
Advanced Algorithmic Techniques
(COMP523)

Randomised Algorithms 3

Recap and plan
• Previous lecture:

• Randomised global cuts in multi-graphs.

• This lecture:

• Types of randomised algorithms

• Randomised approximation algorithms.

• Applications: MAX-SAT, MAX-3SAT, MAX-CUT

Types of algorithms

• There are two (main) types of randomised algorithms:

• Monte Carlo algorithms: The algorithm computes the
correct solution with high probability, and the algorithm
always terminates.

• Las Vegas algorithms: The algorithm always computes
the correct solution, and its running time is a random
variable with bounded expectation.

Types of algorithms
• There are two (main) types of randomised algorithms:

• Monte Carlo algorithms: The algorithm computes the
correct solution with high probability, and the algorithm
always terminates.

• Las Vegas algorithms: The algorithm always computes
the correct solution, and its running time is a random
variable with bounded expectation.

• i.e., it might fail to terminate with some small
probability.

Examples
• Example of Monte Carlo algorithm:

• The global minimum cut algorithm on multi-graphs.

• Examples of Las Vegas algorithms:

• Randomised Partition (runs in expected time O(n))

• Randomised Quicksort (runs in expected time O(n log n)

• These algorithms pick the pivot element uniformly at
random.

Recall: The Partition procedure
Procedure Partition(A[i,…,j]) 
 
 Choose a pivot element x of A 
 
 k = i-1 
 
 For h = i to j-1 do 
 
 If A[h] ≤ x  
 k = k + 1 
 Swap A[k] with A[h] 
 
 Swap A[k+1] with A[j]

Return k+1 
 

Partition
2 8 7 1 3 5 4

Partition
2 8 7 1 3 5 4

Partition
2 8 7 1 3 5 4

Partition
2 8 7 1 3 5 4

Partition
2 8 7 1 3 5 4

Partition
2 8 7 1 3 5 4

Partition
2 871 3 5 4

Partition
2 871 3 5 4

Partition
2 8 71 3 5 4

Partition
2 8 71 3 5 4

Partition
2 871 3 54

Partition
2 871 3 54

21 83 4 5 7

Partition
2 871 3 54

21 83 4 5 7

All pivot elements are equally likely. 
Some give good partitions. 
Some give bad partitions. 

The running time is a random variable. 
Its expectation can be calculated  

using an appropriate recurrence relation.

Partition
2 871 3 54

21 83 4 5 7

All pivot elements are equally likely. 
Some give good partitions. 
Some give bad partitions. 

The running time is a random variable. 
Its expectation can be calculated  

using an appropriate recurrence relation.

More details: CLRS

Randomised Approximation algorithms

• We will use randomisation to design good approximation
algorithms.

• These algorithms will always terminate.

• Their approximation ratio will be calculated with respect
to their expected outcome.

Approximation ratio
• For maximisation problems, we define 

 
 maxx opt(x) / obj(A(x))

• i.e., the worst case ratio of the optimal value of the
objective over the value of the objective achieved by the
algorithm, over all possible inputs to the problem.

• Convention, to have approximation ratios always be ≥ 1.

Approximation ratio
• For maximisation problems, we define 

 
 maxx opt(x) / E[obj(A(x))]

• i.e., the worst case ratio of the optimal value of the
objective over the expected value of the objective
achieved by the algorithm, over all possible inputs to the
problem.

• Convention, to have approximation ratios always be ≥ 1.

3 SAT
• A CNF formula with m clauses and k literals. 

 
φ = (x1 ⌵ x5 ⌵ x3) ⌃ (x2 ⌵ x6 ⌵ ⌝x5) ⌃ … ⌃ (x3 ⌵ x8 ⌵ x12)

• (“An AND of ORs”).

• Each clause has three literals.

• Truth assignment: A value in {0,1} for each variable xi.

• Satisfying assignment: A truth assignment which makes the formula
evaluate to 1 (= true).

• Computational problem 3SAT : Decide if the input formula φ has a
satisfying assignment.

MAX 3SAT
• A CNF formula with m clauses and k literals. 

 
φ = (x1 ⌵ x5 ⌵ x3) ⌃ (x2 ⌵ x6 ⌵ ⌝x5) ⌃ … ⌃ (x3 ⌵ x8 ⌵ x12)

• (“An AND of ORs”).

• Each clause has three literals.

• Truth assignment: A value in {0,1} for each variable xi.

• Satisfying assignment: A truth assignment which makes the formula
evaluate to 1 (= true).

