
Advanced Algorithmic Techniques
(COMP523)

Approximation Algorithms 4

Recap and plan
• Previous lecture:

• Linear Programming and Rounding.

• Application: Vertex Cover.

• Inapproximability of Vertex Cover.

• Vertex Cover on Bipartite Graphs.

• This lecture:

• Dynamic programming on rounded inputs.

• Application: Knapsack

• PTAS and FPTAS

Methods for approximation
algorithms

• Greedy algorithms.

• Pricing method (also known as the Primal-Dual method).

• Linear Programming and Rounding.

• Dynamic Programming on rounded inputs.

The 0/1-knapsack problem

• We are given a set of n items {1, 2, … , n}.

• Each item i has a non-negative weight wi and a non-
negative value vi.

• We are given a bound W.

• Goal: Select a subset S of the items such that  
 
and is maximised.

∑
i∈S

wi ≤ W

∑
i∈S

vi

7 minute exercise

Algorithm SubsetSum(n,W)

 Array M=[0 … n, 0 … W] 
 Initialise M[0, w] = 0, for each w = 0, 1 , … , W

 For i = 1, 2, … , n 
 For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

 Return M[n, W]

Design a dynamic programming algorithm for 0/1 knapsack.

0/1-Knapsack in
Pseudopolynomial Time

Algorithm Knapsack(n,W)

 Array M=[0 … n, 0 … W] 
 Initialise M[0, w] = 0, for each w = 0, 1 , … , W

 For i = 1, 2, … , n 
 For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , vi + M[i-1, w-wi]} 
 EndIf

 Return M[n, W]

The dynamic programming algorithm for 0/1 knapsack solves 
knapsack optimally in time polynomial in n and W.

Another pseudopolynomial time
algorithm for 0/1-Knapsack

Algorithm Knapsack(n,W)

 Array M=[0 … n, 0 … V] 
 Initialise M[i, 0] = 0, for i = 0, 1 , … , n

 For i = 1, 2, … , n 
 For V = 1 , … ,  
 
 If (V >)  
 
 M[i, V] = wi + M[i-1, V] 
 Else 
 M[i, V] = max{M[i-1, V] , wi + M[i-1, max(0, V-vi)]} 
 EndIf

 Return the maximum value V such that M[n, V] ≤ W.

i

∑
j=1

vj
i−1

∑
j=1

vj

Intuition

• We will create subproblems based on the values, not the
weights.

• Each subproblem will be defined by an index i and target
value V.

Another pseudopolynomial time
algorithm for 0/1-Knapsack

Algorithm Knapsack(n,W)

 Array M=[0 … n, 0 … V] 
 Initialise M[i, 0] = 0, for i = 0, 1 , … , n

 For i = 1, 2, … , n 
 For V = 1 , … ,  
 
 If (V >)  
 
 M[i, V] = wi + M[i-1, V] 
 Else 
 M[i, V] = max{M[i-1, V] , wi + M[i-1, max(0, V-vi)]} 
 EndIf

 Return the maximum value V such that M[n, V] ≤ W.

i

∑
j=1

vj
i−1

∑
j=1

vj

Intuition
• We will create subproblems based on the values, not the weights.

• Each subproblem will be defined by an index i and target value V.

• M(i, V) is the smallest knapsack weight W so that it is possible to
obtain a solution using a subset of the items {1, …, i} with total
value at least V.

Intuition
• We will create subproblems based on the values, not the weights.

• Each subproblem will be defined by an index i and target value V.

• M(i, V) is the smallest knapsack weight W so that it is possible to
obtain a solution using a subset of the items {1, …, i} with total
value at least V.

• How many subproblems can we have?

Intuition
• We will create subproblems based on the values, not the weights.

• Each subproblem will be defined by an index i and target value V.

• M(i, V) is the smallest knapsack weight W so that it is possible to
obtain a solution using a subset of the items {1, …, i} with total
value at least V.

• How many subproblems can we have?

• At most O(n2v*), where v* is the maximum value over all the
items.

Intuition
• We will create subproblems based on the values, not the weights.

• Each subproblem will be defined by an index i and target value V.

• M(i, V) is the smallest knapsack weight W so that it is possible to
obtain a solution using a subset of the items {1, …, i} with total
value at least V.

• How many subproblems can we have?

• At most O(n2v*), where v* is the maximum value over all the
items.

• More details: Kleinberg and Tardos, Chapter 11, page 648-649.

What we know for knapsack

• A pseudo-polynomial algorithm for solving the problem
exactly (actually, a couple of those).

What we know for knapsack

• A pseudo-polynomial algorithm for solving the problem
exactly (actually, a couple of those).

• A polynomial time greedy approximation algorithm with
approximation ratio 2.

