Advanced Algorithmic Techniques (COMP523)

Randomised Algorithms

Recap and plan

- Previous lectures:
- Approximation Algorithms.
- Next lectures:
- Randomised Algorithms.
- This lecture:
- Probabilities background.

The Poker slide

- Over the weekend, I was playing Texas Hold'em with some friends...
- (absolutely true story).
https://www.888poker.com/poker/poker-odds-calculator

Heads or Tails

Heads or Tails

You flip a fair coin

Heads or Tails

You flip a fair coin
What is the probability of "heads"?

Heads or Tails

You flip a fair coin
What is the probability of "heads"?
1/2

Heads or Tails

You flip a fair coin
What is the probability of "heads"? 1/2

You flip two fair coins

Heads or Tails

You flip a fair coin
What is the probability of "heads"?
1/2

You flip two fair coins
What is the probability of "both heads"?

Heads or Tails

You flip a fair coin
What is the probability of "heads"? 1/2

You flip two fair coins
What is the probability of "both heads"?
Possible outcomes: HH, HT, TH, TT

Heads or Tails

You flip a fair coin
What is the probability of "heads"? 1/2

You flip two fair coins
What is the probability of "both heads"?
Possible outcomes: HH, HT, TH, TT
1/4

Heads or Tails

You flip a fair coin
What is the probability of "heads"? 1/2

You flip two fair coins
What is the probability of "both heads"?
Possible outcomes: HH, HT, TH, TT
1/4
What is the probability of "both the same"?

Heads or Tails

You flip a fair coin
What is the probability of "heads"? 1/2

You flip two fair coins
What is the probability of "both heads"?
Possible outcomes: HH, HT, TH, TT
1/4
What is the probability of "both the same"?
Possible outcomes: HH, HT, TH, TT

Heads or Tails

You flip a fair coin
What is the probability of "heads"? 1/2

You flip two fair coins
What is the probability of "both heads"?
Possible outcomes: HH, HT, TH, TT
1/4
What is the probability of "both the same"?
Possible outcomes: HH, HT, TH, TT

Heads or Tails

Heads or Tails

You flip two fair coins

Heads or Tails

You flip two fair coins $X=$ the value of the sum, where H counts for $1, T$ counts for 0 .

Heads or Tails

You flip two fair coins $X=$ the value of the sum, where H counts for $1, T$ counts for 0 . What is the probability of $X=1$?

Heads or Tails

You flip two fair coins $X=$ the value of the sum, where H counts for $1, \mathrm{~T}$ counts for 0 . What is the probability of $\mathrm{X}=1$?

Possible outcomes: HH, HT, TH, TT

Heads or Tails

You flip two fair coins $X=$ the value of the sum, where H counts for $1, T$ counts for 0 . What is the probability of $\mathrm{X}=1$?

Possible outcomes: HH, HT, TH, TT

Heads or Tails

You flip two fair coins $X=$ the value of the sum, where H counts for $1, T$ counts for 0 . What is the probability of $\mathrm{X}=1$?

Possible outcomes: HH, HT, TH, TT
1/2
What is the expected value of X ?

Heads or Tails

You flip two fair coins $X=$ the value of the sum, where H counts for $1, T$ counts for 0 . What is the probability of $\mathrm{X}=1$?

Possible outcomes: HH, HT, TH, TT
1/2
What is the expected value of X ?
Possible outcomes: HH (2), HT (1), TH (1), TT (0)

Heads or Tails

You flip two fair coins $X=$ the value of the sum, where H counts for $1, T$ counts for 0 . What is the probability of $\mathrm{X}=1$?

Possible outcomes: HH, HT, TH, TT
1/2
What is the expected value of X ?
Possible outcomes: HH (2), HT (1), TH (1), TT (0)

Finite Probability Spaces

Heads or Tails (fair coin)

Sample Space Ω

Heads or Tails (fair coin)

This happens with probability $1 / 2$

Heads or Tails (fair coin)

Heads or Tails (biased coin)

Sample Space Ω

Heads or Tails (biased coin)

This happens with probability $2 / 3$

Heads or Tails (biased coin)

Heads or Tails (fair coin)

Heads or Tails (fair coin)

Heads or Tails (two fair coins)

Heads or Tails (two fair coins)

This happens with probability 1/4

Sample Space Ω

Heads or Tails (two fair coins)

This happens with probability $1 / 4$

This happens with probability 1/4

Sample Space Ω

Heads or Tails (two fair coins)

Identifier Selection

Identifier Selection

- There are n processes in a distributed system.