• Computational problem MAX-3SAT : Find an assignment that satisfies as
many clauses of φ as possible.

MAX SAT
• A CNF formula with m clauses and k literals. 

 
φ = (x1 ⌵ x5 ⌵ x3 ⌵ …) ⌃ (x2 ⌵ x6 ⌵ ⌝x5 ⌵ …) ⌃ … ⌃ (x3 ⌵ x8 ⌵ x12 ⌵ …)

• (“An AND of ORs”).

• Each clause has three literals.

• Truth assignment: A value in {0,1} for each variable xi.

• Satisfying assignment: A truth assignment which makes the formula
evaluate to 1 (= true).

• Computational problem MAX-SAT : Find an assignment that satisfies as
many clauses of φ as possible.

A 2-approximation
algorithm for MAX-SAT

• Algorithm: For each variable xi, set xi to 1 with probability
1/2 and to 0 with probability 1/2.

Analysis

• Let Yj be a random variable such that: 
 
Yj = 1, if clause j is satisfied. 
Yj = 0, otherwise. 

• Let X be a random variable, which is equal to the number
of satisfied clauses.

• By definition: X =
m

∑
j=1

Yj

Analysis

Analysis
• We have that: 

 
  E[X] = E

m

∑
j=1

Yj =
m

∑
j=1

E[Yj] =
m

∑
j=1

Pr[clause j is satisfied]

Analysis
• We have that: 

 
 

• What is the probability that clause j is not satisfied?

E[X] = E
m

∑
j=1

Yj =
m

∑
j=1

E[Yj] =
m

∑
j=1

Pr[clause j is satisfied]

Analysis
• We have that: 

 
 

• What is the probability that clause j is not satisfied?

• The probability that 
each positive literal is set to 0. 
each negative literal is set to 1.

E[X] = E
m

∑
j=1

Yj =
m

∑
j=1

E[Yj] =
m

∑
j=1

Pr[clause j is satisfied]

Analysis
• We have that: 

 
 

• What is the probability that clause j is not satisfied?

• The probability that 
each positive literal is set to 0. 
each negative literal is set to 1.

• each one of those happens with probability 1/2, independently.

E[X] = E
m

∑
j=1

Yj =
m

∑
j=1

E[Yj] =
m

∑
j=1

Pr[clause j is satisfied]

Analysis
• We have that: 

 
 

• What is the probability that clause j is not satisfied?

• The probability that 
each positive literal is set to 0. 
each negative literal is set to 1.

• each one of those happens with probability 1/2, independently.

• overall, this happens with probability (1/2)f(j)

E[X] = E
m

∑
j=1

Yj =
m

∑
j=1

E[Yj] =
m

∑
j=1

Pr[clause j is satisfied]

Analysis
• We have that: 

 
 

• What is the probability that clause j is not satisfied?

• The probability that 
each positive literal is set to 0. 
each negative literal is set to 1.

• each one of those happens with probability 1/2, independently.

• overall, this happens with probability (1/2)f(j)

• f(j) is the number of literals in clause j.

E[X] = E
m

∑
j=1

Yj =
m

∑
j=1

E[Yj] =
m

∑
j=1

Pr[clause j is satisfied]

Analysis
• This is the probability that clause j is not satisfied.

Analysis
• This is the probability that clause j is not satisfied.

• The probability that clause j is satisfied is  
 
 

(1 − (1
2)

f(j)

) ≥
1
2

Analysis
• This is the probability that clause j is not satisfied.

• The probability that clause j is satisfied is  
 
 

• We have:  
 
 

(1 − (1
2)

f(j)

) ≥
1
2

E[X] = E
m

∑
j=1

Yj =
m

∑
j=1

E[Yj] =
m

∑
j=1

Pr[clause j is satisfied] ≥
m
2

Analysis
• This is the probability that clause j is not satisfied.

• The probability that clause j is satisfied is  
 
 

• We have:  
 
 

• If we use the trivial upper bound of m on the value of the optimal,
we get the 2-approximation.

(1 − (1
2)

f(j)

) ≥
1
2

E[X] = E
m

∑
j=1

Yj =
m

∑
j=1

E[Yj] =
m

∑
j=1

Pr[clause j is satisfied] ≥
m
2

MAX 3SAT
• A CNF formula with m clauses and k literals. 

 
φ = (x1 ⌵ x5 ⌵ x3) ⌃ (x2 ⌵ x6 ⌵ ⌝x5) ⌃ … ⌃ (x3 ⌵ x8 ⌵ x12)

• (“An AND of ORs”).

