Advanced Algorithmic Techniques (COMP523)

Approximation Algorithms 4

Recap and plan

- Previous lecture:
- Linear Programming and Rounding.
- Application: Vertex Cover.
- Inapproximability of Vertex Cover.
- Vertex Cover on Bipartite Graphs.
- This lecture:
- Dynamic programming on rounded inputs.
- Application: Knapsack
- PTAS and FPTAS

Methods for approximation algorithms

- Greedy algorithms.
- Pricing method (also known as the Primal-Dual method).
- Linear Programming and Rounding.
- Dynamic Programming on rounded inputs.

The 0/1-knapsack problem

- We are given a set of n items $\{1,2, \ldots, n\}$.
- Each item i has a non-negative weight w_{i} and a nonnegative value v_{i}.
- We are given a bound W.
- Goal: Select a subset S of the items such that $\sum_{i \in S} w_{i} \leq W$ and $\sum_{i \in S} v_{i}$ is maximised.

7 minute exercise

Design a dynamic programming algorithm for 0/1 knapsack.

Algorithm SubsetSum(n, W)

```
Array M=[0 \ldotsn, 0 .. W]
Initialise M[0,w] = 0, for each w = 0,1,\ldots,W
For i=1,2,\ldots,n
    For w = 0, .., w
    If ( }\mp@subsup{w}{i}{}>>w
        M[i,w]=M[i-1,w]
    Else
        M[i,w] = max{M[i-1,w] , wi + M[i-1,w-wi]}
    Endlf
Return \(\mathrm{M}[n, \mathrm{~W}]\)
```


0/1-Knapsack in Pseudopolynomial Time

The dynamic programming algorithm for 0/1 knapsack solves knapsack optimally in time polynomial in n and W.

Algorithm Knapsack(n,W)

```
Array M=[0\ldotsn, 0\ldots.W]
Initialise M[0,w] = 0, for each w = 0,1,\ldots,W
For i=1,2,\ldots,n
    For w =0,\ldots,w
        If ( }\textrm{w
        M[i,w] = M[i-1,w]
    Else
        M[i,w]=\operatorname{max}{M[i-1,w], vi}+M[i-1,w-wi]
    Endlf
```

Return M[n, W]

Another pseudopolynomial time algorithm for 0/1-Knapsack

Algorithm Knapsack(n,W)

```
Array \(\mathrm{M}=[0 \ldots n, 0 \ldots \mathrm{~V}]\)
Initialise \(M[i, 0]=0\), for \(i=0,1, \ldots, n\)
```

```
For \(\mathrm{i}=1,2, \ldots, n\)
```

For $\mathrm{i}=1,2, \ldots, n$
For $\mathrm{V}=1, \ldots, \sum_{j=1}^{i} v_{j}$
For $\mathrm{V}=1, \ldots, \sum_{j=1}^{i} v_{j}$
If $\left(\mathrm{V}>\sum_{j=1}^{i-1} v_{j}\right)$
If $\left(\mathrm{V}>\sum_{j=1}^{i-1} v_{j}\right)$
$\mathrm{M}[i, \mathrm{~V}]=\mathrm{w}_{\mathrm{i}}+\mathrm{M}[i-1, \mathrm{~V}]$
$\mathrm{M}[i, \mathrm{~V}]=\mathrm{w}_{\mathrm{i}}+\mathrm{M}[i-1, \mathrm{~V}]$
Else
Else
$\mathrm{M}[i, \mathrm{~V}]=\max \left\{\mathrm{M}[i-1, \mathrm{~V}], \mathrm{w}_{\mathrm{i}}+\mathrm{M}\left[i-1, \max \left(0, \mathrm{~V}-\mathrm{V}_{\mathrm{i}}\right)\right]\right\}$
$\mathrm{M}[i, \mathrm{~V}]=\max \left\{\mathrm{M}[i-1, \mathrm{~V}], \mathrm{w}_{\mathrm{i}}+\mathrm{M}\left[i-1, \max \left(0, \mathrm{~V}-\mathrm{V}_{\mathrm{i}}\right)\right]\right\}$
Endlf

```
    Endlf
```

Return the maximum value V such that $\mathrm{M}[n, \mathrm{~V}] \leq \mathrm{W}$.

