Advanced Algorithmic Techniques (COMP523)

Randomised Algorithms

Recap and plan

- Previous lectures:
 - Approximation Algorithms.
- Next lectures:
 - Randomised Algorithms.
- This lecture:
 - Probabilities background.

The Poker slide

- Over the weekend, I was playing Texas Hold'em with some friends...
 - (absolutely true story).

https://www.888poker.com/poker/poker-odds-calculator

You flip a fair coin

You flip a fair coin What is the probability of "heads"?

You flip a fair coin What is the probability of "heads"? 1/2

You flip a fair coin What is the probability of "heads"? 1/2

You flip two fair coins

You flip a fair coin What is the probability of "heads"? 1/2

You flip two fair coins What is the probability of "both heads"?

You flip a fair coin What is the probability of "heads"? 1/2

You flip two fair coins What is the probability of "both heads"? Possible outcomes: HH, HT, TH, TT

You flip a fair coin What is the probability of "heads"? 1/2

You flip two fair coins What is the probability of "both heads"? Possible outcomes: HH, HT, TH, TT 1/4

You flip a fair coin What is the probability of "heads"? 1/2

You flip two fair coins What is the probability of "both heads"? Possible outcomes: HH, HT, TH, TT 1/4

What is the probability of "both the same"?

You flip a fair coin What is the probability of "heads"? 1/2

You flip two fair coins What is the probability of "both heads"? Possible outcomes: HH, HT, TH, TT 1/4

What is the probability of "both the same"? Possible outcomes: HH, HT, TH, TT

You flip a fair coin What is the probability of "heads"? 1/2

You flip two fair coins What is the probability of "both heads"? Possible outcomes: HH, HT, TH, TT 1/4

What is the probability of "both the same"?

Possible outcomes: HH, HT, TH, TT

1/2

You flip two fair coins

You flip two fair coins X = the value of the sum, where H counts for 1, T counts for 0.

You flip two fair coins X = the value of the sum, where H counts for 1, T counts for 0. What is the probability of X=1?

You flip two fair coins X = the value of the sum, where H counts for 1, T counts for 0. What is the probability of X=1? Possible outcomes: HH, HT, TH, TT

You flip two fair coins X = the value of the sum, where H counts for 1, T counts for 0. What is the probability of X=1? Possible outcomes: HH, HT, TH, TT

1/2

You flip two fair coins X = the value of the sum, where H counts for 1, T counts for 0. What is the probability of X=1? Possible outcomes: HH, HT, TH, TT

1/2

What is the *expected value* of X?

You flip two fair coins X = the value of the sum, where H counts for 1, T counts for 0. What is the probability of X=1? Possible outcomes: HH, HT, TH, TT

1/2

What is the *expected value* of X?

Possible outcomes: HH (2), HT (1), TH (1), TT (0)

You flip two fair coins X = the value of the sum, where H counts for 1, T counts for 0. What is the probability of X=1? Possible outcomes: HH, HT, TH, TT

1/2

What is the *expected value* of X?

Possible outcomes: HH (2), HT (1), TH (1), TT (0)

This happens with probability 1/2

Heads or Tails (biased coin)

Heads or Tails (biased coin)

This happens with probability 2/3

Heads or Tails (biased coin)

What is this event?

What is its probability?

What is this event?

What is its probability?

This happens with probability 1/4

• There are *n* processes in a distributed system.

- There are *n* processes in a distributed system.
- The set of possible identifiers is the set of all *k*-bit strings.

- There are *n* processes in a distributed system.
- The set of possible identifiers is the set of all *k*-bit strings.
 - e.g., 1001001...01

- There are *n* processes in a distributed system.
- The set of possible identifiers is the set of all *k*-bit strings.
 - e.g., 1001001...01
- Each process chooses an identifier *uniformly at random*.

- There are *n* processes in a distributed system.
- The set of possible identifiers is the set of all *k*-bit strings.
 - e.g., 1001001...01
- Each process chooses an identifier *uniformly at random*.
 - i.e., all strings have equal probability of being chosen.

- There are *n* processes in a distributed system.
- The set of possible identifiers is the set of all *k*-bit strings.
 - e.g., 1001001...01
- Each process chooses an identifier *uniformly at random*.
 - i.e., all strings have equal probability of being chosen.
- What is the probability that processes 1 and 2 choose the same identifier?

000 00	011 00
000 01	
000 10	
-	•
•	100 00
001 00	
•	· · ·
•	
010 00	111 11

000 ... 00 000 ... 00 000 ... 00 ...

