
Advanced Algorithmic Techniques
(COMP523)

Randomised Algorithms 2

Recap and plan

• Previous lecture:

• Probabilities background.

• This lecture:

• Randomised global cuts in multi-graphs.

Minimum Cut

• A cut C is a partition of the nodes of G into two sets S
and T, such that s is in S and t is in T.

• The capacity c(S,T) of a cut C is the sum of capacities of
all edges “out of S”

• these are edges (u, v) where u is in S and v is in T.

Example
u

v

s t

20

10

10

20

30

Example
u

v

s t

20

10

10

20

30

Example
u

v

s t

20

10

10

20

30

Global Minimum Cut

Global Minimum Cut

• We are given an undirected graph G=(V, E).

Global Minimum Cut

• We are given an undirected graph G=(V, E).

• A cut of G is a partition of the nodes of the graph into two
sets, A and B.

Global Minimum Cut

• We are given an undirected graph G=(V, E).

• A cut of G is a partition of the nodes of the graph into two
sets, A and B.

• The size of a cut (A, B) is the number of edges with one
endpoint in A and one endpoint in B.

Global Minimum Cut

• We are given an undirected graph G=(V, E).

• A cut of G is a partition of the nodes of the graph into two
sets, A and B.

• The size of a cut (A, B) is the number of edges with one
endpoint in A and one endpoint in B.

• A global minimum cut is a cut of minimum size.

Solving GMC

Solving GMC
• Theorem: There is a polynomial-time algorithm for finding

a global minimum cut in an undirected graph G.

Solving GMC
• Theorem: There is a polynomial-time algorithm for finding

a global minimum cut in an undirected graph G.

• Idea: Turn the graph G into a flow network, and find a
minimum s-t cut.

Solving GMC
• Theorem: There is a polynomial-time algorithm for finding

a global minimum cut in an undirected graph G.

• Idea: Turn the graph G into a flow network, and find a
minimum s-t cut.

• Replace every undirected edge with two directed
edges, one in the forward and one in the backward
direction. Set the capacity of those edges to be 1.

Solving GMC
• Theorem: There is a polynomial-time algorithm for finding

a global minimum cut in an undirected graph G.

• Idea: Turn the graph G into a flow network, and find a
minimum s-t cut.

• Replace every undirected edge with two directed
edges, one in the forward and one in the backward
direction. Set the capacity of those edges to be 1.

• Pick two arbitrary nodes s, t in V, and find the minimum
s-t cut (how?)

The procedure

The procedure

1

1

How many iterations of the
max-flow algorithm?

How many iterations of the
max-flow algorithm?

• We fix some s in V.

How many iterations of the
max-flow algorithm?

• We fix some s in V.

• For every possible t in V (besides s), we run the algorithm.

How many iterations of the
max-flow algorithm?

• We fix some s in V.

• For every possible t in V (besides s), we run the algorithm.

• In total, we will need n-1 iterations.

How many iterations of the
max-flow algorithm?

• We fix some s in V.

• For every possible t in V (besides s), we run the algorithm.

• In total, we will need n-1 iterations.

• This is a polynomial-time algorithm, when the max-flow
algorithm is polynomial-time.

Global Minimum Cut

• We are given an undirected graph G=(V, E).

• A cut of G is a partition of the nodes of the graph into two
sets, A and B.

• The size of a cut (A, B) is the number of edges with one
endpoint in A and one endpoint in B.

• A global minimum cut is a cut of minimum size.

Global Minimum Cut
• We are given an undirected multigraph G=(V, E).

• There can be multiple “parallel” edges between two
nodes.

• A cut of G is a partition of the nodes of the graph into two
sets, A and B.

• The size of a cut (A, B) is the number of edges with one
endpoint in A and one endpoint in B.

• A global minimum cut is a cut of minimum size.

The procedure

The procedure
3

3

Is there a simpler solution?

Is there a simpler solution?

• We will use a randomised algorithm to solve the problem.

Is there a simpler solution?

• We will use a randomised algorithm to solve the problem.