Intuition

- We will create subproblems based on the values, not the weights.
- Each subproblem will be defined by an index i and target value V .

Another pseudopolynomial time algorithm for 0/1-Knapsack

Algorithm Knapsack(n,W)

```
Array \(\mathrm{M}=[0 \ldots n, 0 \ldots \mathrm{~V}]\)
Initialise \(M[i, 0]=0\), for \(i=0,1, \ldots, n\)
```

```
For \(\mathrm{i}=1,2, \ldots, n\)
```

For $\mathrm{i}=1,2, \ldots, n$
For $\mathrm{V}=1, \ldots, \sum_{j=1}^{i} v_{j}$
For $\mathrm{V}=1, \ldots, \sum_{j=1}^{i} v_{j}$
If $\left(\mathrm{V}>\sum^{i-1} v_{j}\right)$
If $\left(\mathrm{V}>\sum^{i-1} v_{j}\right)$
$\mathrm{M}[i, \mathrm{~V}]=\mathrm{w}_{\mathrm{i}}+\mathrm{M}[i-1, \mathrm{~V}]$
$\mathrm{M}[i, \mathrm{~V}]=\mathrm{w}_{\mathrm{i}}+\mathrm{M}[i-1, \mathrm{~V}]$
Eise
Eise
$\mathrm{M}[i, \mathrm{~V}]=\boldsymbol{\operatorname { m a x }}\left\{\mathrm{M}[i-1, \mathrm{~V}], \mathrm{w}_{\mathrm{i}}+\mathrm{M}\left[i-1, \max \left(0, \mathrm{~V}-\mathrm{v}_{\mathrm{i}}\right)\right]\right\}$
$\mathrm{M}[i, \mathrm{~V}]=\boldsymbol{\operatorname { m a x }}\left\{\mathrm{M}[i-1, \mathrm{~V}], \mathrm{w}_{\mathrm{i}}+\mathrm{M}\left[i-1, \max \left(0, \mathrm{~V}-\mathrm{v}_{\mathrm{i}}\right)\right]\right\}$
Endlf

```
    Endlf
```

Return the maximum value V such that $\mathrm{M}[n, \mathrm{~V}] \leq \mathrm{W}$.

Intuition

- We will create subproblems based on the values, not the weights.
- Each subproblem will be defined by an index i and target value V.
- $\mathrm{M}(\mathrm{i}, \mathrm{V})$ is the smallest knapsack weight W so that it is possible to obtain a solution using a subset of the items $\{1, \ldots, i\}$ with total value at least V.

Intuition

- We will create subproblems based on the values, not the weights.
- Each subproblem will be defined by an index i and target value V.
- $\mathrm{M}(\mathrm{i}, \mathrm{V})$ is the smallest knapsack weight W so that it is possible to obtain a solution using a subset of the items $\{1, \ldots$, i\} with total value at least V.
- How many subproblems can we have?

Intuition

- We will create subproblems based on the values, not the weights.
- Each subproblem will be defined by an index i and target value V.
- $\mathrm{M}(\mathrm{i}, \mathrm{V})$ is the smallest knapsack weight W so that it is possible to obtain a solution using a subset of the items $\{1, \ldots$, i\} with total value at least V .
- How many subproblems can we have?
- At most $O\left(n^{2} v^{*}\right)$, where v^{*} is the maximum value over all the items.

Intuition

- We will create subproblems based on the values, not the weights.
- Each subproblem will be defined by an index i and target value V.
- $\mathrm{M}(i, \mathrm{~V})$ is the smallest knapsack weight W so that it is possible to obtain a solution using a subset of the items $\{1, \ldots$, i\} with total value at least V .
- How many subproblems can we have?
- At most $O\left(n^{2} v^{*}\right)$, where v^{*} is the maximum value over all the items.
- More details: Kleinberg and Tardos, Chapter 11, page 648-649.

What we know for knapsack

- A pseudo-polynomial algorithm for solving the problem exactly (actually, a couple of those).

What we know for knapsack

- A pseudo-polynomial algorithm for solving the problem exactly (actually, a couple of those).
- A polynomial time greedy approximation algorithm with approximation ratio 2.

What we know for knapsack

- A pseudo-polynomial algorithm for solving the problem exactly (actually, a couple of those).
- A polynomial time greedy approximation algorithm with approximation ratio 2.
- Can we get better approximations?