111 ... 11 011 ... 10 011 ... 11 ...

111... 11 111 ... 11 111 ... 11 ...

000 ... **00 000** ... **00** 000 ... 00 ...

This happens with probability ?

111 ... 11 011 ... 10 011 ... 11 ...

111... 11 111 ... 11 111 ... 11 ...

000 ... **00 000** ... **00** 000 ... 00 ...

This happens with probability ?

kn possible strings

111 ... 11 011 ... 10 011 ... 11 ...

111... 11 111 ... 11 111 ... 11 ...

000 ... 00 000 ... 00 000 ... 00 ...

This happens with probability ?

kn possible strings2^{kn} possible choices

111 ... 11 011 ... 10 011 ... 11 ...

111... 11 111 ... 11 111 ... 11 ...

000 ... **00 000** ... **00** 000 ... 00 ...

This happens with probability ?

kn possible strings
2^{kn} possible choices
2^{kn} possible points

111 ... 11 011 ... 10 011 ... 11 ...

111... 11 111 ... 11 111 ... 11 ...

This happens with probability ?

kn possible strings
2^{kn} possible choices
2^{kn} possible points
same probability for all

000 ... 00 **000** ... 00 000 ... 00 ...

111 ... 11 011 ... 10 011 ... 11 ...

111... 11 111 ... 11 111 ... 11 ...

000 ... 00 000 ... 00 000 ... 00 ...

This happens with probability 1/2^{kn}

111 ... 11 011 ... 10 011 ... 11 ...

kn-bit strings
 2^{kn} possible choices
 2^{kn} possible points
 same probability for all

111... 11 111 ... 11 111 ... 11 ...

• What is the probability that processes 1 and 2 choose the same identifier?

- What is the probability that processes 1 and 2 choose the same identifier?
- The event E consists of all the points for which the first two coordinates (black and red) are the same.

- What is the probability that processes 1 and 2 choose the same identifier?
- The event E consists of all the points for which the first two coordinates (black and red) are the same.
 - All values possible for coordinates 3 to n, all values possible for coordinate 2 (red) and then coordinate 1 is fixed (black).

- What is the probability that processes 1 and 2 choose the same identifier?
- The event E consists of all the points for which the first two coordinates (black and red) are the same.
 - All values possible for coordinates 3 to n, all values possible for coordinate 2 (red) and then coordinate 1 is fixed (black).

$$\Pr[E] = \sum_{i \in E} p(i) = \frac{1}{2^{kn}} \cdot 2^{k(n-1)} = \frac{1}{2^k}$$

• Back to the Poker game.

- Back to the Poker game.
- What was my probability of winning?

- Back to the Poker game.
- What was my probability of winning?
- I could only win if the river was a King.

- Back to the Poker game.
- What was my probability of winning?
- I could only win if the river was a King.
- We already had drawn 8 cards, 2 of which were Kings.

- Back to the Poker game.
- What was my probability of winning?
- I could only win if the river was a King.
- We already had drawn 8 cards, 2 of which were Kings.
- What was the probability that another King would turn up?

- Back to the Poker game.
- What was my probability of winning?
- I could only win if the river was a King.
- We already had drawn 8 cards, 2 of which were Kings.
- What was the probability that another King would turn up?
 - 44 cards left, 2 Kings left, Probability 2/44 = 0.045.

 Given that event F has occurred, what is the probability that even E will occur?

$$\Pr[E \mid F] = \frac{\Pr[E \cap F]}{\Pr[F]}$$

$$\mathbf{Pr}[E] = \sum_{j=1}^{k} \mathbf{Pr}[E | F_j] \cdot \mathbf{Pr}[F_j]$$

 Given that event F has occurred, what is the probability that even E will occur?

$$\Pr[E|F] = \frac{\Pr[E \cap F]}{\Pr[F]}$$

$$\mathbf{Pr}[E] = \sum_{j=1}^{k} \mathbf{Pr}[E | F_j] \cdot \mathbf{Pr}[F_j]$$

 Given that event F has occurred, what is the probability that even E will occur?

$$\Pr[E|F] = \frac{\Pr[E \cap F]}{\Pr[F]}$$

$$\mathbf{Pr}[E] = \sum_{j=1}^{k} \mathbf{Pr}[E | F_j] \cdot \mathbf{Pr}[F_j]$$

Conditional Probability

 Given that event F has occurred, what is the probability that even E will occur?

