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Recap and plan
• Previous lecture: 

• Linear Programming and Rounding.


• Application: Vertex Cover.


• Inapproximability of Vertex Cover.


• Vertex Cover on Bipartite Graphs.


• This lecture: 

• Dynamic programming on rounded inputs.


• Application: Knapsack


• PTAS and FPTAS



Methods for approximation 
algorithms

• Greedy algorithms.


• Pricing method (also known as the Primal-Dual method).


• Linear Programming and Rounding.


• Dynamic Programming on rounded inputs.



The 0/1-knapsack problem

• We are given a set of n items {1, 2, … , n}.


• Each item i has a non-negative weight wi and a non-
negative value vi.


• We are given a bound W.


• Goal: Select a subset S of the items such that  
 
and             is maximised.

∑
i∈S

wi ≤ W

∑
i∈S

vi



7 minute exercise

Algorithm SubsetSum(n,W)


       Array M=[0 … n, 0 … W] 
       Initialise M[0, w] = 0, for each w = 0, 1 , … , W


       For i = 1, 2, … , n 
            For w = 0 , … , W 
               If (wi > w)  
                   M[i, w] = M[i-1, w] 
               Else 
                   M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi ]} 
               EndIf


        Return M[n, W]

Design a dynamic programming algorithm for 0/1 knapsack.



0/1-Knapsack in 
Pseudopolynomial Time

Algorithm Knapsack(n,W)


       Array M=[0 … n, 0 … W] 
       Initialise M[0, w] = 0, for each w = 0, 1 , … , W


       For i = 1, 2, … , n 
            For w = 0 , … , W 
               If (wi > w)  
                   M[i, w] = M[i-1, w] 
               Else 
                   M[i, w] = max{M[i-1, w] , vi + M[i-1, w-wi ]} 
               EndIf


        Return M[n, W]

The dynamic programming algorithm for 0/1 knapsack solves 
knapsack optimally in time polynomial in n and W.



Another pseudopolynomial time 
algorithm for 0/1-Knapsack

Algorithm Knapsack(n,W)


       Array M=[0 … n, 0 … V] 
       Initialise M[i, 0] = 0, for i = 0, 1 , … , n


       For i = 1, 2, … , n 
            For V = 1 , … ,  
 
              If (V >        )  
 
                   M[i, V] = wi + M[i-1, V] 
               Else 
                   M[i, V] = max{M[i-1, V] , wi + M[i-1, max(0, V-vi )]} 
               EndIf


        Return the maximum value V such that M[n, V] ≤ W.

i

∑
j=1

vj
i−1

∑
j=1

vj



Intuition

• We will create subproblems based on the values, not the 
weights.


• Each subproblem will be defined by an index i and target 
value V.
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obtain a solution using a subset of the items {1, …, i} with total 
value at least V.
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Intuition
• We will create subproblems based on the values, not the weights.

• Each subproblem will be defined by an index i and target value V.

• M(i, V) is the smallest knapsack weight W so that it is possible to 
obtain a solution using a subset of the items {1, …, i} with total 
value at least V.

• How many subproblems can we have?

• At most O(n2v*), where v* is the maximum value over all the 
items.

• More details: Kleinberg and Tardos, Chapter 11, page 648-649.
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What we know for knapsack

• A pseudo-polynomial algorithm for solving the problem 
exactly (actually, a couple of those). 

• A polynomial time greedy approximation algorithm with 
approximation ratio 2.

• Can we get better approximations?



Rounding the values

• We will use a rounding parameter b.


• For each item i, let


• It holds that for each item i, we have


• Let 


• Intuition: We divide all the values by some factor b, and 
then we round up the result to get integer numbers.

ṽi = ⌈vi /b⌉b

vi ≤ ṽi ≤ vi + b

̂vi = ṽi /b = ⌈vi /b⌉
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Why are we doing this?
• Why are we scaling down the values of the knapsack 

instance?

• Because we know how to solve the problem in 
polynomial time when the values are small. How?

• We can use our pseudo-polynomial time algorithm.

• But wait, that’s not polynomial, running time was 
O(n2v*). 

• It is, when v* is small (i.e., polynomial in n).
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How much do we lose?
• We solve the knapsack problem after rounding down the 

values by a factor b.

• Why should this change anything? 

• If we scale down the values, the objective function value 
(the total value of the knapsack) is scaled down as well.

• We could substitute vi with vi / b and get an equivalent 
problem.

• Not quite, because                      but   ̂vi ≠ vi /b ̂vi = ṽi /b

this is not necessarily an integer

but this is



How much do we lose?



How much do we lose?
• We need to compare the solutions



How much do we lose?
• We need to compare the solutions

• when using vi



How much do we lose?
• We need to compare the solutions

• when using

• when using

vi

ṽi
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How much do we lose?
• We need to compare the solutions

• when using

• when using

• recall: 

• i.e., we need to compute the rounding error.