Rounding the values

- We will use a rounding parameter b.
- For each item i, let $\tilde{v}_{i}=\left\lceil v_{i} / b\right\rceil b$
- It holds that for each item i, we have $v_{i} \leq \tilde{v}_{i} \leq v_{i}+b$
- Let $\hat{v}_{i}=\tilde{v}_{i} / b=\left\lceil v_{i} / b\right\rceil$
- Intuition: We divide all the values by some factor b, and then we round up the result to get integer numbers.

Why are we doing this?

- Why are we scaling down the values of the knapsack instance?

Why are we doing this?

- Why are we scaling down the values of the knapsack instance?
- Because we know how to solve the problem in polynomial time when the values are small. How?

Why are we doing this?

- Why are we scaling down the values of the knapsack instance?
- Because we know how to solve the problem in polynomial time when the values are small. How?
- We can use our pseudo-polynomial time algorithm.

Why are we doing this?

- Why are we scaling down the values of the knapsack instance?
- Because we know how to solve the problem in polynomial time when the values are small. How?
- We can use our pseudo-polynomial time algorithm.
- But wait, that's not polynomial, running time was $\mathrm{O}\left(n^{2} \mathrm{v}^{\star}\right)$.

Why are we doing this?

- Why are we scaling down the values of the knapsack instance?
- Because we know how to solve the problem in polynomial time when the values are small. How?
- We can use our pseudo-polynomial time algorithm.
- But wait, that's not polynomial, running time was $\mathrm{O}\left(n^{2} \mathrm{v}^{\star}\right)$.
- It is, when v^{*} is small (i.e., polynomial in n).

How much do we lose?

- We solve the knapsack problem after rounding down the values by a factor b.

How much do we lose?

- We solve the knapsack problem after rounding down the values by a factor b.
- Why should this change anything?

How much do we lose?

- We solve the knapsack problem after rounding down the values by a factor b.
- Why should this change anything?
- If we scale down the values, the objective function value (the total value of the knapsack) is scaled down as well.

How much do we lose?

- We solve the knapsack problem after rounding down the values by a factor b.
- Why should this change anything?
- If we scale down the values, the objective function value (the total value of the knapsack) is scaled down as well.
- We could substitute v_{i} with v_{i} / b and get an equivalent problem.

How much do we lose?

- We solve the knapsack problem after rounding down the values by a factor b.
- Why should this change anything?
- If we scale down the values, the objective function value (the total value of the knapsack) is scaled down as well.
- We could substitute v_{i} with v_{i} / b and get an equivalent problem.
- Not quite, because $\hat{v}_{i} \neq v_{i} / b$ but $\hat{v}_{i}=\tilde{v}_{i} / b$

How much do we lose?

- We solve the knapsack problem after rounding down the values by a factor b.
- Why should this change anything?
- If we scale down the values, the objective function value (the total value of the knapsack) is scaled down as well.
- We could substitute v_{i} with v_{i} / b and get an equivalent problem.
this is not necessarily an integer
- Not quite, because $\hat{v}_{i} \neq v_{i} / b$ but $\hat{v}_{i}=\tilde{v}_{i} / b$

How much do we lose?

- We solve the knapsack problem after rounding down the values by a factor b.
- Why should this change anything?
- If we scale down the values, the objective function value (the total value of the knapsack) is scaled down as well.
- We could substitute v_{i} with v_{i} / b and get an equivalent problem.
this is not necessarily an integer
- Not quite, because $\hat{v}_{i} \neq v_{i} / b$ but $\hat{v}_{i}=\tilde{v}_{i} / b$

How much do we lose?

How much do we lose?

- We need to compare the solutions

How much do we lose?

- We need to compare the solutions
- when using v_{i}

How much do we lose?

- We need to compare the solutions
- when using v_{i}
- when using \tilde{v}_{i}

How much do we lose?

- We need to compare the solutions
- when using v_{i}
- when using \tilde{v}_{i}
- recall: $\quad \tilde{v}_{i}=\left\lceil v_{i} / b\right\rceil b$

How much do we lose?

- We need to compare the solutions
- when using v_{i}
- when using \tilde{v}_{i}
- recall: $\quad \tilde{v}_{i}=\left\lceil v_{i} / b\right\rceil b$
- i.e., we need to compute the rounding error.

