are small. How?



Why are we doing this?

e Why are we scaling down the values of the knapsack
instance?

e Because we know how to solve the problem in
polynomial time when the values are small. How?

e We can use our pseudo-polynomial time algorithm.



Why are we doing this?

e Why are we scaling down the values of the knapsack
instance?

e Because we know how to solve the problem in
polynomial time when the values are small. How?

e We can use our pseudo-polynomial time algorithm.

e But walt, that’s not polynomial, running time was
O(nav™).



Why are we doing this?

e Why are we scaling down the values of the knapsack
instance?

e Because we know how to solve the problem in
polynomial time when the values are small. How?

e We can use our pseudo-polynomial time algorithm.

e But walt, that’s not polynomial, running time was
O(nav™).

e |ltis, when v*is small (i.e., polynomial in n).



How much do we lose?

e \We solve the knapsack problem after rounding down the
values by a factor b.



How much do we lose?

e \We solve the knapsack problem after rounding down the
values by a factor b.

 Why should this change anything?



How much do we lose?

e \We solve the knapsack problem after rounding down the
values by a factor b.

 Why should this change anything?

* |f we scale down the values, the objective function value
(the total value of the knapsack) is scaled down as well.



How much do we lose?

e \We solve the knapsack problem after rounding down the
values by a factor b.

 Why should this change anything?

* |f we scale down the values, the objective function value
(the total value of the knapsack) is scaled down as well.

 We could substitute vi with vi/ b and get an equivalent
problem.



How much do we lose?

e \We solve the knapsack problem after rounding down the
values by a factor b.

 Why should this change anything?

* |f we scale down the values, the objective function value
(the total value of the knapsack) is scaled down as well.

 We could substitute vi with vi/ b and get an equivalent
problem.

e Not quite, because V., #v./b but v,=7./b



How much do we lose?

e \We solve the knapsack problem after rounding down the
values by a factor b.

 Why should this change anything?

* |f we scale down the values, the objective function value
(the total value of the knapsack) is scaled down as well.

 We could substitute vi with vi/ b and get an equivalent
problem. this is not necessarily an integer

» Not quite, because 9, #v;/b} but ;= ¥/b



How much do we lose?

e \We solve the knapsack problem after rounding down the
values by a factor b.

 Why should this change anything?

* |f we scale down the values, the objective function value
(the total value of the knapsack) is scaled down as well.

 We could substitute vi with vi/ b and get an equivalent
problem. this is not necessarily an integer

e Not quite, because ¥; v,/b} but ¥, {v,/b’
but this is



How much do we lose?



How much do we lose?

 \We need to compare the solutions



How much do we lose?

 \We need to compare the solutions

* whenusing V;



How much do we lose?

 \We need to compare the solutions

* whenusing V;

~J)

* when using V;



How much do we lose?

 \We need to compare the solutions

* whenusing V;

~J)

e whenusing V.

e recal: V.= [v./b|b



How much do we lose?

 \We need to compare the solutions
* whenusing V;

~J)

* when using V;
e recal: V.= [v./b|b

e |.e., we need to compute the rounding error.



How much do we lose?

 \We need to compare the solutions

* whenusing V;

~J)

* when using V;
e recal: V.= [v./b|b
e |.e., we need to compute the rounding error.

e recall: v;<V,<v;+b



How much do we lose?

 \We need to compare the solutions
* whenusing V;

~J)

* whenusing V.
e recal: V.= [v./b|b

e |.e., we need to compute the rounding error.
e recall: Vv, <V;<v;+b

e the optimal values differ by a factor of b.



The algorithm

Knapsack-Approx(€)

Set b = (e/2n) max v,

Run the DP algorithm for knapsack on values \A/l-
Return the set S of items found.



Feasibility

e The set S is a feasible solution to knapsack.



Feasibility

e The set S is a feasible solution to knapsack.

e We didn’t mess up with the weights at all!



Feasibility

e The set S is a feasible solution to knapsack.
e We didn’t mess up with the weights at all!

e This is why we could not use the DP algorithm that we
knew from previous lectures.



Running Time

The DP algorithm runs in time O(n2v®).

Recall: v* = maxv,

So here, it runs in time polynomial in n and max v;

It holds that :

So we have:

l

arg max v; = arg max v;
i i
i

l

l



Running Time

* The overall running time is O(n3/¢).

e This is polynomial in the input parameters and 1/¢.



Approximation Ratio



Approximation Ratio

e |Let S* be any feasible solution, i.e., any set satisfying

> W
ES*



Approximation Ratio

e Let S* be any feasible solution, i.e., any set satisfying



Approximation Ratio

e Let S* be any feasible solution, i.e., any set satisfying

e We know that 2,72 Q% (why?)

esS IES*

e \We have the following inequalities:

Du< D H<YH<Y +b)<nb+ ) v,

1eS* 1eS* 1S eS eS



Approximation Ratio

Recall: b = (e/2n) max v,

l

Let v be the largest value. We have that v; = 2nb/e
We also have that v; =V,

Assumption: Each item fits in the knapsack

e This implies Z V2V, =v;=2nble

i€S
Finally, from the inequalities of the previous slide, we have

Zvl-z Zﬁi—nb:}~ ZviZ(Ze_l—l)nb

€S €S €S



Approximation Ratio

Recall: b = (e/2n) max v,

l

Let vj be the largest value. We have that Vj = 2nb/ .

