Advanced Algorithmic Techniques
(COMP523)

Randomised Algorithms 2

Recap and plan

* Previous lecture:
e Probabilities background.
* This lecture:

e Randomised global cuts in multi-graphs.

Minimum Cut

e A cut C is a partition of the nodes of G into two sets S
and T, suchthatsisinSandtisinT.

e The capacity c(S,T) of a cut C is the sum of capacities of
all edges “out of S”

e these are edges (u, v) whereuisinSand visin T.

Example

Example

Example

Global Minimum Cut

Global Minimum Cut

 \We are given an undirected graph G=(V, E).

Global Minimum Cut

 \We are given an undirected graph G=(V, E).

A cutof G is a partition of the nodes of the graph into two
sets, A and B.

Global Minimum Cut

 \We are given an undirected graph G=(V, E).

A cutof G is a partition of the nodes of the graph into two
sets, A and B.

* The size of a cut (A, B) is the number of edges with one
endpoint in A and one endpoint in B.

Global Minimum Cut

We are given an undirected graph G=(V, E).

A cut of G is a partition of the nodes of the graph into two
sets, A and B.

The size of a cut (A, B) is the number of edges with one
endpoint in A and one endpoint in B.

A global minimum cut is a cut of minimum size.

Solving GMC

Solving GMC

e Theorem: There is a polynomial-time algorithm for finding
a global minimum cut in an undirected graph G.

Solving GMC

e Theorem: There is a polynomial-time algorithm for finding
a global minimum cut in an undirected graph G.

e |dea: Turn the graph G into a flow network, and find a
minimum s-t cut.

Solving GMC

e Theorem: There is a polynomial-time algorithm for finding
a global minimum cut in an undirected graph G.

e |dea: Turn the graph G into a flow network, and find a
minimum s-t cut.

e Replace every undirected edge with two directed
edges, one Iin the forward and one in the backward

direction. Set the capacity of those edges to be 7.

Solving GMC

e Theorem: There is a polynomial-time algorithm for finding
a global minimum cut in an undirected graph G.

e |dea: Turn the graph G into a flow network, and find a
minimum s-t cut.

e Replace every undirected edge with two directed
edges, one Iin the forward and one in the backward
direction. Set the capacity of those edges to be 7.

e Pick two arbitrary nodes s, t in V, and find the minimum
s-t cut (how?)

The procedure

The procedure

o o

How many iterations of the
max-flow algorithm?

How many iterations of the
max-flow algorithm?

e We fix somesin V.

How many iterations of the
max-flow algorithm?

e We fix somesin V.

e For every possible tin V (besides s), we run the algorithm.

How many iterations of the
max-flow algorithm?

e We fix somesin V.
e For every possible tin V (besides s), we run the algorithm.

e |n total, we will need n-17 iterations.

How many iterations of the
max-flow algorithm?

We fix some s in V.
For every possible t in V (besides s), we run the algorithm.
In total, we will need n-17 iterations.

This is a polynomial-time algorithm, when the max-flow
algorithm is polynomial-time.

Global Minimum Cut

We are given an undirected graph G=(V, E).

A cut of G is a partition of the nodes of the graph into two
sets, A and B.

The size of a cut (A, B) is the number of edges with one
endpoint in A and one endpoint in B.

A global minimum cut is a cut of minimum size.

Global Minimum Cut

We are given an undirected multigraph G=(V, E).

e There can be multiple “parallel” edges between two
nodes.

A cut of G is a partition of the nodes of the graph into two
sets, A and B.

The size of a cut (A, B) is the number of edges with one
endpoint in A and one endpoint in B.

A global minimum cut is a cut of minimum size.

The procedure

o—9

The procedure

Is there a simpler solution?

Is there a simpler solution?

e We will use a randomised algorithm to solve the problem.

Is there a simpler solution?

e We will use a randomised algorithm to solve the problem.

e The algorithm will be faster and simpler.

Is there a simpler solution?

e We will use a randomised algorithm to solve the problem.
e The algorithm will be faster and simpler.

* |t will produce the correct outcome with high probabillity.

Is there a simpler solution?

e We will use a randomised algorithm to solve the problem.
e The algorithm will be faster and simpler.
* |t will produce the correct outcome with high probabillity.

e Sometimes it might make a mistake!

Is there a simpler solution?

e We will use a randomised algorithm to solve the problem.

e The algorithm will be faster and simpler.