How much do we lose?

- We need to compare the solutions
- when using v_{i}
- when using \tilde{v}_{i}
- recall: $\quad \tilde{v}_{i}=\left\lceil v_{i} / b\right\rceil b$
- i.e., we need to compute the rounding error.
- recall: $v_{i} \leq \tilde{v}_{i} \leq v_{i}+b$

How much do we lose?

- We need to compare the solutions
- when using v_{i}
- when using \tilde{v}_{i}
- recall: $\quad \tilde{v}_{i}=\left\lceil v_{i} / b\right\rceil b$
- i.e., we need to compute the rounding error.
- recall: $v_{i} \leq \tilde{v}_{i} \leq v_{i}+b$
- the optimal values differ by a factor of b.

The algorithm

Knapsack-Approx(ε)

Set $b=(\varepsilon / 2 n) \max v_{i}$
Run the DP algorithm for knapsack on values \hat{v}_{i} Return the set S of items found.

Feasibility

- The set S is a feasible solution to knapsack.

Feasibility

- The set S is a feasible solution to knapsack.
- We didn't mess up with the weights at all!

Feasibility

- The set S is a feasible solution to knapsack.
- We didn't mess up with the weights at all!
- This is why we could not use the DP algorithm that we knew from previous lectures.

Running Time

- The DP algorithm runs in time $O\left(n^{2} v^{*}\right)$.
- Recall: $v^{*}=\max v_{i}$
- So here, it runs in time polynomial in n and $\max \hat{v}_{i}$
- It holds that: $\arg \max v_{i}=\arg \max \hat{v}_{i}$
- So we have: $\max _{i} \hat{v}_{i}=\hat{v}_{j}=\left\lceil v_{j} / b\right\rceil=n / \varepsilon$

Running Time

- The overall running time is $\mathrm{O}\left(n^{3} / \varepsilon\right)$.
- This is polynomial in the input parameters and $1 / \varepsilon$.

Approximation Ratio

Approximation Ratio

- Let S* be any feasible solution, i.e., any set satisfying

$$
\sum_{i \in S^{*}} w_{i} \leq W
$$

Approximation Ratio

- Let S* be any feasible solution, i.e., any set satisfying

$$
\sum w_{i} \leq W
$$

- We know that $\sum_{i \in S} \tilde{v}_{i} \geq \sum_{i \in S^{*}} \tilde{v}_{i}$ (why?)

Approximation Ratio

- Let S* be any feasible solution, i.e., any set satisfying

$$
\sum w_{i} \leq W
$$

- We know that $\sum_{i \in S} \tilde{v}_{i} \geq \sum_{i \in S^{*}} \tilde{v}_{i}$ (why?)
- We have the following inequalities:

$$
\sum_{i \in S^{*}} v_{i} \leq \sum_{i \in S^{*}} \tilde{v}_{i} \leq \sum_{i \in S} \tilde{v}_{i} \leq \sum_{i \in S}\left(v_{i}+b\right) \leq n b+\sum_{i \in S} v_{i}
$$

Approximation Ratio

- Recall: $b=(\varepsilon / 2 n) \max _{i} v_{i}$
- Let v_{j} be the largest value. We have that $v_{j}=2 n b / \varepsilon$
- We also have that $v_{j}=\tilde{v}_{j}$
- Assumption: Each item fits in the knapsack
- This implies

$$
\sum_{i \in S} \tilde{v}_{i} \geq \tilde{v}_{j}=v_{j}=2 n b / \varepsilon
$$

- Finally, from the inequalities of the previous slide, we have

$$
\sum_{i \in S} v_{i} \geq \sum_{i \in S} \tilde{v}_{i}-n b \Rightarrow \sum_{i \in S} v_{i} \geq\left(2 \epsilon^{-1}-1\right) n b
$$

Approximation Ratio

- Recall: $b=(\varepsilon / 2 n) \max v_{i}$
- Let v_{j} be the largest value. We have that $v_{j}=2 n b / \varepsilon$
- We also have that $v_{j}=\tilde{v}_{j}$
- Assumption: Each item fits in the knapsack
- This implies $\sum_{i \in S} \tilde{v}_{i} \geq \tilde{v}_{j}=v_{j}=2 n b / \varepsilon$
- Finally, from the inequalities of the previous slide, we have

$$
\sum_{i \in S} v_{i} \geq \sum_{i \in S} \tilde{v}_{i}-n b \Rightarrow \sum_{i \in S} v_{i} \geq\left(2 \epsilon^{-1}-1\right) n b
$$