• recall: 

• the optimal values differ by a factor of b.

vi

ṽi

ṽi = ⌈vi/b⌉b

vi ≤ ṽi ≤ vi + b



The algorithm

Knapsack-Approx(ε)


    Set  
 
    Run the DP algorithm for knapsack on values 
    Return the set S of items found.

b = (ε/2n) max
i

vi

̂vi



Feasibility
• The set S is a feasible solution to knapsack.
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Feasibility
• The set S is a feasible solution to knapsack.

• We didn’t mess up with the weights at all!

• This is why we could not use the DP algorithm that we 
knew from previous lectures.



Running Time

• The DP algorithm runs in time O(n2v*).


• Recall:  


• So here, it runs in time polynomial in n and 


• It holds that : 


• So we have: 

v* = max
i

vi

max
i

̂vi

arg max
i

vi = arg max
i

̂vi

max
i

̂vi = ̂vj = ⌈vj /b⌉ = n/ε



Running Time

• The overall running time is O(n3/ε).


• This is polynomial in the input parameters and 1/ε.



Approximation Ratio
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• Let S* be any feasible solution, i.e., any set satisfying  
 

• We know that                       (why?)

∑
i∈S*

wi ≤ W

∑
i∈S

ṽi ≥ ∑
i∈S*

ṽi



Approximation Ratio

• Let S* be any feasible solution, i.e., any set satisfying  
 

• We know that                       (why?)

• We have the following inequalities:

∑
i∈S*

wi ≤ W

∑
i∈S

ṽi ≥ ∑
i∈S*

ṽi

∑
i∈S*

vi ≤ ∑
i∈S*

ṽi ≤ ∑
i∈S

ṽi ≤ ∑
i∈S

(vi + b) ≤ nb + ∑
i∈S

vi



Approximation Ratio
• Recall: 


• Let vj be the largest value. We have that


• We also have that


• Assumption: Each item fits in the knapsack


• This implies 


• Finally, from the inequalities of the previous slide, we have 
 

b = (ε/2n) max
i

vi

vj = 2nb/ε

vj = ṽj

∑
i∈S

ṽi ≥ ṽj = vj = 2nb/ε

∑
i∈S

vi ≥ ∑
i∈S

ṽi − nb ⇒ ∑
i∈S

vi ≥ (2ϵ−1 − 1)nb
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Approximation Ratio

• Finally, from the inequalities of the previous slide, we have 
 

• From this, for ε ≤ 1 we have that  

• Back to the inequalities: 
 

∑
i∈S

vi ≥ ∑
i∈S

ṽi − nb ⇒ ∑
i∈S

vi ≥ (2ϵ−1 − 1)nb

nb ≤ ε∑
i∈S

vi
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i∈S

vi



Approximation Ratio

• Finally, from the inequalities of the previous slide, we have 
 

• From this, for ε ≤ 1 we have that  

• Back to the inequalities: 
 

∑
i∈S

vi ≥ ∑
i∈S
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Approximation Ratio

• Finally, from the inequalities of the previous slide, we have 
 

• From this, for ε ≤ 1 we have that  

• Back to the inequalities: 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PTAS vs FPTAS

• PTAS (Polynomial Time Approximation Scheme): 
An approximation algorithm which, given an ε, runs in 
time polynomial in the input parameters and has 
approximation ratio 1+ε.


• FPTAS (Fully Polynomial Time Approximation Scheme): 
An approximation algorithm which, given an ε, runs in 
time polynomial in the input parameters and 1/ε and  has 
approximation ratio 1+ε.



PTAS vs FPTAS
• PTAS (Polynomial Time Approximation Scheme): 

An approximation algorithm which, given an ε, runs in 
time polynomial in the input parameters and has 
approximation ratio 1+ε.


• FPTAS (Fully Polynomial Time Approximation Scheme): 
An approximation algorithm which, given an ε, runs in 
time polynomial in the input parameters and 1/ε and  has 
approximation ratio 1+ε.


• What is the algorithm that we designed for knapsack? A 
PTAS or an FPTAS?
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A PTAS (sketch) for 
knapsack

• Consider all possible subsets of items with size at most k.

• There are O(knk) of those.

• For each one of those subsets, put those items in the knapsack, 
and use the greedy algorithm to fill up the rest of the knapsack.

• One can prove that this solution is a 1+1/k approximation in time 
O(knk+1).

• We can pick ε=1/k, and we have a 1+ε approximation in time 
O((1/ε)n1/ε). 

• This is polynomial in n but not in 1/ε.



Inapproximability
• Definition: A problem P is strongly NP-hard, when there is 

a polynomial time reduction from a strongly NP-hard to 
problem to it.


• For a strongly NP-hard problem P, 


• There is no Fully Polynomial Time Approximation 
Scheme (FPTAS).


• There is no pseudo-polynomial time algorithm that 
solves it exactly.
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A summary of 
approximation algorithms

• Different techniques (greedy, pricing method aka primal-dual, 
LP-relaxation and rounding, DP on rounded inputs, brute-force 
and greedy, dual fitting, Dual LP-relaxation and rounding, …)

• Limitations of algorithms (tight instances).

• Limitations of techniques (e.g., integrality gap).

• Inapproximability

• How do we prove this? 

• Sometimes easy, sometimes hard, mostly hard!