Identifier Selection

- There are n processes in a distributed system.
- The set of possible identifiers is the set of all k-bit strings.

Identifier Selection

- There are n processes in a distributed system.
- The set of possible identifiers is the set of all k-bit strings.
- e.g., 1001001... 01

Identifier Selection

- There are n processes in a distributed system.
- The set of possible identifiers is the set of all k-bit strings.
- e.g., 1001001... 01
- Each process chooses an identifier uniformly at random.

Identifier Selection

- There are n processes in a distributed system.
- The set of possible identifiers is the set of all k-bit strings.
- e.g., 1001001... 01
- Each process chooses an identifier uniformly at random.
- i.e., all strings have equal probability of being chosen.

Identifier Selection

- There are n processes in a distributed system.
- The set of possible identifiers is the set of all k-bit strings.
- e.g., 1001001... 01
- Each process chooses an identifier uniformly at random.
- i.e., all strings have equal probability of being chosen.
- What is the probability that processes 1 and 2 choose the same identifier?

Identifier Selection

 (1 process)| $000 \ldots 00$ | $011 \ldots 00$ |
| :---: | :---: |
| $000 \ldots 01$ | . |
| $000 \ldots 10$ | \cdot |
| \cdot | \cdot |
| \cdot | $100 \ldots 00$ |
| $001 \ldots 00$ | . |
| \cdot | \cdot |
| \cdot | \cdot |
| $010 \ldots 00$ | $111 \ldots 11$ |

Sample Space Ω

Identifier Selection (n processes)

```
000 ... 00 000 .. 00 000 ... 00 ...
```

$111 \ldots 11011$... $10011 \ldots 11$...
111... $11111 \ldots 11111 \ldots 11 \ldots$

Sample Space Ω

Identifier Selection

(n processes)

Identifier Selection

 (n processes)

Identifier Selection

(n processes)

kn possible strings
$2^{k n}$ possible choices

Identifier Selection

 (n processes)
kn possible strings
$2^{k n}$ possible choices $2^{k n}$ possible points

$$
111 \ldots 11111 \ldots 11111 \ldots 11 \ldots
$$

Sample Space Ω

Identifier Selection

 (n processes)$000 \ldots 00000 \ldots 00000 \ldots 00 \ldots$

This happens with
probability?

.
$111 \ldots 11011 \ldots 10011 \ldots 11 \ldots$
kn possible strings
$2^{k n}$ possible choices
$2^{k n}$ possible points
same probability for all

```
111... 11111 ... 11111 ... 11 ...
```

Sample Space Ω

Identifier Selection

 (n processes)| $000 \ldots 00000 \ldots 00000 \ldots 00 \ldots$ |
| :---: |
| This happens with
 probability $1 / 2^{\mathrm{kn}}$ |
| $111 \ldots 11011 \ldots 10011 \ldots 11 \ldots$ |
| . |

kn-bit strings
$2^{k n}$ possible choices
$2^{k n}$ possible points
same probability for all

```
111... 11 111 .. 11111 ... 11 ...
```

Sample Space Ω

Identifier Selection

- What is the probability that processes 1 and 2 choose the same identifier?

Identifier Selection

- What is the probability that processes 1 and 2 choose the same identifier?
- The event E consists of all the points for which the first two coordinates (black and red) are the same.

Identifier Selection

- What is the probability that processes 1 and 2 choose the same identifier?
- The event E consists of all the points for which the first two coordinates (black and red) are the same.
- All values possible for coordinates 3 to n, all values possible for coordinate 2 (red) and then coordinate 1 is fixed (black).