• The algorithm will be faster and simpler.

Is there a simpler solution?

• We will use a randomised algorithm to solve the problem.

• The algorithm will be faster and simpler.

• It will produce the correct outcome with high probability.

Is there a simpler solution?

• We will use a randomised algorithm to solve the problem.

• The algorithm will be faster and simpler.

• It will produce the correct outcome with high probability.

• Sometimes it might make a mistake!

Is there a simpler solution?

• We will use a randomised algorithm to solve the problem.

• The algorithm will be faster and simpler.

• It will produce the correct outcome with high probability.

• Sometimes it might make a mistake!

• But not too often.

The Contraction Algorithm
• Proposed in 1992 by David Karger.

The Contraction Algorithm
• Proposed in 1992 by David Karger.

• Idea:

The Contraction Algorithm
• Proposed in 1992 by David Karger.

• Idea:

• Choose an edge of the graph uniformly at random.

The Contraction Algorithm
• Proposed in 1992 by David Karger.

• Idea:

• Choose an edge of the graph uniformly at random.

• Contract the edge.

The Contraction Algorithm
• Proposed in 1992 by David Karger.

• Idea:

• Choose an edge of the graph uniformly at random.

• Contract the edge.

• Merge its endpoints (u, v) to a supernode w = {u, v}.

The Contraction Algorithm
• Proposed in 1992 by David Karger.

• Idea:

• Choose an edge of the graph uniformly at random.

• Contract the edge.

• Merge its endpoints (u, v) to a supernode w = {u, v}.

• Any edge (u, v) is removed.

The Contraction Algorithm
• Proposed in 1992 by David Karger.

• Idea:

• Choose an edge of the graph uniformly at random.

• Contract the edge.

• Merge its endpoints (u, v) to a supernode w = {u, v}.

• Any edge (u, v) is removed.

• Any edge (u, a) or (v, a) becomes (w, a).

The Contraction Algorithm
• Proposed in 1992 by David Karger.

• Idea:

• Choose an edge of the graph uniformly at random.

• Contract the edge.

• Merge its endpoints (u, v) to a supernode w = {u, v}.

• Any edge (u, v) is removed.

• Any edge (u, a) or (v, a) becomes (w, a).

• When we are left with two supernodes w1 and w2, the corresponding sets
of nodes are A and B.

Example

a

b

c

d

Example

a

b

c

d

Example

a

b

c

d

Example

ab c

d

a,b

Example

ab c

d

a,b

Example

ab c

d

a,b

Example

abc

d

a,ba,b,c

Example

abc

d

a,ba,b,c

A = {a, b, c} 
B = {d}

The Contraction Algorithm
Contraction(G)

For each node v, record 
 the set S(v) of nodes that have been contracted into v. 
 Initially, S(v) = {v} for each v. /* no contractions so far */ 
 
If G has two nodes v1 and v2, then return the cut {S(v1), S(v1)}.  
 
Else, choose an edge e = (u, v) of G uniformly at random. 
 Let G’ be the graph resulting from contracting e, with a 
 new node zuv replacing u and v. 
  
 Define S(zuv) = S(u) U S(v) 
 Contraction(G’) 
 
EndIf

The analysis of the algorithm

The analysis of the algorithm

• Consider a global minimum (A, B) cut of G, and suppose
that it has size k.

The analysis of the algorithm

• Consider a global minimum (A, B) cut of G, and suppose
that it has size k.

• In other words, there is a set F of edges with one
endpoint in A and one endpoint in B, such that |F|=k.

The analysis of the algorithm

• Consider a global minimum (A, B) cut of G, and suppose
that it has size k.

• In other words, there is a set F of edges with one
endpoint in A and one endpoint in B, such that |F|=k.

• We will prove that the contraction algorithm outputs the
cut (A, B) with high probability.

A first observation
• The maximum degree in G is at least k.

• (Why?)

A first observation
• The maximum degree in G is at least k.

• (Why?)

a

…

A first observation
• The maximum degree in G is at least k.