• Each clause has three literals.

• Truth assignment: A value in {0,1} for each variable xi.

• Satisfying assignment: A truth assignment which makes the formula
evaluate to 1 (= true).

• Computational problem MAX-3SAT : Find an assignment that satisfies as
many clauses of φ as possible.

MAX 3SAT
• A CNF formula with m clauses and k literals. 

 
φ = (x1 ⌵ x5 ⌵ x3) ⌃ (x2 ⌵ x6 ⌵ ⌝x5) ⌃ … ⌃ (x3 ⌵ x8 ⌵ x12)

• (“An AND of ORs”).

• Each clause has three literals.

• Truth assignment: A value in {0,1} for each variable xi.

• Satisfying assignment: A truth assignment which makes the formula
evaluate to 1 (= true).

• Computational problem MAX-3SAT : Find an assignment that satisfies as
many clauses of φ as possible.

Can we use the same idea to get 
an approximation algorithm for MAX 3SAT?

Analysis
• This is the probability that clause j is not satisfied.

Analysis
• This is the probability that clause j is not satisfied.

• The probability that clause j is satisfied is  
 
 

(1 − (1
2)

f(j)

) ≥
1
2

Analysis
• This is the probability that clause j is not satisfied.

• The probability that clause j is satisfied is  
 
 

• We have:  
 
 

(1 − (1
2)

f(j)

) ≥
1
2

E[X] = E
m

∑
j=1

Yj =
m

∑
j=1

E[Yj] =
m

∑
j=1

Pr[clause j is satisfied] ≥
m
2

Analysis
• This is the probability that clause j is not satisfied.

• The probability that clause j is satisfied is  
 
 

• We have:  
 
 

• If we use the trivial upper bound of m on the value of the optimal,
we get the 2-approximation.

(1 − (1
2)

f(j)

) ≥
1
2

E[X] = E
m

∑
j=1

Yj =
m

∑
j=1

E[Yj] =
m

∑
j=1

Pr[clause j is satisfied] ≥
m
2

Global Minimum Cut

• We are given an undirected graph G=(V, E).

• A cut of G is a partition of the nodes of the graph into two
sets, A and B.

• The size of a cut (A, B) is the number of edges with one
endpoint in A and one endpoint in B.

• A global minimum cut is a cut of minimum size.

Maximum Cut

• We are given an undirected graph G=(V, E).

• A cut of G is a partition of the nodes of the graph into two
sets, A and B.

• The size of a cut (A, B) is the number of edges with one
endpoint in A and one endpoint in B.

• A global maximum cut is a cut of maximum size.

Minimum Cut vs Maximum Cut

Minimum Cut vs Maximum Cut

• Minimum Cut can be solved in polynomial time.

Minimum Cut vs Maximum Cut

• Minimum Cut can be solved in polynomial time.

• Always correctly, by flow algorithms.

Minimum Cut vs Maximum Cut

• Minimum Cut can be solved in polynomial time.

• Always correctly, by flow algorithms.

• Almost always correctly, by the contraction algorithm.

Minimum Cut vs Maximum Cut

• Minimum Cut can be solved in polynomial time.

• Always correctly, by flow algorithms.

• Almost always correctly, by the contraction algorithm.

• Maximum Cut is NP-hard.

Minimum Cut vs Maximum Cut

• Minimum Cut can be solved in polynomial time.

• Always correctly, by flow algorithms.

• Almost always correctly, by the contraction algorithm.

• Maximum Cut is NP-hard.

• We will design an approximation algorithm for MAX-CUT.

MAX-CUT algorithm

• For every vertex v in V independently,  
place v in A with probability 1/2, 
place v in B with probability 1/2.

MAX-CUT algorithm

• For every vertex v in V independently,  
place v in A with probability 1/2, 
place v in B with probability 1/2.

• 7-10 minute exercise: Prove that the approximation ratio
of this algorithm for the maximum cut problem is 2.

Analysis

• Let Xij be a random variable such that: 
 
Xij = 1, if edge (i, j) crosses the cut. 
Xij = 0, otherwise. 

• Let Z be a random variable, which is equal to the number
of edges that cross the cut.

• By definition: Z = ∑
(i,j) ∈ E

Xj

Analysis

Analysis
• We have that: 

 
 E[Z] = E ∑

(i, j)∈E

Xj = ∑
(i, j)∈E

E[Xj] = ∑
(i, j)∈E

Pr[edge (i, j) crosses the cut]

Analysis
• We have that: 

 
 

• What is the probability that edge (i, j) crosses the cut?