Identifier Selection

- What is the probability that processes 1 and 2 choose the same identifier?
- The event E consists of all the points for which the first two coordinates (black and red) are the same.
- All values possible for coordinates 3 to n, all values possible for coordinate 2 (red) and then coordinate 1 is fixed (black).

$$
\operatorname{Pr}[E]=\sum_{i \in E} p(i)=\frac{1}{2^{k n}} \cdot 2^{k(n-1)}=\frac{1}{2^{k}}
$$

Conditional Probability

Conditional Probability

- Back to the Poker game.

Conditional Probability

- Back to the Poker game.
- What was my probability of winning?

Conditional Probability

- Back to the Poker game.
- What was my probability of winning?
- I could only win if the river was a King.

Conditional Probability

- Back to the Poker game.
- What was my probability of winning?
- I could only win if the river was a King.
- We already had drawn 8 cards, 2 of which were Kings.

Conditional Probability

- Back to the Poker game.
- What was my probability of winning?
- I could only win if the river was a King.
- We already had drawn 8 cards, 2 of which were Kings.
- What was the probability that another King would turn up?

Conditional Probability

- Back to the Poker game.
- What was my probability of winning?
- I could only win if the river was a King.
- We already had drawn 8 cards, 2 of which were Kings.
- What was the probability that another King would turn up?
- 44 cards left, 2 Kings left, Probability $2 / 44=0.045$.

Conditional Probability

- Given that event F has occurred, what is the probability that even E will occur?

$$
\begin{array}{r}
\operatorname{Pr}[E \mid F]=\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]} \\
\operatorname{Pr}[E]=\sum_{j=1}^{k} \operatorname{Pr}\left[E \mid F_{j}\right] \cdot \operatorname{Pr}\left[F_{j}\right]
\end{array}
$$

Sample Space Ω

Conditional Probability

- Given that event F has occurred, what is the probability that even E will occur?

$$
\begin{array}{r}
\operatorname{Pr}[E \mid F]=\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]} \\
\operatorname{Pr}[E]=\sum_{j=1}^{k} \operatorname{Pr}\left[E \mid F_{j}\right] \cdot \operatorname{Pr}\left[F_{j}\right]
\end{array}
$$

Sample Space Ω

Conditional Probability

- Given that event F has occurred, what is the probability that even E will occur?

$$
\begin{array}{r}
\operatorname{Pr}[E \mid F]=\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]} \\
\operatorname{Pr}[E]=\sum_{j=1}^{k} \operatorname{Pr}\left[E \mid F_{j}\right] \cdot \operatorname{Pr}\left[F_{j}\right]
\end{array}
$$

Sample Space Ω

Conditional Probability

- Given that event F has occurred, what is the probability that even E will occur?

$$
\begin{array}{r}
\operatorname{Pr}[E \mid F]=\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]} \\
\operatorname{Pr}[E]=\sum_{j=1}^{k} \operatorname{Pr}\left[E \mid F_{j}\right] \cdot \operatorname{Pr}\left[F_{j}\right]
\end{array}
$$

Sample Space Ω

Conditional Probability

- If we toss two fair coins, what is the probability that we get 2 "heads", given that the first toss was "heads"?
- $\mathrm{E}=2$ heads, $\mathrm{F}=$ first toss heads

$$
\operatorname{Pr}[F]=1 / 2 \quad \operatorname{Pr}[E \cap F]=1 / 4
$$

$$
\operatorname{Pr}[E \mid F]=\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]}=\frac{1}{2}
$$

Birthday Problem

- We have a room of 25 people.
- Assume that one's birthday is drawn uniformly at random from all the days of the year.
- What is the probability that there exist two of them that have the same birthday?

Birthday Problem

Birthday Problem

- Pick a person. The probability that he/she does not share a birthday with anyone previously chosen is ...

Birthday Problem

- Pick a person. The probability that he/she does not share a birthday with anyone previously chosen is ...
- 1

Birthday Problem

- Pick a person. The probability that he/she does not share a birthday with anyone previously chosen is ...
- 1
- Pick another person. The probability that he/she does not share a birthday with anyone previously chosen is ...