• (Why?)

a

…

Suppose that the degree of

node a was smaller than k

A first observation
• The maximum degree in G is at least k.

• (Why?)

a

…

Suppose that the degree of

node a was smaller than k

Is (A, B) a minimum cut?

Where things can go wrong
• Let’s consider the first step of the contraction algorithm.

Where things can go wrong
• Let’s consider the first step of the contraction algorithm.

• We will have made a mistake, if an edge e in F was
contracted.

Where things can go wrong
• Let’s consider the first step of the contraction algorithm.

• We will have made a mistake, if an edge e in F was
contracted.

• When we contract an edge, we irrevocably decide that its
endpoints will be in the same “side” of the cut.

Where things can go wrong
• Let’s consider the first step of the contraction algorithm.

• We will have made a mistake, if an edge e in F was
contracted.

• When we contract an edge, we irrevocably decide that its
endpoints will be in the same “side” of the cut.

• For an edge e in F, its endpoints lie in different “sides” of
the cut.

Where things can go wrong
• Let’s consider the first step of the contraction algorithm.

• We will have made a mistake, if an edge e in F was
contracted.

• When we contract an edge, we irrevocably decide that its
endpoints will be in the same “side” of the cut.

• For an edge e in F, its endpoints lie in different “sides” of
the cut.

• If we contract e, then we can’t possibly produce the cut
(A, B).

Bounding the error probability

• What is the probability that we pick an edge in F?

Bounding the error probability

• What is the probability that we pick an edge in F?

• F has k edges, we pick uniformly at random from |E| edges.

Bounding the error probability

• What is the probability that we pick an edge in F?

• F has k edges, we pick uniformly at random from |E| edges.

• The probability is k / |E|.

Bounding the error probability

• What is the probability that we pick an edge in F?

• F has k edges, we pick uniformly at random from |E| edges.

• The probability is k / |E|.

• We want to upper bound this quantity.

Bounding the error probability

• What is the probability that we pick an edge in F?

• F has k edges, we pick uniformly at random from |E| edges.

• The probability is k / |E|.

• We want to upper bound this quantity.

• We can lower bound |E|.

Bounding the error probability

• What is the probability that we pick an edge in F?

• F has k edges, we pick uniformly at random from |E| edges.

• The probability is k / |E|.

• We want to upper bound this quantity.

• We can lower bound |E|.

• Claim: |E| ≥ (kn)/2. (why?)

Bounding the error probability

• What is the probability that we pick an edge in F?

• F has k edges, we pick uniformly at random from |E| edges.

• The probability is k / |E|.

• We want to upper bound this quantity.

• We can lower bound |E|.

• Claim: |E| ≥ (kn)/2. (why?)

• The probability that an edge in F is contracted (in the first round) is
at most 2/n.

After round j
• Suppose that we have gone through j rounds and we have not

contracted any edges in F yet.

• What is the probability that we contract an edge in F now?

• There are n-j super-nodes in the graph G’.

• A cut in G’ is also a cut in G.

• The degree of every super-node of G’ is again at least k.

• |EG’| ≥ k(n-j)/2.

• The mistake probability is k / |EG’| = 2/(n-j).

Events
• Mistake: Contract an edge in F.

• Event Ej: The algorithm does not make a mistake in round j.

• We have shown: 
 
 

Pr[E1] ≥ 1 −
2
n

Pr[Ej+1 |E1 ∩ E2 ∩ … ∩ Ej] ≥ 1 −
2

n − j

Events
• Mistake: Contract an edge in F.

• Event Ej: The algorithm does not make a mistake in round j.

Events
• Mistake: Contract an edge in F.

• Event Ej: The algorithm does not make a mistake in round j.

• When is our algorithm successful?

Events
• Mistake: Contract an edge in F.

• Event Ej: The algorithm does not make a mistake in round j.

• When is our algorithm successful?

• When it has not made a mistake in any round.

Events
• Mistake: Contract an edge in F.

• Event Ej: The algorithm does not make a mistake in round j.

• When is our algorithm successful?