E[Z] = E ∑
(i, j)∈E

Xj = ∑
(i, j)∈E

E[Xj] = ∑
(i, j)∈E

Pr[edge (i, j) crosses the cut]

Analysis
• We have that: 

 
 

• What is the probability that edge (i, j) crosses the cut?

• The probability that nodes i and j are in different sets.

E[Z] = E ∑
(i, j)∈E

Xj = ∑
(i, j)∈E

E[Xj] = ∑
(i, j)∈E

Pr[edge (i, j) crosses the cut]

Analysis
• We have that: 

 
 

• What is the probability that edge (i, j) crosses the cut?

• The probability that nodes i and j are in different sets.

• This happens with probability 1/2.

E[Z] = E ∑
(i, j)∈E

Xj = ∑
(i, j)∈E

E[Xj] = ∑
(i, j)∈E

Pr[edge (i, j) crosses the cut]

E[Z] = ∑
(i, j)∈E

Pr[edge (i, j) crosses the cut] =
m
2

Comparing solutions

• Assume that you have a deterministic algorithm that has a
2-approximation for a problem, and a randomised
algorithm that has a 2-approximation for the problem.

Comparing solutions

• Assume that you have a deterministic algorithm that has a
2-approximation for a problem, and a randomised
algorithm that has a 2-approximation for the problem.

• Which one would you pick?

Comparing solutions

• Assume that you have a deterministic algorithm that has a
2-approximation for a problem, and a randomised
algorithm that has a 2-approximation for the problem.

• Which one would you pick?

• The answer can depend on many factors (running time,
implementation complexity, etc).

Comparing solutions

• Assume that you have a deterministic algorithm that has a
2-approximation for a problem, and a randomised
algorithm that has a 2-approximation for the problem.

• Which one would you pick?

• The answer can depend on many factors (running time,
implementation complexity, etc).

• What if you only cared about the approximation ratio?

Comparing solutions

Comparing solutions

• The randomised algorithm works well in expectation.

Comparing solutions

• The randomised algorithm works well in expectation.

• The deterministic algorithm works well always.

Comparing solutions

• The randomised algorithm works well in expectation.

• The deterministic algorithm works well always.

• What if things go horribly wrong?

Derandomisation

Derandomisation
• Sometimes it is possible to “derandomise” a randomised algorithm Arand

and obtain a deterministic algorithm Adet.

Derandomisation
• Sometimes it is possible to “derandomise” a randomised algorithm Arand

and obtain a deterministic algorithm Adet.

• The performance of Adet is the same as the expected performance of Arand.

Derandomisation
• Sometimes it is possible to “derandomise” a randomised algorithm Arand

and obtain a deterministic algorithm Adet.

• The performance of Adet is the same as the expected performance of Arand.

• We can use randomisation at no extra cost! (except a polynomial running
time overhead).

Derandomisation
• Sometimes it is possible to “derandomise” a randomised algorithm Arand

and obtain a deterministic algorithm Adet.

• The performance of Adet is the same as the expected performance of Arand.

• We can use randomisation at no extra cost! (except a polynomial running
time overhead).

• Different methods for derandomisation.

Derandomisation
• Sometimes it is possible to “derandomise” a randomised algorithm Arand

and obtain a deterministic algorithm Adet.

• The performance of Adet is the same as the expected performance of Arand.

• We can use randomisation at no extra cost! (except a polynomial running
time overhead).

• Different methods for derandomisation.

• Can be very complicated (pseudo-random generators).

Derandomisation
• Sometimes it is possible to “derandomise” a randomised algorithm Arand

and obtain a deterministic algorithm Adet.

• The performance of Adet is the same as the expected performance of Arand.

• We can use randomisation at no extra cost! (except a polynomial running
time overhead).

• Different methods for derandomisation.

• Can be very complicated (pseudo-random generators).

• Can be relatively simple (conditional expectations).

Derandomisation
• Sometimes it is possible to “derandomise” a randomised algorithm Arand

and obtain a deterministic algorithm Adet.

• The performance of Adet is the same as the expected performance of Arand.

• We can use randomisation at no extra cost! (except a polynomial running
time overhead).

• Different methods for derandomisation.

• Can be very complicated (pseudo-random generators).

• Can be relatively simple (conditional expectations).

• Next lecture!