$$\Pr[E|F] = \frac{\Pr[E \cap F]}{\Pr[F]}$$

$$\mathbf{Pr}[E] = \sum_{j=1}^{k} \mathbf{Pr}[E | F_j] \cdot \mathbf{Pr}[F_j]$$

Sample Space Ω

Conditional Probability

- If we toss two fair coins, what is the probability that we get 2 "heads", given that the first toss was "heads"?
- E = 2 heads, F = first toss heads

 $\Pr[F] = 1/2$ $\Pr[E \cap F] = 1/4$

$$\Pr[E \mid F] = \frac{\Pr[E \cap F]}{\Pr[F]} = \frac{1}{2}$$

- We have a room of 25 people.
- Assume that one's birthday is drawn uniformly at random from all the days of the year.
- What is the probability that there exist two of them that have the same birthday?

• Pick a person. The probability that he/she does not share a birthday with anyone previously chosen is ...

• Pick a person. The probability that he/she does not share a birthday with anyone previously chosen is ...

• 1

• Pick a person. The probability that he/she does not share a birthday with anyone previously chosen is ...

• 1

• Pick another person. The probability that he/she does not share a birthday with anyone previously chosen is ...

• Pick a person. The probability that he/she does not share a birthday with anyone previously chosen is ...

• 1

- Pick another person. The probability that he/she does not share a birthday with anyone previously chosen is ...
 - 364/365

 Pick a person. The probability that he/she does not share a birthday with anyone previously chosen is ...

• 1

 Pick another person. The probability that he/she does not share a birthday with anyone previously chosen is ...

• 364/365

• Pick another person. The probability that he/she does not share a birthday with anyone previously chosen is ...

 Pick a person. The probability that he/she does not share a birthday with anyone previously chosen is ...

• 1

 Pick another person. The probability that he/she does not share a birthday with anyone previously chosen is ...

• 364/365

- Pick another person. The probability that he/she does not share a birthday with anyone previously chosen is ...
 - 363/365?

 Pick a person. The probability that he/she does not share a birthday with anyone previously chosen is ...

• 1

 Pick another person. The probability that he/she does not share a birthday with anyone previously chosen is ...

• 364/365

- Pick another person. The probability that he/she does not share a birthday with anyone previously chosen is ...
 - 363/365?
 - What if the first two people actually share a birthday?

 Pick a person. The probability that he/she does not share a birthday with anyone previously chosen is ...

• 1

 Pick another person. The probability that he/she does not share a birthday with anyone previously chosen is ...

• 364/365

- Pick another person. The probability that he/she does not share a birthday with anyone previously chosen, *given that all the previously chosen people do not share a birthday* is ...
 - 363/365

• The probability that there do not exist any two people that share a birthday is equal to:

- The probability that there do not exist any two people that share a birthday is equal to:
 - Pr[1st and 2nd don't share] x
 Pr[3rd does not match the previous] x
 Pr[4th does not match the previous] x ... x
 Pr[last does not match the previous]

- The probability that there do not exist any two people that share a birthday is equal to:
 - Pr[1st and 2nd don't share] x
 Pr[3rd does not match the previous] x
 Pr[4th does not match the previous] x ... x
 Pr[last does not match the previous]
 - 1 x 364/365 x 363/365 x ... x 341/365 = 0.431

- The probability that there do not exist any two people that share a birthday is equal to:
 - Pr[1st and 2nd don't share] x
 Pr[3rd does not match the previous] x
 Pr[4th does not match the previous] x ... x
 Pr[last does not match the previous]
 - 1 x 364/365 x 363/365 x ... x 341/365 = 0.431
- The probability that there exist two people that share a birthday is then equal to: 1-0.431 = 0.569

 Two events are *independent*, if information about the outcome of one of them does not affect our estimate of the likelihood of the other.

- Two events are *independent*, if information about the outcome of one of them does not affect our estimate of the likelihood of the other.
- Formally: Pr[E | F] = Pr[E] and Pr[F | E] = Pr[E].