Birthday Problem

- Pick a person. The probability that he/she does not share a birthday with anyone previously chosen is ...
- 1
- Pick another person. The probability that he/she does not share a birthday with anyone previously chosen is ...
- 364/365

Birthday Problem

- Pick a person. The probability that he/she does not share a birthday with anyone previously chosen is ...
- 1
- Pick another person. The probability that he/she does not share a birthday with anyone previously chosen is ...
- $364 / 365$
- Pick another person. The probability that he/she does not share a birthday with anyone previously chosen is ...

Birthday Problem

- Pick a person. The probability that he/she does not share a birthday with anyone previously chosen is ...
- 1
- Pick another person. The probability that he/she does not share a birthday with anyone previously chosen is ...
- 364/365
- Pick another person. The probability that he/she does not share a birthday with anyone previously chosen is ...
- $363 / 365$?

Birthday Problem

- Pick a person. The probability that he/she does not share a birthday with anyone previously chosen is ...
- 1
- Pick another person. The probability that he/she does not share a birthday with anyone previously chosen is ...
- $364 / 365$
- Pick another person. The probability that he/she does not share a birthday with anyone previously chosen is ...
- $363 / 365$?
- What if the first two people actually share a birthday?

Birthday Problem

- Pick a person. The probability that he/she does not share a birthday with anyone previously chosen is ...
- 1
- Pick another person. The probability that he/she does not share a birthday with anyone previously chosen is ...
- $364 / 365$
- Pick another person. The probability that he/she does not share a birthday with anyone previously chosen, given that all the previously chosen people do not share a birthday is ...
- $363 / 365$

Birthday Problem

Birthday Problem

- The probability that there do not exist any two people that share a birthday is equal to:

Birthday Problem

- The probability that there do not exist any two people that share a birthday is equal to:
- $\operatorname{Pr}[1$ st and 2nd don't share] x
$\operatorname{Pr}[3 r d$ does not match the previous] x
$\operatorname{Pr}[4 t h$ does not match the previous] x ... x Pr[last does not match the previous]

Birthday Problem

- The probability that there do not exist any two people that share a birthday is equal to:
- $\operatorname{Pr}[1$ st and 2nd don't share] x
$\operatorname{Pr}[3 r d$ does not match the previous] x $\operatorname{Pr}[4 t h$ does not match the previous] x $\ldots \mathrm{x}$ Pr[last does not match the previous]
- $1 \times 364 / 365 \times 363 / 365 \times \ldots \times 341 / 365=0.431$

Birthday Problem

- The probability that there do not exist any two people that share a birthday is equal to:
- $\operatorname{Pr}[1$ st and 2nd don't share] x
$\operatorname{Pr}[3 r d$ does not match the previous] x $\operatorname{Pr}[4 t h$ does not match the previous] x $\ldots \times$ Pr[last does not match the previous]
- $1 \times 364 / 365 \times 363 / 365 \times \ldots \times 341 / 365=0.431$
- The probability that there exist two people that share a birthday is then equal to: $1-0.431=0.569$

Independent Events

- Two events are independent, if information about the outcome of one of them does not affect our estimate of the likelihood of the other.

Independent Events

- Two events are independent, if information about the outcome of one of them does not affect our estimate of the likelihood of the other.
- Formally: $\operatorname{Pr}[E \mid F]=\operatorname{Pr}[E]$ and $\operatorname{Pr}[F \mid E]=\operatorname{Pr}[E]$.

Independent Events

- Two events are independent, if information about the outcome of one of them does not affect our estimate of the likelihood of the other.
- Formally: $\operatorname{Pr}[E \mid F]=\operatorname{Pr}[E]$ and $\operatorname{Pr}[F \mid E]=\operatorname{Pr}[E]$.
- This implies: $\quad \frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]}=\operatorname{Pr}[E] \Rightarrow \operatorname{Pr}[E \cap F]=\operatorname{Pr}[E] \cdot \operatorname{Pr}[F]$

Independent Events

- Two events are independent, if information about the outcome of one of them does not affect our estimate of the likelihood of the other.
- Formally: $\operatorname{Pr}[E \mid F]=\operatorname{Pr}[E]$ and $\operatorname{Pr}[F \mid E]=\operatorname{Pr}[E]$.
- This implies: $\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]}=\operatorname{Pr}[E] \Rightarrow \operatorname{Pr}[E \cap F]=\operatorname{Pr}[E] \cdot \operatorname{Pr}[F]$
- In other words, the probability that two independent events happen is the product of the probabilities that each one of them happens.

