Advanced Algorithmic Techniques
(COMP523)

Randomised Algorithms



Recap and plan

* Previous lectures:

e Approximation Algorithms.
* Next lectures:

e Randomised Algorithms.
* This lecture:

e Probabillities background.



The Poker slide

e Over the weekend, | was playing Texas Hold’em with
some friends...

e (absolutely true story).

https://www.888poker.com/poker/poker-odds-calculator



https://www.888poker.com/poker/poker-odds-calculator
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Heads or Talls

You flip two fair coins

X = the value of the sum, where \;"‘—AJ |

H counts for 7, T counts for 0. _
What is the probability of X=1? S

Possible outcomes: HH, HT, TH, TT
1/2

What is the expected value of X?

Possible outcomes: HH (2), HT (1), TH (1), TT (0)
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There are n processes in a distributed system.

The set of possible identifiers is the set of all k-bit strings.
* e.g., 1001001...01

Each process chooses an identifier uniformly at random.
e |.e., all strings have equal probability of being chosen.

What is the probability that processes 7 and 2 choose the
same identifier?
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ldentifier Selection

e What is the probability that processes 7 and 2 choose the
same identifier?

* The event E consists of all the points for which the first
two coordinates (black and red) are the same.

e All values possible for coordinates 3 to n, all values
possible for coordinate 2 (red) and then coordinate 7 is

fixed (black).

1 1
PriE] = ) p(i) = 240D = —
i€k
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Conditional Probability

Back to the Poker game.

What was my probability of winning?

| could only win if the river was a King.

We already had drawn 8 cards, 2 of which were Kings.

What was the probability that another King would turn
up?

e 44 cards left, 2 Kings left, Probability 2/44 = 0.045.
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Conditional Probability

e |f we toss two fair coins, what is the probability that we
get 2 “heads”, given that the first toss was “heads”?

e E =2 heads, F = first toss heads

PriF1=1/2 PrlIENnF]=1/4

PrENF] 1
PriEF] = Ir|=[>r[1r;] ] )



Birthday Problem

e We have a room of 25 people.

e Assume that one’s birthday is drawn uniformly at random
from all the days of the year.

e What is the probabillity that there exist two of them that
have the same birthday?
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e Pick a person. The probability that he/she does not share a birthday with
anyone previously chosen is ...

e 1

e Pick another person. The probability that he/she does not share a birthday
with anyone previously chosen is ...

e 364/365

e Pick another person. The probability that he/she does not share a birthday
with anyone previously chosen is ...

e 363/3657

 What if the first two people actually share a birthday?



Birthday Problem

* Pick a person. The probability that he/she does not share a birthday with
anyone previously chosen is ...

o 1

* Pick another person. The probability that he/she does not share a
birthday with anyone previously chosen is ...

e 364/365

e Pick another person. The probability that he/she does not share a
birthday with anyone previously chosen, given that all the previously
chosen people do not share a birthday is ...

e 363/365
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Birthday Problem

e [he probability that there do not exist any two people that
share a birthday is equal to:

 Pr[71st and 2nd don’t share] x
Pr[3rd does not match the previous] x
Pr[4th does not match the previous] X ... X
Prl[last does not match the previous]

e 1Xx364/365 x 363/365 X ... X 341/365 = 0.431

e The probability that there exist two people that share a
birthday is then equal to: 7-0.437 = 0.569
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Independent Events

Two events are independent, if information about the
outcome of one of them does not affect our estimate of
the likelihood of the other.

Formally: Pr[E | F] = Pr[E] and Pr[F | E] = Pr[E].

. . PriIENnF
This implies: rr[,r[;] L Pr(E] = Pr[En F] = Pr(E] - Pr[F]

In other words, the probability that two independent

events happen is the product of the probabilities that each
one of them happens.
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e Generalising: Pr ﬂEi =HPr[Ei]

el el

The probability A and B and C happens
is the product of their probabilities.
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The Union Bound

iIndependent events

generally

Pr UEZ-

= zn: Pr(E ]
i=1

The probability that A or B or C happens
Is the sum of their probabilities.

Pr OEZ.
=1

< i Pr(E ]
=1

The probability that A or B or C happens
Is at most the sum of their probabilities.
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How to use the Union Bound

outcome with high probabillity.

Suppose that we design an algorithm which will produce the correct

We first formulate a set of “bad events” E1, Eo, ... , En, which will force

our algorithm to produce an incorrect outcome.

correct outcome.

e \We have:

Pr(['] <Pr UEi
=1

If none of these “bad events” happens, our algorithm will produce the

Suppose that F is the event that the algorithm fails.