- Two events are *independent*, if information about the outcome of one of them does not affect our estimate of the likelihood of the other.
- Formally: Pr[E | F] = Pr[E] and Pr[F | E] = Pr[E].
- This implies: $\frac{\Pr[E \cap F]}{\Pr[F]} = \Pr[E] \Rightarrow \Pr[E \cap F] = \Pr[E] \cdot \Pr[F]$

- Two events are *independent*, if information about the outcome of one of them does not affect our estimate of the likelihood of the other.
- Formally: Pr[E | F] = Pr[E] and Pr[F | E] = Pr[E].
- This implies: $\frac{\Pr[E \cap F]}{\Pr[F]} = \Pr[E] \Rightarrow \Pr[E \cap F] = \Pr[E] \cdot \Pr[F]$
- In other words, the probability that two independent events happen is the product of the probabilities that each one of them happens.

• Generalising:

$$\Pr\left[\bigcap_{i\in I} E_i\right] = \prod_{i\in I} \Pr[E_i]$$

• Generalising:

The probability A and B and C happens is the product of their probabilities.

The Union Bound

independent events

$$\Pr\left[\bigcup_{i=1}^{n} E_{i}\right] = \sum_{i=1}^{n} \Pr[E_{i}]$$

generally

$$\Pr\left[\bigcup_{i=1}^{n} E_{i}\right] \leq \sum_{i=1}^{n} \Pr[E_{i}]$$

The Union Bound

independent events

$$\Pr\left[\bigcup_{i=1}^{n} E_i\right] = \sum_{i=1}^{n} \Pr[E_i]$$

The probability that A or B or C happens is the sum of their probabilities.

generally

$$\Pr\left[\bigcup_{i=1}^{n} E_{i}\right] \leq \sum_{i=1}^{n} \Pr[E_{i}]$$

The Union Bound

independent events

$$\Pr\left[\bigcup_{i=1}^{n} E_i\right] = \sum_{i=1}^{n} \Pr[E_i]$$

The probability that A or B or C happens is the sum of their probabilities.

generally

$$\Pr\left[\bigcup_{i=1}^{n} E_i\right] \le \sum_{i=1}^{n} \Pr[E_i]$$

The probability that A or B or C happens is at most the sum of their probabilities.

• Suppose that we design an algorithm which will produce the correct outcome *with high probability*.

- Suppose that we design an algorithm which will produce the correct outcome with high probability.
- We first formulate a set of "bad events" E₁, E₂, ..., E_n, which will force our algorithm to produce an incorrect outcome.

- Suppose that we design an algorithm which will produce the correct outcome with high probability.
- We first formulate a set of "bad events" E₁, E₂, ..., E_n, which will force our algorithm to produce an incorrect outcome.
- If none of these "bad events" happens, our algorithm will produce the correct outcome.

- Suppose that we design an algorithm which will produce the correct outcome with high probability.
- We first formulate a set of "bad events" E₁, E₂, ..., E_n, which will force our algorithm to produce an incorrect outcome.
- If none of these "bad events" happens, our algorithm will produce the correct outcome.
- Suppose that F is the event that the algorithm fails.

- Suppose that we design an algorithm which will produce the correct outcome *with high probability*.
- We first formulate a set of "bad events" E₁, E₂, ..., E_n, which will force our algorithm to produce an incorrect outcome.
- If none of these "bad events" happens, our algorithm will produce the correct outcome.
- Suppose that **F** is the event that the algorithm fails.
 - We have:

$$\Pr[F] \le \Pr\left[\bigcup_{i=1}^{n} E_i\right] \le \sum_{i=1}^{n} \Pr[E_i]$$

• We have:

$$\Pr[F] \le \Pr\left[\bigcup_{i=1}^{n} E_i\right] \le \sum_{i=1}^{n} \Pr[E_i]$$

• We have:
$$\Pr[F] \le \Pr\left[\bigcup_{i=1}^{n} E_i\right] \le \sum_{i=1}^{n} \Pr[E_i]$$

 If we can prove that the sum of probabilities of these events is small, then we can prove that our algorithm succeeds with high probability.

Identifier Selection

- There are *n* processes in a distributed system.
- The set of possible identifiers is the set of all *k*-bit strings.
 - e.g., 1001001...01
- Each process chooses an identifier *uniformly at random*.
 - i.e., all strings have equal probability of being chosen.
- What is the probability that processes 1 and 2 choose the same identifier?

Identifier Selection

- There are 1000 processes in a distributed system.
- The set of possible identifiers is the set of all 32-bit strings.
 - e.g., 1001001...01
- Each process chooses an identifier *uniformly at random*.
 - i.e., all strings have equal probability of being chosen.
- What is the probability that any two of them choose the same identifier?

Identifier Selection

• What is the probability that any two of them choose the same identifier?
- What is the probability that any two of them choose the same identifier?
 - Call this event **F**.