Independent Events

- Generalising:

$$
\operatorname{Pr}\left[\bigcap_{i \in I} E_{i}\right]=\prod_{i \in I} \operatorname{Pr}\left[E_{i}\right]
$$

Independent Events

- Generalising:

$$
\operatorname{Pr}\left[\bigcap_{i \in I} E_{i}\right]=\prod_{i \in I} \operatorname{Pr}\left[E_{i}\right]
$$

The probability A and B and C happens is the product of their probabilities.

The Union Bound

independent events

$$
\operatorname{Pr}\left[\bigcup_{i=1}^{n} E_{i}\right]=\sum_{i=1}^{n} \operatorname{Pr}\left[E_{i}\right.
$$

$$
\operatorname{Pr}\left[\bigcup_{i=1}^{n} E_{i}\right] \leq \sum_{i=1}^{n} \operatorname{Pr}\left[E_{i}\right]
$$

The Union Bound

independent events

$$
\operatorname{Pr}\left[\bigcup_{n=1}^{n} E_{1}\right]=\sum_{i=1}^{n} \operatorname{Pr}\left[E_{1}\right.
$$

The probability that A or B or C happens is the sum of their probabilities.
generally

$$
\operatorname{Pr}\left[\bigcup_{i=1}^{n} E_{i}\right] \leq \sum_{i=1}^{n} \operatorname{Pr}\left[E_{i}\right]
$$

The Union Bound

independent events

$$
\operatorname{Pr}\left[\bigcup_{i=1}^{n} E_{i}\right]=\sum_{i=1}^{n} \operatorname{Pr}\left[E_{i}\right]
$$

The probability that A or B or C happens is the sum of their probabilities.
generally

$$
\operatorname{Pr}\left[\bigcup_{i=1}^{n} E_{i}\right] \leq \sum_{i=1}^{n} \operatorname{Pr}\left[E_{i}\right]
$$

The probability that A or B or C happens is at most the sum of their probabilities.

How to use the Union Bound

- Suppose that we design an algorithm which will produce the correct outcome with high probability.

How to use the Union Bound

- Suppose that we design an algorithm which will produce the correct outcome with high probability.
- We first formulate a set of "bad events" $E_{1}, E_{2}, \ldots, E_{n}$, which will force our algorithm to produce an incorrect outcome.

How to use the Union Bound

- Suppose that we design an algorithm which will produce the correct outcome with high probability.
- We first formulate a set of "bad events" $E_{1}, E_{2}, \ldots, E_{n}$, which will force our algorithm to produce an incorrect outcome.
- If none of these "bad events" happens, our algorithm will produce the correct outcome.

How to use the Union Bound

- Suppose that we design an algorithm which will produce the correct outcome with high probability.
- We first formulate a set of "bad events" $E_{1}, E_{2}, \ldots, E_{n}$, which will force our algorithm to produce an incorrect outcome.
- If none of these "bad events" happens, our algorithm will produce the correct outcome.
- Suppose that F is the event that the algorithm fails.

How to use the Union Bound

- Suppose that we design an algorithm which will produce the correct outcome with high probability.
- We first formulate a set of "bad events" $E_{1}, E_{2}, \ldots, E_{n}$, which will force our algorithm to produce an incorrect outcome.
- If none of these "bad events" happens, our algorithm will produce the correct outcome.
- Suppose that F is the event that the algorithm fails.
- We have:

$$
\operatorname{Pr}[F] \leq \operatorname{Pr}\left[\bigcup_{i=1}^{n} E_{i}\right] \leq \sum_{i=1}^{n} \operatorname{Pr}\left[E_{i}\right]
$$

