Advanced Algorithmic Techniques
(COMP523)

Randomised Algorithms 2



Recap and plan

* Previous lecture:
e Probabilities background.
* This lecture:

e Randomised global cuts in multi-graphs.



Minimum Cut

e A cut C is a partition of the nodes of G into two sets S
and T, suchthatsisinSandtisinT.

e The capacity c(S,T) of a cut C is the sum of capacities of
all edges “out of S”

e these are edges (u, v) whereuisinSand visin T.
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Solving GMC

e Theorem: There is a polynomial-time algorithm for finding
a global minimum cut in an undirected graph G.

e |dea: Turn the graph G into a flow network, and find a
minimum s-t cut.

e Replace every undirected edge with two directed
edges, one Iin the forward and one in the backward
direction. Set the capacity of those edges to be 7.

e Pick two arbitrary nodes s, t in V, and find the minimum
s-t cut (how?)
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How many iterations of the
max-flow algorithm?

We fix some s in V.
For every possible t in V (besides s), we run the algorithm.
In total, we will need n-17 iterations.

This is a polynomial-time algorithm, when the max-flow
algorithm is polynomial-time.
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Global Minimum Cut

We are given an undirected multigraph G=(V, E).

e There can be multiple “parallel” edges between two
nodes.

A cut of G is a partition of the nodes of the graph into two
sets, A and B.

The size of a cut (A, B) is the number of edges with one
endpoint in A and one endpoint in B.

A global minimum cut is a cut of minimum size.
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Is there a simpler solution?

e We will use a randomised algorithm to solve the problem.

e The algorithm will be faster and simpler.

* |t will produce the correct outcome with high probability.
e Sometimes it might make a mistake!

e But not too often.
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The Contraction Algorithm

e Proposed in 1992 by David Karger.
e |dea:
e Choose an edge of the graph uniformly at random.
e Contract the edge.
e Merge its endpoints (u, v) to a supernode w = {u, v}.
* Any edge (u, V) is removed.
 Any edge (u, a) or (v, a) becomes (w, a).

* When we are left with two supernodes w1 and wo, the corresponding sets
of nodes are A and B.
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A =1{a, b, c}
B = {d}




The Contraction Algorithm

Contraction(G)

For each node v, record
the set S(v) of nodes that have been contracted into v.
Initially, S(v) = {v} for each v. /* no contractions so far */

If G has two nodes vi and v, then return the cut {S(v1), S(v1)}.
Else, choose an edge e = (u, v) of G uniformly at random.
Let G’ be the graph resulting from contracting e, with a

new node z, replacing u and v.

Define S(zuw) = S(u) U S(v)
Contraction(G’)

Endlf
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The analysis of the algorithm

e Consider a global minimum (A, B) cut of G, and suppose
that it has size k.

e |n other words, there is a set F of edges with one
endpoint in A and one endpoint in B, such that |F|=k.

 We will prove that the contraction algorithm outputs the
cut (A, B) with high probability.
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A first observation

e The maximum degree in G is at least k.

* (Why?)

Suppose that the degree of
node a was smaller than k

Is (A, B) @ minimum cut?
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Where things can go wrong

e |et’s consider the first step of the contraction algorithm.

* We will have made a mistake, if an edge e in F was
contracted.

* When we contract an edge, we irrevocably decide that its
endpoints will be in the same “side” of the cut.

* For an edge e in F, its endpoints lie in different “sides” of
the cut.

* |f we contract e, then we can’t possibly produce the cut
(A, B).
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Bounding the error probability

What is the probability that we pick an edge in F?

* F has k edges, we pick uniformly at random from |E| edges.
e The probability is k / |E|.

* We want to upper bound this quantity.

e We can lower bound |E|.

e Claim: |E| = (kn)/2. (why?)

* The probability that an edge in F is contracted (in the first round) is
at most 2/n.



After round

Suppose that we have gone through j rounds and we have not
contracted any edges in F yet.

What is the probability that we contract an edge in F now?
There are n-j super-nodes in the graph G'.

A cutin G’ is also a cut in G.

* The degree of every super-node of G’ is again at least k.
e |Ec| = k(n-)/2.

e The mistake probability is k / |Ec| = 2/(n-j).



Events

* Mistake: Contract an edge in F.
* Event Ej: The algorithm does not make a mistake in round .

e \We have shown:
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Events

 Mistake: Contract an edge in F.
* Event Ej: The algorithm does not make a mistake in round .
* When is our algorithm successful?

* When it has not made a mistake in any round.

 What is the probability of that happening?
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Calculating

By the conditional
probability formula:

Pr(E|] - Pr(E,|E] ... PrlE |EsNE,n...0E] ... PrlE,_,|E\NE;N...NE,_;]
(1=2) (=755)-(=55)-(=3)
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Application

e Suppose that we repeat an experiment multiple times,
and each time the probability of success is p > 0.

e e.g., compute a minimum cut in a graph.



Success Amplification

e Run the algorithm independently X times.

e The probability that it fails is equal to

the probability that it fails the 1st time x
the probability that it fails the 2nd time x

the probability that it fails the Xth time.
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Generally

We can run the algorithm independently a number of
times.

This will decrease the error probability.
This will increase the running time.

There Is a trade-off between the two.
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Faster and simpler

e Definitely simpler.

e Jo get high success probability, we need a lot of
repetitions, so does not seem faster.

e One can do clever optimisations to the way in which
multiple runs are performed to improve the running
time considerably.