- What is the probability that any two of them choose the same identifier?
 - Call this event **F**.
- Simple "failure" events: Eij

- What is the probability that any two of them choose the same identifier?
 - Call this event **F**.
- Simple "failure" events: Eij
 - Processes *i* and *j* choose the same identifier.

- What is the probability that any two of them choose the same identifier?
 - Call this event **F**.
- Simple "failure" events: Eij
 - Processes *i* and *j* choose the same identifier.
- How many such events?

 $\binom{1000}{2}$

- What is the probability that any two of them choose the same identifier?
 - Call this event **F**.
- Simple "failure" events: Eij
 - Processes *i* and *j* choose the same identifier.
- How many such events?

 $\binom{1000}{2}$

- What is the probability that any two of them choose the same identifier?
 - Call this event F.
- Simple "failure" events: Eij
 - Processes *i* and *j* choose the same identifier.
- How many such events?

 $\binom{1000}{2}$

• What is the probability of each happening?

- What is the probability that any two of them choose the same identifier?
 - Call this event F.
- Simple "failure" events: Eij
 - Processes *i* and *j* choose the same identifier.
- How many such events?

 $\binom{1000}{2}$

- What is the probability of each happening?
 - 1/2³²

• What is the probability of failure?

• What is the probability of failure?

$$\Pr[F] \le \sum_{i,j} \Pr[E_{ij}] = \binom{1000}{2} \cdot \frac{1}{2^{32}} \le 0.000125$$

• What is the probability of failure?

$$\Pr[F] \le \sum_{i,j} \Pr[E_{ij}] = \binom{1000}{2} \cdot \frac{1}{2^{32}} \le 0.000125$$

• What is the probability of success?

at least 1-0.000125 = 0.999875

Random Variables and Expectations

- Random Variable: (Informally) A variable X whose values depend on outcomes of a random phenomenon.
- Pr[X = j]: the probability that the value of X is j.
- Expectation ("average value") of X:

$$\mathbb{E}[x] = \sum_{j=1}^{n} \Pr[X = j]$$

Expectation

- Simple example:
 - Assume that X takes a value in {1, 2, ..., n} with probability 1/n.
 - E[X] = 1(1/n) + 2(1/n) + ... + n(1/n) = (1+2+...+n)/n = (n+1)/2

- We flip a *biased* coin, where Pr[H] = p and Pr[T] = 1-p
- We flip repeatedly until we get one "heads" result.
- What is the expected number of times that we need to flip for that to happen?

- We flip a *biased* coin, where Pr[H] = p and Pr[T] = 1-p
- We flip repeatedly until we get one "heads" result.
- What is the expected number of times that we need to flip for that to happen?
- Let X be the random variable of the number of flips.

- We flip a *biased* coin, where Pr[H] = p and Pr[T] = 1-p
- We flip repeatedly until we get one "heads" result.
- What is the expected number of times that we need to flip for that to happen?
- Let X be the random variable of the number of flips.
 - We are looking for E[X].

• Suppose that we get "heads" on the *j*-th flip.

- Suppose that we get "heads" on the *j*-th flip.
- We have: $\Pr[X = j] = (1 p)^{j-1} \cdot p$

- Suppose that we get "heads" on the j-th flip.
- We have: $\Pr[X = j] = (1 p)^{j-1} \cdot p$
- The expectation then becomes:

$$E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X=j] = \sum_{j=1}^{\infty} j(1-p)^{j-1}p = \frac{p}{1-p} \sum_{j=1}^{\infty} j(1-p)^j$$
$$= \frac{p}{1-p} \cdot \frac{(1-p)}{p^2} = \frac{1}{p}$$

Application

- Suppose that we repeat an experiment multiple times, and each time the probability of success is p > 0.
 - e.g., compute a minimum cut in a graph.
- The expected number of repetitions that we need until the experiment succeeds is 1/p.

Linearity of Expectation

- Let X and Y be random variables defined over the same space.
- Let X+Y be the random variable equal to $X(\omega) + Y(\omega)$ on a point ω of the sample space.
- It holds that E[X+Y] = E[X] + E[Y]
- Generally:

$$\mathbb{E}[X_1 + X_2 + \dots + X_n] = \sum_{i=1}^n X_i$$

- A deck with *n* cards.
- We draw a card, and before we see it, we guess what it is.
 - We pick one of the cards *uniformly at random from the whole deck*.
- How many of our predictions do we expect to be correct?