How to use the Union Bound

- We have: $\quad \operatorname{Pr}[F] \leq \operatorname{Pr}\left[\bigcup_{i=1}^{n} E_{i}\right] \leq \sum_{i=1}^{n} \operatorname{Pr}\left[E_{i}\right]$

How to use the Union Bound

- We have:

$$
\operatorname{Pr}[F] \leq \operatorname{Pr}\left[\bigcup_{i=1}^{n} E_{i}\right] \leq \sum_{i=1}^{n} \operatorname{Pr}\left[E_{i}\right]
$$

- If we can prove that the sum of probabilities of these events is small, then we can prove that our algorithm succeeds with high probability.

Identifier Selection

- There are n processes in a distributed system.
- The set of possible identifiers is the set of all k-bit strings.
- e.g., 1001001... 01
- Each process chooses an identifier uniformly at random.
- i.e., all strings have equal probability of being chosen.
- What is the probability that processes 1 and 2 choose the same identifier?

Identifier Selection

- There are 1000 processes in a distributed system.
- The set of possible identifiers is the set of all 32-bit strings.
- e.g., 1001001... 01
- Each process chooses an identifier uniformly at random.
- i.e., all strings have equal probability of being chosen.
- What is the probability that any two of them choose the same identifier?

Identifier Selection

- What is the probability that any two of them choose the same identifier?

Identifier Selection

- What is the probability that any two of them choose the same identifier?
- Call this event F.

Identifier Selection

- What is the probability that any two of them choose the same identifier?
- Call this event F.
- Simple "failure" events: E_{ij}

Identifier Selection

- What is the probability that any two of them choose the same identifier?
- Call this event F.
- Simple "failure" events: E_{ij}
- Processes i and j choose the same identifier.

Identifier Selection

- What is the probability that any two of them choose the same identifier?
- Call this event F.
- Simple "failure" events: E_{ij}
- Processes i and j choose the same identifier.
- How many such events?

$$
\binom{1000}{2}
$$

Identifier Selection

- What is the probability that any two of them choose the same identifier?
- Call this event F.
- Simple "failure" events: E_{ij}
- Processes i and j choose the same identifier.
- How many such events?

$$
\binom{1000}{2}
$$

Identifier Selection

- What is the probability that any two of them choose the same identifier?
- Call this event F.
- Simple "failure" events: E_{ij}
- Processes i and j choose the same identifier.
- How many such events?

$$
\binom{1000}{2}
$$

- What is the probability of each happening?

Identifier Selection

- What is the probability that any two of them choose the same identifier?
- Call this event F.
- Simple "failure" events: E_{ij}
- Processes i and j choose the same identifier.
- How many such events?

$$
\binom{1000}{2}
$$

- What is the probability of each happening?
- $1 / 2^{32}$

Identifier Selection

Identifier Selection

- What is the probability of failure?

Identifier Selection

- What is the probability of failure?

$$
\operatorname{Pr}[F] \leq \sum_{i, j} \operatorname{Pr}\left[E_{i j}\right]=\binom{1000}{2} \cdot \frac{1}{2^{32}} \leq 0.000125
$$

Identifier Selection

- What is the probability of failure?

$$
\operatorname{Pr}[F] \leq \sum_{i, j} \operatorname{Pr}\left[E_{i j}\right]=\binom{1000}{2} \cdot \frac{1}{2^{32}} \leq 0.000125
$$

- What is the probability of success?
at least $1-0.000125=0.999875$

Random Variables and Expectations

- Random Variable: (Informally) A variable X whose values depend on outcomes of a random phenomenon.
- $\operatorname{Pr}[\mathrm{X}=j]$: the probability that the value of X is j.
- Expectation ("average value") of X :

$$
\mathbb{E}[x]=\sum_{j=1}^{n} \operatorname{Pr}[X=j]
$$

Expectation

- Simple example:
- Assume that X takes a value in $\{1,2, \ldots, n\}$ with probability $1 / n$.
- $\mathrm{E}[\mathrm{X}]=1(1 / n)+2(1 / n)+\ldots+n(1 / n)=(1+2+\ldots+n) / n=$ $(n+1) / 2$

Waiting for the first success

- We flip a biased coin, where
$\operatorname{Pr}[H]=p$ and
$\operatorname{Pr}[T]=1-p$
- We flip repeatedly until we get one "heads" result.
- What is the expected number of times that we need to flip for that to happen?