What we know for knapsack

• A pseudo-polynomial algorithm for solving the problem
exactly (actually, a couple of those).

• A polynomial time greedy approximation algorithm with
approximation ratio 2.

• Can we get better approximations?

Rounding the values

• We will use a rounding parameter b.

• For each item i, let

• It holds that for each item i, we have

• Let

• Intuition: We divide all the values by some factor b, and
then we round up the result to get integer numbers.

ṽi = ⌈vi /b⌉b

vi ≤ ṽi ≤ vi + b

̂vi = ṽi /b = ⌈vi /b⌉

Why are we doing this?
• Why are we scaling down the values of the knapsack

instance?

Why are we doing this?
• Why are we scaling down the values of the knapsack

instance?

• Because we know how to solve the problem in
polynomial time when the values are small. How?

Why are we doing this?
• Why are we scaling down the values of the knapsack

instance?

• Because we know how to solve the problem in
polynomial time when the values are small. How?

• We can use our pseudo-polynomial time algorithm.

Why are we doing this?
• Why are we scaling down the values of the knapsack

instance?

• Because we know how to solve the problem in
polynomial time when the values are small. How?

• We can use our pseudo-polynomial time algorithm.

• But wait, that’s not polynomial, running time was
O(n2v*).

Why are we doing this?
• Why are we scaling down the values of the knapsack

instance?

• Because we know how to solve the problem in
polynomial time when the values are small. How?

• We can use our pseudo-polynomial time algorithm.

• But wait, that’s not polynomial, running time was
O(n2v*).

• It is, when v* is small (i.e., polynomial in n).

How much do we lose?
• We solve the knapsack problem after rounding down the

values by a factor b.

How much do we lose?
• We solve the knapsack problem after rounding down the

values by a factor b.

• Why should this change anything?

How much do we lose?
• We solve the knapsack problem after rounding down the

values by a factor b.

• Why should this change anything?

• If we scale down the values, the objective function value
(the total value of the knapsack) is scaled down as well.

How much do we lose?
• We solve the knapsack problem after rounding down the

values by a factor b.

• Why should this change anything?

• If we scale down the values, the objective function value
(the total value of the knapsack) is scaled down as well.

• We could substitute vi with vi / b and get an equivalent
problem.

How much do we lose?
• We solve the knapsack problem after rounding down the

values by a factor b.

• Why should this change anything?

• If we scale down the values, the objective function value
(the total value of the knapsack) is scaled down as well.

• We could substitute vi with vi / b and get an equivalent
problem.

• Not quite, because but ̂vi ≠ vi /b ̂vi = ṽi /b

How much do we lose?
• We solve the knapsack problem after rounding down the

values by a factor b.

• Why should this change anything?

• If we scale down the values, the objective function value
(the total value of the knapsack) is scaled down as well.

• We could substitute vi with vi / b and get an equivalent
problem.

• Not quite, because but ̂vi ≠ vi /b ̂vi = ṽi /b

this is not necessarily an integer

How much do we lose?
• We solve the knapsack problem after rounding down the

values by a factor b.

• Why should this change anything?

• If we scale down the values, the objective function value
(the total value of the knapsack) is scaled down as well.

• We could substitute vi with vi / b and get an equivalent
problem.

• Not quite, because but ̂vi ≠ vi /b ̂vi = ṽi /b

this is not necessarily an integer

but this is

How much do we lose?

How much do we lose?
• We need to compare the solutions

How much do we lose?
• We need to compare the solutions

• when using vi

How much do we lose?
• We need to compare the solutions

• when using

• when using

vi

ṽi

How much do we lose?
• We need to compare the solutions

• when using

• when using

• recall:

vi

ṽi

ṽi = ⌈vi/b⌉b

How much do we lose?
• We need to compare the solutions

• when using

• when using

• recall:

• i.e., we need to compute the rounding error.

vi

ṽi

ṽi = ⌈vi/b⌉b

How much do we lose?
• We need to compare the solutions

• when using

• when using

• recall:

• i.e., we need to compute the rounding error.

• recall:

vi

ṽi

ṽi = ⌈vi/b⌉b

vi ≤ ṽi ≤ vi + b

How much do we lose?
• We need to compare the solutions

• when using

• when using

• recall:

• i.e., we need to compute the rounding error.

• recall:

• the optimal values differ by a factor of b.

vi

ṽi

ṽi = ⌈vi/b⌉b

vi ≤ ṽi ≤ vi + b

The algorithm

Knapsack-Approx(ε)

 Set  
 
 Run the DP algorithm for knapsack on values 
 Return the set S of items found.

b = (ε/2n) max
i

vi

̂vi

Feasibility
• The set S is a feasible solution to knapsack.

Feasibility
• The set S is a feasible solution to knapsack.