How many of our predictions do we expect to be correct?

- How many of our predictions do we expect to be correct?
 - Let X be the random variable denoting the number of correct predictions.

- How many of our predictions do we expect to be correct?
 - Let X be the random variable denoting the number of correct predictions.
 - To help us compute X, we will defined variables X_i:

- How many of our predictions do we expect to be correct?
 - Let X be the random variable denoting the number of correct predictions.
 - To help us compute X, we will defined variables X_i:
 - X_i is 1 if the ith prediction is correct and 0 otherwise.

- How many of our predictions do we expect to be correct?
 - Let X be the random variable denoting the number of correct predictions.
 - To help us compute X, we will defined variables X_i:
 - X_i is 1 if the ith prediction is correct and 0 otherwise.
 - Obviously: $X = X_1 + X_2 + ... + X_n$

- To help us compute X, we will defined variables X_i:
 - X_i is 1 if the ith prediction is correct and 0 otherwise.
 - Obviously: $X = X_1 + X_2 + ... + X_n$

- To help us compute X, we will defined variables X_i:
 - X_i is 1 if the ith prediction is correct and 0 otherwise.
 - Obviously: $X = X_1 + X_2 + ... + X_n$
 - We have $\mathbb{E}[X_i] = 0 \cdot \Pr[X_i = 0] + 1 \cdot \Pr[X_i = 1] = \frac{1}{n}$

- To help us compute X, we will defined variables X_i:
 - X_i is 1 if the ith prediction is correct and 0 otherwise.
 - Obviously: $X = X_1 + X_2 + ... + X_n$
 - We have $\mathbb{E}[X_i] = 0 \cdot \Pr[X_i = 0] + 1 \cdot \Pr[X_i = 1] = \frac{1}{n}$
 - By linearity of expectation: $\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i] = 1$

- A deck with *n* cards.
- We draw a card, and before we see it, we guess what it is.
 - We pick one of the cards *uniformly at random from the whole deck*.
- How many of our predictions do we expect to be correct?

- A deck with *n* cards.
- We draw a card, and before we see it, we guess what it is.
 - We pick one of the cards *uniformly at random from the cards you have not seen*.
- How many of our predictions do we expect to be correct?

- To help us compute X, we will defined variables X_i:
 - X_i is 1 if the ith prediction is correct and 0 otherwise.
 - Obviously: $X = X_1 + X_2 + ... + X_n$
 - We have $\mathbb{E}[X_i] = 0 \cdot \Pr[X_i = 0] + 1 \cdot \Pr[X_i = 1] = \frac{1}{n}$
 - By linearity of expectation: $\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i] = 1$

- To help us compute X, we will defined variables X_i:
 - X_i is 1 if the ith prediction is correct and 0 otherwise.
 - Obviously: $X = X_1 + X_2 + ... + X_n$
 - We have $\mathbb{E}[X_i] = 0 \cdot \Pr[X_i = 0] + 1 \cdot \Pr[X_i = 1] = \frac{1}{n i + 1}$
 - By linearity of expectation:

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \sum_{i=1}^{n} \frac{1}{n-i+1} = \sum_{i=1}^{n} \frac{1}{i} = \mathbf{H}(n)$$

- To help us compute X, we will defined variables X_i:
 - X_i is 1 if the ith prediction is correct and 0 otherwise.
 - Obviously: $X = X_1 + X_2 + ... + X_n$
 - We have $\mathbb{E}[X_i] = 0 \cdot \Pr[X_i = 0] + 1 \cdot \Pr[X_i = 1] = \frac{1}{n i + 1}$
 - By linearity of expectation: $\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \sum_{i=1}^{n} \frac{1}{n-i+1} = \sum_{i=1}^{n} \frac{1}{i} = \mathbf{H}(n)$
Guessing a card

- To help us compute X, we will defined variables X_i:
 - X_i is 1 if the ith prediction is correct and 0 otherwise.
 - Obviously: $X = X_1 + X_2 + ... + X_n$
 - We have $\mathbb{E}[X_i] = 0 \cdot \Pr[X_i = 0] + 1 \cdot \Pr[X_i = 1] = \frac{1}{n i + 1}$

By linearity of expectation:

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \sum_{i=1}^{n} \frac{1}{n-i+1} = \sum_{i=1}^{n} \frac{1}{i} = \mathbf{H}(n)$$

$$\mathbf{H}(n) = \Theta(\log n)$$