Waiting for the first success

- We flip a biased coin, where
$\operatorname{Pr}[H]=p$ and
$\operatorname{Pr}[T]=1-p$
- We flip repeatedly until we get one "heads" result.
- What is the expected number of times that we need to flip for that to happen?
- Let X be the random variable of the number of flips.

Waiting for the first success

- We flip a biased coin, where
$\operatorname{Pr}[H]=p$ and
$\operatorname{Pr}[T]=1-p$
- We flip repeatedly until we get one "heads" result.
- What is the expected number of times that we need to flip for that to happen?
- Let X be the random variable of the number of flips.
- We are looking for $E[X]$.

Waiting for the first success

Waiting for the first success

- Suppose that we get "heads" on the j-th flip.

Waiting for the first success

- Suppose that we get "heads" on the j-th flip.
- We have:

$$
\operatorname{Pr}[X=j]=(1-p)^{j-1} \cdot p
$$

Waiting for the first success

- Suppose that we get "heads" on the j-th flip.
- We have: $\operatorname{Pr}[X=j]=(1-p)^{j-1} \cdot p$
- The expectation then becomes:

$$
\begin{aligned}
\mathbb{E}[X]=\sum_{j=0}^{\infty} j \cdot \operatorname{Pr}[X=j] & =\sum_{j=1}^{\infty} j(1-p)^{j-1} p=\frac{p}{1-p} \sum_{j=1}^{\infty} j(1-p)^{j} \\
& =\frac{p}{1-p} \cdot \frac{(1-p)}{p^{2}}=\frac{1}{p}
\end{aligned}
$$

Application

- Suppose that we repeat an experiment multiple times, and each time the probability of success is $p>0$.
- e.g., compute a minimum cut in a graph.
- The expected number of repetitions that we need until the experiment succeeds is $1 / p$.

Linearity of Expectation

- Let X and Y be random variables defined over the same space.
- Let $X+Y$ be the random variable equal to $X(\omega)+Y(\omega)$ on a point ω of the sample space.
- It holds that $\mathrm{E}[\mathrm{X}+\mathrm{Y}]=\mathrm{E}[\mathrm{X}]+\mathrm{E}[\mathrm{Y}]$
- Generally:

$$
\mathbb{E}\left[X_{1}+X_{2}+\ldots+X_{n}\right]=\sum_{i=1}^{n} X_{i}
$$

Guessing a card

- A deck with n cards.
- We draw a card, and before we see it, we guess what it is.
- We pick one of the cards uniformly at random from the whole deck.
- How many of our predictions do we expect to be correct?

Guessing a card

- How many of our predictions do we expect to be correct?

Guessing a card

- How many of our predictions do we expect to be correct?
- Let X be the random variable denoting the number of correct predictions.

Guessing a card

- How many of our predictions do we expect to be correct?
- Let X be the random variable denoting the number of correct predictions.
- To help us compute X, we will defined variables X_{i} :

Guessing a card

- How many of our predictions do we expect to be correct?
- Let X be the random variable denoting the number of correct predictions.
- To help us compute X, we will defined variables X_{i} :
- X_{i} is 1 if the ith prediction is correct and 0 otherwise.