* |t will produce the correct outcome with high probability.
e Sometimes it might make a mistake!

e But not too often.

The Contraction Algorithm

e Proposed in 1992 by David Karger.

The Contraction Algorithm

e Proposed in 1992 by David Karger.

e |dea:

The Contraction Algorithm

e Proposed in 1992 by David Karger.
e |dea:

e Choose an edge of the graph uniformly at random.

The Contraction Algorithm

e Proposed in 1992 by David Karger.
e |dea:
e Choose an edge of the graph uniformly at random.

e Contract the edge.

The Contraction Algorithm

e Proposed in 1992 by David Karger.

e |dea:
e Choose an edge of the graph uniformly at random.
e Contract the edge.

e Merge its endpoints (u, v) to a supernode w = {u, v}.

The Contraction Algorithm

e Proposed in 1992 by David Karger.
e |dea:
e Choose an edge of the graph uniformly at random.
e Contract the edge.
e Merge its endpoints (u, v) to a supernode w = {u, v}.

* Any edge (u, V) is removed.

The Contraction Algorithm

e Proposed in 1992 by David Karger.
e |dea:
e Choose an edge of the graph uniformly at random.
e Contract the edge.
e Merge its endpoints (u, v) to a supernode w = {u, v}.
* Any edge (u, V) is removed.

 Any edge (u, a) or (v, a) becomes (w, a).

The Contraction Algorithm

e Proposed in 1992 by David Karger.
e |dea:
e Choose an edge of the graph uniformly at random.
e Contract the edge.
e Merge its endpoints (u, v) to a supernode w = {u, v}.
* Any edge (u, V) is removed.
 Any edge (u, a) or (v, a) becomes (w, a).

* When we are left with two supernodes w1 and wo, the corresponding sets
of nodes are A and B.

Example

Example

Example

Example

Example

Example

Example

Example

A =1{a, b, c}
B = {d}

The Contraction Algorithm

Contraction(G)

For each node v, record
the set S(v) of nodes that have been contracted into v.
Initially, S(v) = {v} for each v. /* no contractions so far */

If G has two nodes vi and v, then return the cut {S(v1), S(v1)}.
Else, choose an edge e = (u, v) of G uniformly at random.
Let G’ be the graph resulting from contracting e, with a

new node z, replacing u and v.

Define S(zuw) = S(u) U S(v)
Contraction(G’)

Endlf

The analysis of the algorithm

The analysis of the algorithm

e Consider a global minimum (A, B) cut of G, and suppose
that it has size k.

The analysis of the algorithm

e Consider a global minimum (A, B) cut of G, and suppose
that it has size k.

e |n other words, there is a set F of edges with one
endpoint in A and one endpoint in B, such that |F|=k.

The analysis of the algorithm

e Consider a global minimum (A, B) cut of G, and suppose
that it has size k.

e |n other words, there is a set F of edges with one
endpoint in A and one endpoint in B, such that |F|=k.

 We will prove that the contraction algorithm outputs the
cut (A, B) with high probability.

A first observation

e The maximum degree in G is at least k.

* (Why?)

A first observation

e The maximum degree in G is at least k.

* (Why?)

A first observation

e The maximum degree in G is at least k.

* (Why?)

Suppose that the degree of
node a was smaller than k

A first observation

e The maximum degree in G is at least k.

* (Why?)

Suppose that the degree of
node a was smaller than k

Is (A, B) @ minimum cut?

Where things can go wrong

e |et’s consider the first step of the contraction algorithm.

Where things can go wrong

e |et’s consider the first step of the contraction algorithm.

* We will have made a mistake, if an edge e in F was
contracted.

Where things can go wrong

e |et’s consider the first step of the contraction algorithm.

* We will have made a mistake, if an edge e in F was
contracted.

* When we contract an edge, we irrevocably decide that its
endpoints will be in the same “side” of the cut.

Where things can go wrong

e |et’s consider the first step of the contraction algorithm.

* We will have made a mistake, if an edge e in F was
contracted.

* When we contract an edge, we irrevocably decide that its
endpoints will be in the same “side” of the cut.

* For an edge e in F, its endpoints lie in different “sides” of
the cut.

Where things can go wrong

e |et’s consider the first step of the contraction algorithm.

* We will have made a mistake, if an edge e in F was
contracted.

* When we contract an edge, we irrevocably decide that its
endpoints will be in the same “side” of the cut.