• We didn’t mess up with the weights at all!

Feasibility
• The set S is a feasible solution to knapsack.

• We didn’t mess up with the weights at all!

• This is why we could not use the DP algorithm that we
knew from previous lectures.

Running Time

• The DP algorithm runs in time O(n2v*).

• Recall:

• So here, it runs in time polynomial in n and

• It holds that :

• So we have:

v* = max
i

vi

max
i

̂vi

arg max
i

vi = arg max
i

̂vi

max
i

̂vi = ̂vj = ⌈vj /b⌉ = n/ε

Running Time

• The overall running time is O(n3/ε).

• This is polynomial in the input parameters and 1/ε.

Approximation Ratio

Approximation Ratio

• Let S* be any feasible solution, i.e., any set satisfying  
 

∑
i∈S*

wi ≤ W

Approximation Ratio

• Let S* be any feasible solution, i.e., any set satisfying  
 

• We know that (why?)

∑
i∈S*

wi ≤ W

∑
i∈S

ṽi ≥ ∑
i∈S*

ṽi

Approximation Ratio

• Let S* be any feasible solution, i.e., any set satisfying  
 

• We know that (why?)

• We have the following inequalities:

∑
i∈S*

wi ≤ W

∑
i∈S

ṽi ≥ ∑
i∈S*

ṽi

∑
i∈S*

vi ≤ ∑
i∈S*

ṽi ≤ ∑
i∈S

ṽi ≤ ∑
i∈S

(vi + b) ≤ nb + ∑
i∈S

vi

Approximation Ratio
• Recall:

• Let vj be the largest value. We have that

• We also have that

• Assumption: Each item fits in the knapsack

• This implies

• Finally, from the inequalities of the previous slide, we have 
 

b = (ε/2n) max
i

vi

vj = 2nb/ε

vj = ṽj

∑
i∈S

ṽi ≥ ṽj = vj = 2nb/ε

∑
i∈S

vi ≥ ∑
i∈S

ṽi − nb ⇒ ∑
i∈S

vi ≥ (2ϵ−1 − 1)nb

Approximation Ratio
• Recall:

• Let vj be the largest value. We have that

• We also have that

• Assumption: Each item fits in the knapsack

• This implies

• Finally, from the inequalities of the previous slide, we have 
 

b = (ε/2n) max
i

vi

vj = 2nb/ε

vj = ṽj

∑
i∈S

ṽi ≥ ṽj = vj = 2nb/ε

∑
i∈S

vi ≥ ∑
i∈S

ṽi − nb ⇒ ∑
i∈S

vi ≥ (2ϵ−1 − 1)nb

Approximation Ratio

• Finally, from the inequalities of the previous slide, we have 
 

• From this, for ε ≤ 1 we have that  

• Back to the inequalities: 
 

∑
i∈S

vi ≥ ∑
i∈S

ṽi − nb ⇒ ∑
i∈S

vi ≥ (2ϵ−1 − 1)nb

nb ≤ ε∑
i∈S

vi

∑
i∈S*

vi ≤ ∑
i∈S*

ṽi ≤ ∑
i∈S

ṽi ≤ ∑
i∈S

(vi + b) ≤ nb + ∑
i∈S

vi ≤ (1 + ε)∑
i∈S

vi

Approximation Ratio

• Finally, from the inequalities of the previous slide, we have 
 

• From this, for ε ≤ 1 we have that  

• Back to the inequalities: 
 

∑
i∈S

vi ≥ ∑
i∈S

ṽi − nb ⇒ ∑
i∈S

vi ≥ (2ϵ−1 − 1)nb

nb ≤ ε∑
i∈S

vi

∑
i∈S*

vi ≤ ∑
i∈S*

ṽi ≤ ∑
i∈S

ṽi ≤ ∑
i∈S

(vi + b) ≤ nb + ∑
i∈S

vi ≤ (1 + ε)∑
i∈S

vi

Approximation Ratio

• Finally, from the inequalities of the previous slide, we have 
 

• From this, for ε ≤ 1 we have that  

• Back to the inequalities: 
 

∑
i∈S

vi ≥ ∑
i∈S

ṽi − nb ⇒ ∑
i∈S

vi ≥ (2ϵ−1 − 1)nb

nb ≤ ε∑
i∈S

vi

∑
i∈S*

vi ≤ ∑
i∈S*

ṽi ≤ ∑
i∈S

ṽi ≤ ∑
i∈S

(vi + b) ≤ nb + ∑
i∈S

vi ≤ (1 + ε)∑
i∈S

vi

PTAS vs FPTAS

• PTAS (Polynomial Time Approximation Scheme): 
An approximation algorithm which, given an ε, runs in
time polynomial in the input parameters and has
approximation ratio 1+ε.