Approximation Ratio

- Finally, from the inequalities of the previous slide, we have

$$
\sum_{i \in S} v_{i} \geq \sum_{i \in S} \tilde{v}_{i}-n b \Rightarrow \sum_{i \in S} v_{i} \geq\left(2 \epsilon^{-1}-1\right) n b
$$

- From this, for $\varepsilon \leq 1$ we have that

$$
n b \leq \varepsilon \sum_{i \in S} v_{i}
$$

- Back to the inequalities:

$$
\sum_{i \in S^{*}} v_{i} \leq \sum_{i \in S^{*}} \tilde{v}_{i} \leq \sum_{i \in S} \tilde{v}_{i} \leq \sum_{i \in S}\left(v_{i}+b\right) \leq n b+\sum_{i \in S} v_{i} \leq(1+\varepsilon) \sum_{i \in S} v_{i}
$$

Approximation Ratio

- Finally, from the inequalities of the previous slide, we have

$$
\sum_{i \in S} v_{i} \geq \sum_{i \in S} \tilde{v}_{i}-n b \Rightarrow \sum_{i \in S} v_{i} \geq\left(2 \epsilon^{-1}-1\right) n b
$$

- From this, for $\varepsilon \leq 1$ we have that

$$
n b \leq \varepsilon \sum_{i \in S} v_{i}
$$

- Back to the inequalities:

$$
\sum_{i \in S^{*}} v_{i} \leq \sum_{i \in S^{*}} \tilde{v}_{i} \leq \sum_{i \in S} \tilde{v}_{i} \leq \sum_{i \in S}\left(v_{i}+b\right) \leq n b+\sum_{i \in S} v_{i} \leq(1+\varepsilon) \sum_{i \in S} v_{i}
$$

Approximation Ratio

- Finally, from the inequalities of the previous slide, we have

$$
\sum_{i \in S} v_{i} \geq \sum_{i \in S} \tilde{v}_{i}-n b \Rightarrow \sum_{i \in S} v_{i} \geq\left(2 \epsilon^{-1}-1\right) n b
$$

- From this, for $\varepsilon \leq 1$ we have that

$$
n b \leq \varepsilon \sum_{i \in S} v_{i}
$$

- Back to the inequalities:

$$
\sum_{i \in S^{*}} v_{i} \leq \sum_{i \in S^{*}} \tilde{v}_{i} \leq \sum_{i \in S} \tilde{v}_{i} \leq \sum_{i \in S}\left(v_{i}+b\right) \leq n b+\sum_{i \in S} v_{i} \leq(1+\varepsilon) \sum_{i \in S} v_{i}
$$

PTAS vs FPTAS

- PTAS (Polynomial Time Approximation Scheme): An approximation algorithm which, given an ε, runs in time polynomial in the input parameters and has approximation ratio $1+\varepsilon$.
- FPTAS (Fully Polynomial Time Approximation Scheme): An approximation algorithm which, given an ε, runs in time polynomial in the input parameters and $1 / \varepsilon$ and has approximation ratio $1+\varepsilon$.

PTAS vs FPTAS

- PTAS (Polynomial Time Approximation Scheme): An approximation algorithm which, given an ε, runs in time polynomial in the input parameters and has approximation ratio $1+\varepsilon$.
- FPTAS (Fully Polynomial Time Approximation Scheme): An approximation algorithm which, given an ε, runs in time polynomial in the input parameters and $1 / \varepsilon$ and has approximation ratio $1+\varepsilon$.
- What is the algorithm that we designed for knapsack? A PTAS or an FPTAS?

A PTAS (sketch) for knapsack

A PTAS (sketch) for knapsack

- Consider all possible subsets of items with size at most k.

A PTAS (sketch) for knapsack

- Consider all possible subsets of items with size at most k.
- There are $\mathrm{O}(\mathrm{kn} k)$ of those.