We also have that ,VJ' =V,
Assumption: Each item fits in the knapsack
* This implies

Finally, from the inqulit of " rious slide, we have

Zviz Zﬁi—nb:' Zvl-Z(Ze_l—l)nb

€S €S €S



Approximation Ratio

e Finally, from the inequalities of the previous slide, we have

e From this, for € < 1 we have that nb < € Z Vi
i€S

e Back to the inequalities:

Zvl-s 2‘71'32‘71'3Z(Vi+b)§”b+zvi§(1+€)zvi

ES* ES* eS eS eS eS



Approximation Ratio

e Finally, from the inequalities of the previous slide, we have

 From this, for € < 1 we have that nb < € Z Vi
i€S

e Back to the inequalities:

Zvis 2‘71'32‘71'3Z(Vi+b)§”b+zvi§(1+€)zvi

ES* ES* eS eS eS eS



Approximation Ratio

e Finally, from the inequalities of the previous slide, we have

 From this, for € < 1 we have that nb < € Z Vi
i€S

e Back to the inequalities:

Zvis Zﬁiszv'isZ(vi+b)§nb+2vi§(l+e)2vi

ES* ES* eS eS eS eS



PTAS vs FPTAS

e PTAS (Polynomial Time Approximation Scheme):
An approximation algorithm which, given an g, runs In

time polynomial in the input parameters and has
approximation ratio 1+e.

e FPTAS (Fully Polynomial Time Approximation Scheme):
An approximation algorithm which, given an €, runs in

time polynomial in the input parameters and 1/ and has
approximation ratio 1+e.



PTAS vs FPTAS

e PTAS (Polynomial Time Approximation Scheme):
An approximation algorithm which, given an €, runs in

time polynomial in the input parameters and has
approximation ratio 1+e€.

e FPTAS (Fully Polynomial Time Approximation Scheme):
An approximation algorithm which, given an €, runs in

time polynomial in the input parameters and 1/ and has
approximation ratio 1+e.

e What is the algorithm that we designed for knapsack? A
PTAS or an FPTAS?



A PTAS (sketch) for
Knapsack



A PTAS (sketch) for
Knapsack

e Consider all possible subsets of items with size at most k.



A PTAS (sketch) for
Knapsack

e Consider all possible subsets of items with size at most k.

e There are O(knk) of those.



A PTAS (sketch) for
Knapsack

e Consider all possible subsets of items with size at most k.
e There are O(knk) of those.

* For each one of those subsets, put those items in the knapsack,
and use the greedy algorithm to fill up the rest of the knapsack.



A PTAS (sketch) for
Knapsack

e Consider all possible subsets of items with size at most k.

e There are O(knk) of those.

* For each one of those subsets, put those items in the knapsack,
and use the greedy algorithm to fill up the rest of the knapsack.

* One can prove that this solution is a 1+1/k approximation in time
O(knk+T1),



A PTAS (sketch) for
Knapsack

e Consider all possible subsets of items with size at most k.
e There are O(knk) of those.

* For each one of those subsets, put those items in the knapsack,
and use the greedy algorithm to fill up the rest of the knapsack.

* One can prove that this solution is a 1+1/k approximation in time
O(knk+T1),

 We can pick e=1/k, and we have a 1+¢& approximation in time
O((1/€)n%).



A PTAS (sketch) for
Knapsack

e Consider all possible subsets of items with size at most k.
e There are O(knk) of those.

* For each one of those subsets, put those items in the knapsack,
and use the greedy algorithm to fill up the rest of the knapsack.

* One can prove that this solution is a 1+1/k approximation in time
O(knk+T1),

 We can pick e=1/k, and we have a 1+¢& approximation in time
O((1/€)n%).

* This is polynomial in n but not in 1/¢.



Inapproximability

e Definition: A problem P is strongly NP-hard, when there is

a polynomial time reduction from a strongly NP-hard to
problem to it.

 For a strongly NP-hard problem P,

* There is no Fully Polynomial Time Approximation
Scheme (FPTAS).

* There is no pseudo-polynomial time algorithm that
solves it exactly.



A summary of
approximation algorithms



A summary of
approximation algorithms

e Different techniques (greedy, pricing method aka primal-dual,
LP-relaxation and rounding, DP on rounded inputs, brute-force
and greedy, dual fitting, Dual LP-relaxation and rounding, ...)



A summary of
approximation algorithms

e Different techniques (greedy, pricing method aka primal-dual,
LP-relaxation and rounding, DP on rounded inputs, brute-force
and greedy, dual fitting, Dual LP-relaxation and rounding, ...)

e Limitations of algorithms (tight instances).



A summary of
approximation algorithms

Different techniques (greedy, pricing method aka primal-dual,
LP-relaxation and rounding, DP on rounded inputs, brute-force
and greedy, dual fitting, Dual LP-relaxation and rounding, ...)

Limitations of algorithms (tight instances).

Limitations of techniques (e.g., integrality gap).



A summary of
approximation algorithms

Different techniques (greedy, pricing method aka primal-dual,
LP-relaxation and rounding, DP on rounded inputs, brute-force
and greedy, dual fitting, Dual LP-relaxation and rounding, ...)

Limitations of algorithms (tight instances).
Limitations of techniques (e.g., integrality gap).

Inapproximability



A summary of
approximation algorithms

Different techniques (greedy, pricing method aka primal-dual,
LP-relaxation and rounding, DP on rounded inputs, brute-force
and greedy, dual fitting, Dual LP-relaxation and rounding, ...)

Limitations of algorithms (tight instances).
Limitations of techniques (e.g., integrality gap).
Inapproximability

e How do we prove this?



A summary of
approximation algorithms

Different techniques (greedy, pricing method aka primal-dual,
LP-relaxation and rounding, DP on rounded inputs, brute-force
and greedy, dual fitting, Dual LP-relaxation and rounding, ...)

Limitations of algorithms (tight instances).
Limitations of techniques (e.g., integrality gap).
Inapproximability

e How do we prove this?

e Sometimes easy, sometimes hard, mostly hard!