• FPTAS (Fully Polynomial Time Approximation Scheme): 
An approximation algorithm which, given an ε, runs in
time polynomial in the input parameters and 1/ε and has
approximation ratio 1+ε.

PTAS vs FPTAS
• PTAS (Polynomial Time Approximation Scheme): 

An approximation algorithm which, given an ε, runs in
time polynomial in the input parameters and has
approximation ratio 1+ε.

• FPTAS (Fully Polynomial Time Approximation Scheme): 
An approximation algorithm which, given an ε, runs in
time polynomial in the input parameters and 1/ε and has
approximation ratio 1+ε.

• What is the algorithm that we designed for knapsack? A
PTAS or an FPTAS?

A PTAS (sketch) for
knapsack

A PTAS (sketch) for
knapsack

• Consider all possible subsets of items with size at most k.

A PTAS (sketch) for
knapsack

• Consider all possible subsets of items with size at most k.

• There are O(knk) of those.

A PTAS (sketch) for
knapsack

• Consider all possible subsets of items with size at most k.

• There are O(knk) of those.

• For each one of those subsets, put those items in the knapsack,
and use the greedy algorithm to fill up the rest of the knapsack.

A PTAS (sketch) for
knapsack

• Consider all possible subsets of items with size at most k.

• There are O(knk) of those.

• For each one of those subsets, put those items in the knapsack,
and use the greedy algorithm to fill up the rest of the knapsack.

• One can prove that this solution is a 1+1/k approximation in time
O(knk+1).

A PTAS (sketch) for
knapsack

• Consider all possible subsets of items with size at most k.

• There are O(knk) of those.

• For each one of those subsets, put those items in the knapsack,
and use the greedy algorithm to fill up the rest of the knapsack.

• One can prove that this solution is a 1+1/k approximation in time
O(knk+1).

• We can pick ε=1/k, and we have a 1+ε approximation in time
O((1/ε)n1/ε).

A PTAS (sketch) for
knapsack

• Consider all possible subsets of items with size at most k.

• There are O(knk) of those.

• For each one of those subsets, put those items in the knapsack,
and use the greedy algorithm to fill up the rest of the knapsack.

• One can prove that this solution is a 1+1/k approximation in time
O(knk+1).

• We can pick ε=1/k, and we have a 1+ε approximation in time
O((1/ε)n1/ε).

• This is polynomial in n but not in 1/ε.

Inapproximability
• Definition: A problem P is strongly NP-hard, when there is

a polynomial time reduction from a strongly NP-hard to
problem to it.

• For a strongly NP-hard problem P,

• There is no Fully Polynomial Time Approximation
Scheme (FPTAS).

• There is no pseudo-polynomial time algorithm that
solves it exactly.

A summary of
approximation algorithms

A summary of
approximation algorithms

• Different techniques (greedy, pricing method aka primal-dual,
LP-relaxation and rounding, DP on rounded inputs, brute-force
and greedy, dual fitting, Dual LP-relaxation and rounding, …)

A summary of
approximation algorithms

• Different techniques (greedy, pricing method aka primal-dual,
LP-relaxation and rounding, DP on rounded inputs, brute-force
and greedy, dual fitting, Dual LP-relaxation and rounding, …)

• Limitations of algorithms (tight instances).

A summary of
approximation algorithms

• Different techniques (greedy, pricing method aka primal-dual,
LP-relaxation and rounding, DP on rounded inputs, brute-force
and greedy, dual fitting, Dual LP-relaxation and rounding, …)

• Limitations of algorithms (tight instances).

• Limitations of techniques (e.g., integrality gap).

A summary of
approximation algorithms

• Different techniques (greedy, pricing method aka primal-dual,
LP-relaxation and rounding, DP on rounded inputs, brute-force
and greedy, dual fitting, Dual LP-relaxation and rounding, …)

• Limitations of algorithms (tight instances).

• Limitations of techniques (e.g., integrality gap).

• Inapproximability

A summary of
approximation algorithms

• Different techniques (greedy, pricing method aka primal-dual,
LP-relaxation and rounding, DP on rounded inputs, brute-force
and greedy, dual fitting, Dual LP-relaxation and rounding, …)

• Limitations of algorithms (tight instances).

• Limitations of techniques (e.g., integrality gap).

• Inapproximability

• How do we prove this?

A summary of
approximation algorithms

• Different techniques (greedy, pricing method aka primal-dual,
LP-relaxation and rounding, DP on rounded inputs, brute-force
and greedy, dual fitting, Dual LP-relaxation and rounding, …)

• Limitations of algorithms (tight instances).

• Limitations of techniques (e.g., integrality gap).

• Inapproximability

• How do we prove this?

• Sometimes easy, sometimes hard, mostly hard!