A PTAS (sketch) for knapsack

- Consider all possible subsets of items with size at most k.
- There are $\mathrm{O}(\mathrm{kn} k)$ of those.
- For each one of those subsets, put those items in the knapsack, and use the greedy algorithm to fill up the rest of the knapsack.

A PTAS (sketch) for knapsack

- Consider all possible subsets of items with size at most k.
- There are $\mathrm{O}(\mathrm{kn} k)$ of those.
- For each one of those subsets, put those items in the knapsack, and use the greedy algorithm to fill up the rest of the knapsack.
- One can prove that this solution is a $1+1 / \mathrm{k}$ approximation in time $\mathrm{O}\left(k n^{k+1}\right)$.

A PTAS (sketch) for knapsack

- Consider all possible subsets of items with size at most k.
- There are $\mathrm{O}(\mathrm{kn} k)$ of those.
- For each one of those subsets, put those items in the knapsack, and use the greedy algorithm to fill up the rest of the knapsack.
- One can prove that this solution is a $1+1 / \mathrm{k}$ approximation in time $\mathrm{O}\left(k n^{k+1}\right)$.
- We can pick $\varepsilon=1 / k$, and we have a $1+\varepsilon$ approximation in time $\mathrm{O}\left((1 / \varepsilon) n^{1 / \varepsilon}\right)$.

A PTAS (sketch) for knapsack

- Consider all possible subsets of items with size at most k.
- There are $\mathrm{O}(\mathrm{kn} k)$ of those.
- For each one of those subsets, put those items in the knapsack, and use the greedy algorithm to fill up the rest of the knapsack.
- One can prove that this solution is a $1+1 / \mathrm{k}$ approximation in time $\mathrm{O}\left(k n^{k+1}\right)$.
- We can pick $\varepsilon=1 / \mathrm{k}$, and we have a $1+\varepsilon$ approximation in time $\mathrm{O}\left((1 / \varepsilon) n^{1 / \varepsilon}\right)$.
- This is polynomial in n but not in $1 / \varepsilon$.

Inapproximability

- Definition: A problem P is strongly NP-hard, when there is a polynomial time reduction from a strongly NP-hard to problem to it.
- For a strongly NP-hard problem P,
- There is no Fully Polynomial Time Approximation Scheme (FPTAS).
- There is no pseudo-polynomial time algorithm that solves it exactly.

A summary of approximation algorithms

A summary of

approximation algorithms

- Different techniques (greedy, pricing method aka primal-dual, LP-relaxation and rounding, DP on rounded inputs, brute-force and greedy, dual fitting, Dual LP-relaxation and rounding, ...)

A summary of

approximation algorithms

- Different techniques (greedy, pricing method aka primal-dual, LP-relaxation and rounding, DP on rounded inputs, brute-force and greedy, dual fitting, Dual LP-relaxation and rounding, ...)
- Limitations of algorithms (tight instances).

A summary of

approximation algorithms

- Different techniques (greedy, pricing method aka primal-dual, LP-relaxation and rounding, DP on rounded inputs, brute-force and greedy, dual fitting, Dual LP-relaxation and rounding, ...)
- Limitations of algorithms (tight instances).
- Limitations of techniques (e.g., integrality gap).

A summary of

approximation algorithms

- Different techniques (greedy, pricing method aka primal-dual, LP-relaxation and rounding, DP on rounded inputs, brute-force and greedy, dual fitting, Dual LP-relaxation and rounding, ...)
- Limitations of algorithms (tight instances).
- Limitations of techniques (e.g., integrality gap).
- Inapproximability

A summary of approximation algorithms

- Different techniques (greedy, pricing method aka primal-dual, LP-relaxation and rounding, DP on rounded inputs, brute-force and greedy, dual fitting, Dual LP-relaxation and rounding, ...)
- Limitations of algorithms (tight instances).
- Limitations of techniques (e.g., integrality gap).
- Inapproximability
- How do we prove this?

A summary of approximation algorithms

- Different techniques (greedy, pricing method aka primal-dual, LP-relaxation and rounding, DP on rounded inputs, brute-force and greedy, dual fitting, Dual LP-relaxation and rounding, ...)
- Limitations of algorithms (tight instances).
- Limitations of techniques (e.g., integrality gap).
- Inapproximability
- How do we prove this?
- Sometimes easy, sometimes hard, mostly hard!