* For an edge e in F, its endpoints lie in different “sides” of
the cut.

* |f we contract e, then we can’t possibly produce the cut
(A, B).

Bounding the error probability

 What is the probability that we pick an edge in F?

Bounding the error probability

 What is the probability that we pick an edge in F?

* F has k edges, we pick uniformly at random from |E| edges.

Bounding the error probability

 What is the probability that we pick an edge in F?
* F has k edges, we pick uniformly at random from |E| edges.

e The probability is k / |E|.

Bounding the error probability

 What is the probability that we pick an edge in F?
* F has k edges, we pick uniformly at random from |E| edges.
e The probability is k / |E|.

* We want to upper bound this quantity.

Bounding the error probability

 What is the probability that we pick an edge in F?
* F has k edges, we pick uniformly at random from |E| edges.
e The probability is k / |E|.
* We want to upper bound this quantity.

e We can lower bound |E|.

Bounding the error probability

 What is the probability that we pick an edge in F?
* F has k edges, we pick uniformly at random from |E| edges.
e The probability is k / |E|.
* We want to upper bound this quantity.
e We can lower bound |E|.

e Claim: |E| = (kn)/2. (why?)

Bounding the error probability

What is the probability that we pick an edge in F?

* F has k edges, we pick uniformly at random from |E| edges.
e The probability is k / |E|.

* We want to upper bound this quantity.

e We can lower bound |E|.

e Claim: |E| = (kn)/2. (why?)

* The probability that an edge in F is contracted (in the first round) is
at most 2/n.

After round

Suppose that we have gone through j rounds and we have not
contracted any edges in F yet.

What is the probability that we contract an edge in F now?
There are n-j super-nodes in the graph G'.

A cutin G’ is also a cut in G.

* The degree of every super-node of G’ is again at least k.
e |Ec| = k(n-)/2.

e The mistake probability is k / |Ec| = 2/(n-j).

Events

* Mistake: Contract an edge in F.
* Event Ej: The algorithm does not make a mistake in round .

e \We have shown:

2
PriE\]>1——
n

PriE. |E\NE,N...NE] > 1

n—Jj

Events

 Mistake: Contract an edge in F.

* Event Ej: The algorithm does not make a mistake in round .

Events

 Mistake: Contract an edge in F.
* Event Ej: The algorithm does not make a mistake in round .

 \When is our algorithm successful?

Events

 Mistake: Contract an edge in F.
* Event Ej: The algorithm does not make a mistake in round .
 \When is our algorithm successful?

* When it has not made a mistake in any round.

Events

 Mistake: Contract an edge in F.
* Event Ej: The algorithm does not make a mistake in round .
* When is our algorithm successful?

* When it has not made a mistake in any round.

 What is the probability of that happening?

Events

 Mistake: Contract an edge in F.
* Event Ej: The algorithm does not make a mistake in round .
* When is our algorithm successful?

* When it has not made a mistake in any round.

 What is the probability of that happening?

PrlE,NE,N...NE]

Calculating

Calculating

We want to find: Pr[E,NE,N...NE, ,]

Calculating

We want to find: Pr[E,NE,N...NE, ,]

2
We know: Pr[E;] > 1 ——
n

PriE |E\NE,N...NE] > 1 —

Calculating

We want to find: Pr[E,NE,N...NE, ,]

2
We know: Pr[El] > 1 ——
n

PriE |E\NE,N...NE] > 1

n—J

By the conditional
probability formula:

Calculating

We want to find: Pr[E,NE,N...NE, ,]

2
We know: Pr[El] > 1 ——
n

PriE |E\NE,N...NE] > 1

n—J

By the conditional
probability formula:

PrlE,NE,Nn...NE _,]=

Pr(E,] - Pr[E, | E] ... Pr[EjﬂlElnEzn...nE-] ... Pr[E

; LIENE,N...NE ;]

Calculating

We want to find: Pr[E,NE,N...NE, ,]

2
We know: Pr[El] > 1 ——
n

PriE |E\NE,N...NE] > 1 —

By the conditional
probability formula:

PrlE,NE,Nn...NE _,]=

Pr(E,] - Pr(E, |E] ... PrlE|EsNE,n...nE] ... PrlE, ,|E\NE;N...NE,_;]

(=3 (=79)-(=55)-(-5)

Calculating

By the conditional
probability formula:

Pr(E|] - Pr(E,|E] ... PrlE |EsNE,n...0E] ... PrlE,_,|E\NE;N...NE,_;]