Guessing a card

- How many of our predictions do we expect to be correct?
- Let X be the random variable denoting the number of correct predictions.
- To help us compute X, we will defined variables X_{i} :
- X_{i} is 1 if the ith prediction is correct and 0 otherwise.
- Obviously: $X=X_{1}+X_{2}+\ldots+X_{n}$

Guessing a card

- To help us compute X, we will defined variables X_{i} :
- X_{i} is 1 if the ith prediction is correct and 0 otherwise.
- Obviously: $X=X_{1}+X_{2}+\ldots+X_{n}$

Guessing a card

- To help us compute X, we will defined variables X_{i} :
- X_{i} is 1 if the ith prediction is correct and 0 otherwise.
- Obviously: $X=X_{1}+X_{2}+\ldots+X_{n}$
- We have $\mathbb{E}\left[X_{i}\right]=0 \cdot \operatorname{Pr}\left[X_{i}=0\right]+1 \cdot \operatorname{Pr}\left[X_{i}=1\right]=\frac{1}{n}$

Guessing a card

- To help us compute X, we will defined variables X_{i} :
- X_{i} is 1 if the ith prediction is correct and 0 otherwise.
- Obviously: $\mathrm{X}=\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots+\mathrm{X}_{\mathrm{n}}$
- We have $\mathbb{E}\left[X_{i}\right]=0 \cdot \operatorname{Pr}\left[X_{i}=0\right]+1 \cdot \operatorname{Pr}\left[X_{i}=1\right]=\frac{1}{n}$
- By linearity of expectation: $\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=1$

Guessing a card

- A deck with n cards.
- We draw a card, and before we see it, we guess what it is.
- We pick one of the cards uniformly at random from the whole deck.
- How many of our predictions do we expect to be correct?

Guessing a card

- A deck with n cards.
- We draw a card, and before we see it, we guess what it is.
- We pick one of the cards uniformly at random from the cards you have not seen.
- How many of our predictions do we expect to be correct?

Guessing a card

- To help us compute X, we will defined variables X_{i} :
- X_{i} is 1 if the ith prediction is correct and 0 otherwise.
- Obviously: $\mathrm{X}=\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots+\mathrm{X}_{\mathrm{n}}$
- We have $\mathbb{E}\left[X_{i}\right]=0 \cdot \operatorname{Pr}\left[X_{i}=0\right]+1 \cdot \operatorname{Pr}\left[X_{i}=1\right]=\frac{1}{n}$
- By linearity of expectation: $\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=1$

Guessing a card

- To help us compute X, we will defined variables X_{i} :
- X_{i} is 1 if the ith prediction is correct and 0 otherwise.
- Obviously: $\mathrm{X}=\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots+\mathrm{X}_{\mathrm{n}}$
- We have $\mathbb{E}\left[X_{i}\right]=0 \cdot \operatorname{Pr}\left[X_{i}=0\right]+1 \cdot \operatorname{Pr}\left[X_{i}=1\right]=\frac{1}{n-i+1}$
- By linearity of expectation:

$$
\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\sum_{i=1}^{n} \frac{1}{n-i+1}=\sum_{i=1}^{n} \frac{1}{i}=\mathbf{H}(n)
$$

Guessing a card

- To help us compute X, we will defined variables X_{i} :
- X_{i} is 1 if the ith prediction is correct and 0 otherwise.
- Obviously: $\mathrm{X}=\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots+\mathrm{X}_{\mathrm{n}}$
- We have $\mathbb{E}\left[X_{i}\right]=0 \cdot \operatorname{Pr}\left[X_{i}=0\right]+1 \cdot \operatorname{Pr}\left[X_{i}=1\right]=\frac{1}{n-i+1}$
- By linearity of expectation:

The n-th harmonic

$$
\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\sum_{i=1}^{n} \frac{1}{n-i+1}=\sum_{i=1}^{n} \frac{1}{i}=\mathbf{H}(n)
$$

Guessing a card

- To help us compute X, we will defined variables X_{i} :
- X_{i} is 1 if the ith prediction is correct and 0 otherwise.
- Obviously: $\mathrm{X}=\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots+\mathrm{X}_{\mathrm{n}}$
- We have $\mathbb{E}\left[X_{i}\right]=0 \cdot \operatorname{Pr}\left[X_{i}=0\right]+1 \cdot \operatorname{Pr}\left[X_{i}=1\right]=\frac{1}{n-i+1}$
- By linearity of expectation:

The n-th harmonic number

$$
\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\sum_{i=1}^{n} \frac{1}{n-i+1}=\sum_{i=1}^{n} \frac{1}{i}=\underset{H}{\mathbf{H}(n)}
$$