• When it has not made a mistake in any round.

• What is the probability of that happening?

Events
• Mistake: Contract an edge in F.

• Event Ej: The algorithm does not make a mistake in round j.

• When is our algorithm successful?

• When it has not made a mistake in any round.

• What is the probability of that happening?

Pr[E1 ∩ E2 ∩ … ∩ Ej]

Calculating

Calculating
Pr[E1 ∩ E2 ∩ … ∩ En−2]We want to find:

Calculating
Pr[E1 ∩ E2 ∩ … ∩ En−2]We want to find:

We know: Pr[E1] ≥ 1 −
2
n

Pr[Ej+1 |E1 ∩ E2 ∩ … ∩ Ej] ≥ 1 −
2

n − j

Calculating
Pr[E1 ∩ E2 ∩ … ∩ En−2]We want to find:

We know: Pr[E1] ≥ 1 −
2
n

Pr[Ej+1 |E1 ∩ E2 ∩ … ∩ Ej] ≥ 1 −
2

n − j

By the conditional 
probability formula:

Calculating
Pr[E1 ∩ E2 ∩ … ∩ En−2]We want to find:

We know: Pr[E1] ≥ 1 −
2
n

Pr[Ej+1 |E1 ∩ E2 ∩ … ∩ Ej] ≥ 1 −
2

n − j

By the conditional 
probability formula:

Pr[E1] ⋅ Pr[E2 |E1] … Pr[Ej+1 |E1 ∩ E2 ∩ … ∩ Ej] … Pr[En−2 |E1 ∩ E2 ∩ … ∩ En−3]

Pr[E1 ∩ E2 ∩ … ∩ En−2] =

Calculating
Pr[E1 ∩ E2 ∩ … ∩ En−2]We want to find:

We know: Pr[E1] ≥ 1 −
2
n

Pr[Ej+1 |E1 ∩ E2 ∩ … ∩ Ej] ≥ 1 −
2

n − j

By the conditional 
probability formula:

Pr[E1] ⋅ Pr[E2 |E1] … Pr[Ej+1 |E1 ∩ E2 ∩ … ∩ Ej] … Pr[En−2 |E1 ∩ E2 ∩ … ∩ En−3]

Pr[E1 ∩ E2 ∩ … ∩ En−2] =

≥ (1 −
2
n) (1 −

2
n − 1)…(1 −

2
n − j)…(1 −

2
3)

Calculating
By the conditional 

probability formula:

Pr[E1] ⋅ Pr[E2 |E1] … Pr[Ej+1 |E1 ∩ E2 ∩ … ∩ Ej] … Pr[En−2 |E1 ∩ E2 ∩ … ∩ En−3]

Pr[E1 ∩ E2 ∩ … ∩ Ej] =

≥ (1 −
2
n) (1 −

2
n − 1)…(1 −

2
n − j)…(1 −

2
3)

Calculating
By the conditional 

probability formula:

Pr[E1] ⋅ Pr[E2 |E1] … Pr[Ej+1 |E1 ∩ E2 ∩ … ∩ Ej] … Pr[En−2 |E1 ∩ E2 ∩ … ∩ En−3]

Pr[E1 ∩ E2 ∩ … ∩ Ej] =

≥ (1 −
2
n) (1 −

2
n − 1)…(1 −

2
n − j)…(1 −

2
3)

≥ (n − 2
n) (n − 3

n − 1) (n − 4
n − 2)…(2

4) (1
3)

Calculating
By the conditional 

probability formula:

Pr[E1] ⋅ Pr[E2 |E1] … Pr[Ej+1 |E1 ∩ E2 ∩ … ∩ Ej] … Pr[En−2 |E1 ∩ E2 ∩ … ∩ En−3]

Pr[E1 ∩ E2 ∩ … ∩ Ej] =

≥ (1 −
2
n) (1 −

2
n − 1)…(1 −

2
n − j)…(1 −

2
3)

≥ (n − 2
n) (n − 3

n − 1) (n − 4
n − 2)…(2

4) (1
3)

=
2

n(n − 1)
= (n

2)
−1

Probability of failure

• The contraction algorithm fails to find a global minimum
s-t cut with probability at most  
 

Probability of failure

• The contraction algorithm fails to find a global minimum
s-t cut with probability at most  
 

1 −
1

(n
2)

= 1 −
2

n(n − 1)

Is there a simpler solution?