 (1=3) (=755)-(=55)-(=3)

Calculating

By the conditional
probability formula:

Pr(E|] - Pr(E,|E] ... PrlE |EsNE,n...0E] ... PrlE,_,|E\NE;N...NE,_;]
(1=3) (=55) - (=55) -0 =5)
> 1-—— 1 — o -).l 1 ——
n n—1 n—j 3
() =) (=2)-() 5)
> A —
B n n—1 n—?2 4 3

Calculating

By the conditional
probability formula:

Pr(E|] - Pr(E,|E] ... PrlE |EsNE,n...0E] ... PrlE,_,|E\NE;N...NE,_;]
(1=2) (=755)-(=55)-(=3)
> 1—-—— 1 — I 1 ==
n n—1 n—j 3
(=) (=) (=) () 6)
> ==
B n n—1 n—?2 4 3
2 n\ !
=n(n—1)=<2>

Probability of failure

e The contraction algorithm fails to find a global minimum
s-t cut with probability at most

Probability of failure

e The contraction algorithm fails to find a global minimum
s-t cut with probability at most

1 2

Is there a simpler solution?

e We will use a randomised algorithm to solve the problem.

e The algorithm will be faster and simpler.

* |t will produce the correct outcome with high probability.
e Sometimes it might make a mistake!

e But not too often.

Is there a simpler solution?

e We will use a randomised algorithm to solve the problem.

e The algorithm will be faster and simpler.

* |t will produce the correct outcome with high probability.
e Sometimes it might make a mistake!

e But not too often.

Probability of failure

e The contraction algorithm fails to find a global minimum
s-t cut with probability at most

Probability of failure

e The contraction algorithm fails to find a global minimum
s-t cut with probability at most

1 2

Application

e Suppose that we repeat an experiment multiple times,
and each time the probability of success is p > 0.

e e.g., compute a minimum cut in a graph.

Success Amplification

e Run the algorithm independently X times.

e The probability that it fails is equal to

the probability that it fails the 1st time x
the probability that it fails the 2nd time x

the probability that it fails the Xth time.

Probability of failure

* The contraction algorithm fails to find a global minimum s-t
cut with probability at most

* |f we run the algorithm independently Binom(n, k) times, the
probability of error becomes

Probability of failure

* The contraction algorithm fails to find a global minimum s-t
cut with probability at most

1 2
1 =1

<;> nn—1)

* |f we run the algorithm independently Binom(n, k) times, the
probability of error becomes

Probability of failure

* The contraction algorithm fails to find a global minimum s-t
cut with probability at most

1 2
1 =1

<;> nn—1)

* |f we run the algorithm independently Binom(n, k) times, the
probability of error becomes

(5)

1
< —
€

Probability of failure

* The contraction algorithm fails to find a global minimum s-t
cut with probability at most

* |f we run the algorithm independently Binom(n, k) In e times,
the probability of error becomes

Probability of failure

* The contraction algorithm fails to find a global minimum s-t
cut with probability at most

1 2
1 =1

<;> nn—1)

* |f we run the algorithm independently Binom(n, k) In e times,
the probability of error becomes

Probability of failure

* The contraction algorithm fails to find a global minimum s-t
cut with probability at most

1 2
1 =1

<;> nn—1)

* |f we run the algorithm independently Binom(n, k) In e times,
the probability of error becomes

(’g)lne

1
< —
n

Generally

We can run the algorithm independently a number of
times.

This will decrease the error probability.
This will increase the running time.

There Is a trade-off between the two.

Is there a simpler solution?

e We will use a randomised algorithm to solve the problem.

e The algorithm will be faster and simpler.

* |t will produce the correct outcome with high probability.
e Sometimes it might make a mistake!

o But not too often.

Is there a simpler solution?

e We will use a randomised algorithm to solve the problem.

e The algorithm will be faster and simpler.

* |t will produce the correct outcome with high probability.
e Sometimes it might make a mistake!

o But not too often.

Faster and simpler

Faster and simpler

e Definitely simpler.

Faster and simpler

e Definitely simpler.

e Jo get high success probability, we need a lot of
repetitions, so does not seem faster.

Faster and simpler

e Definitely simpler.

e Jo get high success probability, we need a lot of
repetitions, so does not seem faster.

e One can do clever optimisations to the way in which
multiple runs are performed to improve the running
time considerably.

