
Advanced Algorithmic Techniques  
(COMP523)

Randomised Algorithms 2



Recap and plan

• Previous lecture: 

• Probabilities background.


• This lecture: 

• Randomised global cuts in multi-graphs.



Minimum Cut

• A cut C is a partition of the nodes of G into two sets S 
and T, such that s is in S and t is in T.


• The capacity c(S,T) of a cut C is the sum of capacities of 
all edges “out of S”


• these are edges (u, v) where u is in S and v is in T.
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• We are given an undirected graph G=(V, E).

• A cut of G is a partition of the nodes of the graph into two 
sets, A and B.

• The size of a cut (A, B) is the number of edges with one 
endpoint in A and one endpoint in B.

• A global minimum cut is a cut of minimum size.
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Solving GMC
• Theorem: There is a polynomial-time algorithm for finding 

a global minimum cut in an undirected graph G.

• Idea: Turn the graph G into a flow network, and find a 
minimum s-t cut.

• Replace every undirected edge with two directed 
edges, one in the forward and one in the backward 
direction. Set the capacity of those edges to be 1.

• Pick two arbitrary nodes s, t in V, and find the minimum 
s-t cut (how?)
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How many iterations of the 
max-flow algorithm?

• We fix some s in V.

• For every possible t in V (besides s), we run the algorithm.

• In total, we will need n-1 iterations.

• This is a polynomial-time algorithm, when the max-flow 
algorithm is polynomial-time.
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• We are given an undirected graph G=(V, E).


• A cut of G is a partition of the nodes of the graph into two 
sets, A and B.
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Global Minimum Cut
• We are given an undirected multigraph G=(V, E).


• There can be multiple “parallel” edges between two 
nodes.


• A cut of G is a partition of the nodes of the graph into two 
sets, A and B.


• The size of a cut (A, B) is the number of edges with one 
endpoint in A and one endpoint in B.


• A global minimum cut is a cut of minimum size.
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Is there a simpler solution?

• We will use a randomised algorithm to solve the problem.

• The algorithm will be faster and simpler.

• It will produce the correct outcome with high probability.

• Sometimes it might make a mistake!

• But not too often.
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The Contraction Algorithm
• Proposed in 1992 by David Karger.

• Idea: 

• Choose an edge of the graph uniformly at random.

• Contract the edge.

• Merge its endpoints (u, v) to a supernode w = {u, v}.

• Any edge (u, v) is removed.

• Any edge (u, a) or (v, a) becomes (w, a).

• When we are left with two supernodes w1 and w2, the corresponding sets 
of nodes are A and B.
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Example

abc

d

a,ba,b,c

A = {a, b, c} 
B = {d}



The Contraction Algorithm
Contraction(G)


For each node v, record 
      the set S(v) of nodes that have been contracted into v. 
   Initially, S(v) = {v} for each v. /* no contractions so far */ 
 
If G has two nodes v1 and v2, then return the cut {S(v1), S(v1)}.       
 
Else, choose an edge e = (u, v) of G uniformly at random. 
     Let G’ be the graph resulting from contracting e, with a 
     new node zuv replacing u and v. 
   
     Define S(zuv) = S(u) U S(v) 
     Contraction(G’) 
 
EndIf
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The analysis of the algorithm

• Consider a global minimum (A, B) cut of G, and suppose 
that it has size k.

• In other words, there is a set F of edges with one 
endpoint in A and one endpoint in B, such that |F|=k.

• We will prove that the contraction algorithm outputs the 
cut (A, B) with high probability.
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A first observation
• The maximum degree in G is at least k. 


• (Why?)

a

…

Suppose that the degree of

node a was smaller than k

Is (A, B) a minimum cut?
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Where things can go wrong
• Let’s consider the first step of the contraction algorithm.

• We will have made a mistake, if an edge e in F was 
contracted.

• When we contract an edge, we irrevocably decide that its 
endpoints will be in the same “side” of the cut.

• For an edge e in F, its endpoints lie in different “sides” of 
the cut.

• If we contract e, then we can’t possibly produce the cut 
(A, B).
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Bounding the error probability

• What is the probability that we pick an edge in F?

• F has k edges, we pick uniformly at random from |E| edges.

• The probability is k / |E|.

• We want to upper bound this quantity.

• We can lower bound |E|.

• Claim: |E| ≥ (kn)/2. (why?)

• The probability that an edge in F is contracted (in the first round) is 
at most 2/n.



After round j
• Suppose that we have gone through j rounds and we have not 

contracted any edges in F yet. 


• What is the probability that we contract an edge in F now?


• There are n-j super-nodes in the graph G’.


• A cut in G’ is also a cut in G.


• The degree of every super-node of G’ is again at least k.


• |EG’| ≥ k(n-j)/2.


• The mistake probability is k / |EG’| = 2/(n-j).



Events
• Mistake: Contract an edge in F.


• Event Ej: The algorithm does not make a mistake in round j.


• We have shown: 
 
 

Pr[E1] ≥ 1 −
2
n

Pr[Ej+1 |E1 ∩ E2 ∩ … ∩ Ej] ≥ 1 −
2

n − j
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Events
• Mistake: Contract an edge in F.

• Event Ej: The algorithm does not make a mistake in round j.

• When is our algorithm successful?

• When it has not made a mistake in any round.

• What is the probability of that happening?

Pr[E1 ∩ E2 ∩ … ∩ Ej]
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Calculating
By the conditional 

probability formula:

Pr[E1] ⋅ Pr[E2 |E1] … Pr[Ej+1 |E1 ∩ E2 ∩ … ∩ Ej] … Pr[En−2 |E1 ∩ E2 ∩ … ∩ En−3]

Pr[E1 ∩ E2 ∩ … ∩ Ej] =

≥ (1 −
2
n ) (1 −

2
n − 1 )…(1 −

2
n − j )…(1 −

2
3 )

≥ ( n − 2
n ) ( n − 3

n − 1 ) ( n − 4
n − 2 )…( 2

4 ) ( 1
3 )

=
2

n(n − 1)
= (n

2)
−1
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Application

• Suppose that we repeat an experiment multiple times, 
and each time the probability of success is p > 0.


• e.g., compute a minimum cut in a graph.



Success Amplification

• Run the algorithm independently X times.


• The probability that it fails is equal to 
 
the probability that it fails the 1st time x  
the probability that it fails the 2nd time x 
                            … 
the probability that it fails the Xth time.
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Probability of failure
• The contraction algorithm fails to find a global minimum s-t 

cut with probability at most  
 
 
 

• If we run the algorithm independently Binom(n, k) ln e times, 
the probability of error becomes 
 

1 −
1

(n
2)

= 1 −
2

n(n − 1)

1 −
1

(n
2)

(n
2) ln e

≤
1
n



Generally

• We can run the algorithm independently a number of 
times.


• This will decrease the error probability.


• This will increase the running time.


• There is a trade-off between the two.
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Faster and simpler

• Definitely simpler.

• To get high success probability, we need a lot of 
repetitions, so does not seem faster.

• One can do clever optimisations to the way in which 
multiple runs are performed to improve the running 
time considerably. 