• We will use a randomised algorithm to solve the problem.

• The algorithm will be faster and simpler.

• It will produce the correct outcome with high probability.

• Sometimes it might make a mistake!

• But not too often.

Is there a simpler solution?

• We will use a randomised algorithm to solve the problem.

• The algorithm will be faster and simpler.

• It will produce the correct outcome with high probability.

• Sometimes it might make a mistake!

• But not too often.

Probability of failure

• The contraction algorithm fails to find a global minimum
s-t cut with probability at most  
 

Probability of failure

• The contraction algorithm fails to find a global minimum
s-t cut with probability at most  
 

1 −
1

(n
2)

= 1 −
2

n(n − 1)

Application

• Suppose that we repeat an experiment multiple times,
and each time the probability of success is p > 0.

• e.g., compute a minimum cut in a graph.

Success Amplification

• Run the algorithm independently X times.

• The probability that it fails is equal to 
 
the probability that it fails the 1st time x  
the probability that it fails the 2nd time x 
 … 
the probability that it fails the Xth time.

Probability of failure
• The contraction algorithm fails to find a global minimum s-t

cut with probability at most  
 
 
 

• If we run the algorithm independently Binom(n, k) times, the
probability of error becomes 
 

Probability of failure
• The contraction algorithm fails to find a global minimum s-t

cut with probability at most  
 
 
 

• If we run the algorithm independently Binom(n, k) times, the
probability of error becomes 
 

1 −
1

(n
2)

= 1 −
2

n(n − 1)

Probability of failure
• The contraction algorithm fails to find a global minimum s-t

cut with probability at most  
 
 
 

• If we run the algorithm independently Binom(n, k) times, the
probability of error becomes 
 

1 −
1

(n
2)

= 1 −
2

n(n − 1)

1 −
1

(n
2)

(n
2)

≤
1
e

Probability of failure
• The contraction algorithm fails to find a global minimum s-t

cut with probability at most  
 
 
 

• If we run the algorithm independently Binom(n, k) ln e times,
the probability of error becomes 
 

Probability of failure
• The contraction algorithm fails to find a global minimum s-t

cut with probability at most  
 
 
 

• If we run the algorithm independently Binom(n, k) ln e times,
the probability of error becomes 
 

1 −
1

(n
2)

= 1 −
2

n(n − 1)

Probability of failure
• The contraction algorithm fails to find a global minimum s-t

cut with probability at most  
 
 
 

• If we run the algorithm independently Binom(n, k) ln e times,
the probability of error becomes 
 

1 −
1

(n
2)

= 1 −
2

n(n − 1)

1 −
1

(n
2)

(n
2) ln e

≤
1
n

Generally

• We can run the algorithm independently a number of
times.

• This will decrease the error probability.

• This will increase the running time.

• There is a trade-off between the two.

Is there a simpler solution?

• We will use a randomised algorithm to solve the problem.

• The algorithm will be faster and simpler.

• It will produce the correct outcome with high probability.

• Sometimes it might make a mistake!

• But not too often.

Is there a simpler solution?

• We will use a randomised algorithm to solve the problem.

• The algorithm will be faster and simpler.

• It will produce the correct outcome with high probability.

• Sometimes it might make a mistake!

• But not too often.

Faster and simpler

Faster and simpler

• Definitely simpler.

Faster and simpler

• Definitely simpler.

• To get high success probability, we need a lot of
repetitions, so does not seem faster.

Faster and simpler

• Definitely simpler.

• To get high success probability, we need a lot of
repetitions, so does not seem faster.

• One can do clever optimisations to the way in which
multiple runs are performed to improve the running
time considerably.