< i Pr(E ]
=1
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How to use the Union Bound

* Wehave:  Pr[F]<Pr || JE| <) PriE]
i=1

* |f we can prove that the sum of probabilities of these
events is small, then we can prove that our algorithm
succeeds with high probability.
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ldentifier Selection

There are 1000 processes in a distributed system.
The set of possible identifiers is the set of all 32-bit strings.
* e.g.,, 1007001...01

Each process chooses an identifier uniformly at random.
* |.e., all strings have equal probability of being chosen.

What is the probability that any two of them choose the
same identifier?



ldentifier Selection

 What is the probability that any two of them choose the same identifier?



ldentifier Selection

 What is the probability that any two of them choose the same identifier?

e (Call this event F.



ldentifier Selection

 What is the probability that any two of them choose the same identifier?
e Call this event F.

e Simple “failure” events: Ej;



ldentifier Selection

 What is the probability that any two of them choose the same identifier?
e Call this event F.
e Simple “failure” events: Ej;

e Processes / and j choose the same identifier.



ldentifier Selection

 What is the probability that any two of them choose the same identifier?
e (Call this event F.

e Simple “failure” events: Ej;
e Processes / and j choose the same identifier.

e How many such events?

&



ldentifier Selection

 What is the probability that any two of them choose the same identifier?
e (Call this event F.

e Simple “failure” events: Ej;
e Processes / and j choose the same identifier.

e How many such events?

&



ldentifier Selection

What is the probability that any two of them choose the same identifier?

e (Call this event F.
Simple “failure” events: Ej
e Processes / and j choose the same identifier.

How many such events?

5

What is the probability of each happening?



ldentifier Selection

What is the probability that any two of them choose the same identifier?
e (Call this event F.

Simple “failure” events: Ej

e Processes / and j choose the same identifier.

How many such events?

(1000)
2
What is the probability of each happening?

¢ 1/282
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e \What is the probability of failure?
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ldentifier Selection

e \What is the probability of failure?

PriF] < ) PriE,] = <

l,]

1000 1
- — < 0.000125
o 732

e What is the probability of success?

at least 1-0.000125 = 0.999875



Random Variables and
Expectations

e Random Variable: (Informally) A variable X whose values
depend on outcomes of a random phenomenon.

 Pr[X =] : the probability that the value of X is .

e Expectation (“average value”) of X:

E[x] = ) PriX =]

j=1



Expectation

e Simple example:

e Assume that X takes a value in {7, 2, ..., n} with
probability 7/n.

e E[X]=1(1/n) + 2(1/n) + ... + n(1/n) = (1+2+...+n)/n =
(n+1)/2
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Pr[H] = p and
PriT]=1-p

 We flip repeatedly until we get one “heads” result.

e What is the expected number of times that we need to flip
for that to happen?
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Waiting for the first success

* We flip a biased coin, where
Pr[H] = p and
PriT]=1-p

 We flip repeatedly until we get one “heads” result.

e What is the expected number of times that we need to flip
for that to happen?

e | et X be the random variable of the number of flips.

e We are looking for E[X].
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Waiting for the first success

 Suppose that we get “heads” on the j-th flip.
e Wehave: Prix=jl=1-py'-p

e The expectation then becomes:

E(X]= ) j-PriX=jl= ) jd-py'p= 1’%192]'(1 - pY
j=1

p U-p 1

l-p  p? p




Application

e Suppose that we repeat an experiment multiple times,
and each time the probability of success is p > 0.

e e.g., compute a minimum cut in a graph.

e The expected number of repetitions that we need until the
experiment succeeds is 1/p.



Linearity of Expectation

e et Xand Y be random variables defined over the same
space.

e | et X+Y be the random variable equal to X(w) + Y(w) on a
point w of the sample space.

e It holds that E[X+Y] = E[X] + E[Y]

e Generally:

EX, + X+ ...+ X,]= ) X,
i=1



Guessing a card

* A deck with n cards.
e We draw a card, and before we see it, we guess what it is.

 We pick one of the cards uniformly at random from the
whole deck.

e How many of our predictions do we expect to be correct?
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Guessing a card

* A deck with n cards.
e We draw a card, and before we see it, we guess what it is.

 We pick one of the cards uniformly at random from the
cards you have not seen.

e How many of our predictions do we expect to be correct?
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e To help us compute X, we will defined variables Xi:
e Xiis 7 if the ith prediction is correct and O otherwise.
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