
Advanced Algorithmic Techniques  
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Randomised Algorithms 3



Recap and plan
• Previous lecture: 

• Randomised global cuts in multi-graphs.


• This lecture: 

• Types of randomised algorithms


• Randomised approximation algorithms.


• Applications: MAX-SAT, MAX-3SAT, MAX-CUT



Types of algorithms

• There are two (main) types of randomised algorithms:


• Monte Carlo algorithms: The algorithm computes the 
correct solution with high probability, and the algorithm 
always terminates.


• Las Vegas algorithms: The algorithm always computes 
the correct solution, and its running time is a random 
variable with bounded expectation.



Types of algorithms
• There are two (main) types of randomised algorithms:


• Monte Carlo algorithms: The algorithm computes the 
correct solution with high probability, and the algorithm 
always terminates.


• Las Vegas algorithms: The algorithm always computes 
the correct solution, and its running time is a random 
variable with bounded expectation. 

• i.e., it might fail to terminate with some small 
probability.



Examples
• Example of Monte Carlo algorithm:


• The global minimum cut algorithm on multi-graphs.


• Examples of Las Vegas algorithms:


• Randomised Partition (runs in expected time O(n))


• Randomised Quicksort (runs in expected time O(n log n)


• These algorithms pick the pivot element uniformly at 
random.



Recall: The Partition procedure
Procedure Partition(A[i,…,j]) 
 
    Choose a pivot element x of A 
 
    k = i-1 
 
    For h = i to j-1 do 
 
          If A[h] ≤ x  
                k = k + 1 
                Swap A[k] with A[h] 
 
         Swap A[k+1] with A[j]


Return k+1 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All pivot elements are equally likely. 
Some give good partitions. 
Some give bad partitions. 

The running time is a random variable. 
Its expectation can be calculated  

using an appropriate recurrence relation.



Partition
2 871 3 54

21 83 4 5 7

All pivot elements are equally likely. 
Some give good partitions. 
Some give bad partitions. 

The running time is a random variable. 
Its expectation can be calculated  

using an appropriate recurrence relation.

More details: CLRS



Randomised Approximation algorithms

• We will use randomisation to design good approximation 
algorithms.


• These algorithms will always terminate.


• Their approximation ratio will be calculated with respect 
to their expected outcome.



Approximation ratio
• For maximisation problems, we define 

 
                   maxx  opt(x) / obj(A(x))


• i.e., the worst case ratio of the optimal value of the 
objective over the value of the objective achieved by the 
algorithm, over all possible inputs to the problem.


• Convention, to have approximation ratios always be ≥ 1. 



Approximation ratio
• For maximisation problems, we define 

 
                   maxx  opt(x) / E[obj(A(x))]


• i.e., the worst case ratio of the optimal value of the 
objective over the expected value of the objective 
achieved by the algorithm, over all possible inputs to the 
problem.


• Convention, to have approximation ratios always be ≥ 1. 



3 SAT
• A CNF formula with m clauses and k literals. 

 
φ = (x1 ⌵ x5 ⌵ x3 ) ⌃ (x2 ⌵ x6 ⌵ ⌝x5 ) ⌃ … ⌃  (x3 ⌵ x8 ⌵ x12 )


• (“An AND of ORs”).


• Each clause has three literals.


• Truth assignment: A value in {0,1} for each variable xi.


• Satisfying assignment: A truth assignment which makes the formula 
evaluate to 1 (= true).


• Computational problem 3SAT : Decide if the input formula φ has a 
satisfying assignment.
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• Computational problem MAX-3SAT : Find an assignment that satisfies as 
many clauses of φ as possible.
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φ = (x1 ⌵ x5 ⌵ x3 ⌵ … ) ⌃ (x2 ⌵ x6 ⌵ ⌝x5 ⌵ … ) ⌃ … ⌃  (x3 ⌵ x8 ⌵ x12  ⌵ …)


• (“An AND of ORs”).


• Each clause has three literals.


• Truth assignment: A value in {0,1} for each variable xi.


• Satisfying assignment: A truth assignment which makes the formula 
evaluate to 1 (= true).


• Computational problem MAX-SAT : Find an assignment that satisfies as 
many clauses of φ as possible.



A 2-approximation 
algorithm for MAX-SAT

• Algorithm: For each variable xi, set xi to 1 with probability 
1/2 and to 0 with probability 1/2.



Analysis

• Let Yj be a random variable such that: 
 
Yj = 1, if clause j is satisfied. 
Yj  = 0, otherwise. 

• Let X be a random variable, which is equal to the number 
of satisfied clauses.


• By definition: X =
m

∑
j=1

Yj
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Analysis
• We have that: 

 
 

• What is the probability that clause j is not satisfied?

• The probability that 
each positive literal is set to 0. 
each negative literal is set to 1.

• each one of those happens with probability 1/2, independently.

• overall, this happens with probability (1/2)f(j)

• f(j) is the number of literals in clause j.

E[X] = E
m

∑
j=1

Yj =
m

∑
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m

∑
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Pr[clause j is satisfied]
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Analysis
• This is the probability that clause j is not satisfied.

• The probability that clause j is satisfied is  
 
 

• We have:  
 
 

• If we use the trivial upper bound of m on the value of the optimal, 
we get the 2-approximation.
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MAX 3SAT
• A CNF formula with m clauses and k literals. 

 
φ = (x1 ⌵ x5 ⌵ x3 ) ⌃ (x2 ⌵ x6 ⌵ ⌝x5 ) ⌃ … ⌃  (x3 ⌵ x8 ⌵ x12 )


• (“An AND of ORs”).


• Each clause has three literals.


• Truth assignment: A value in {0,1} for each variable xi.


• Satisfying assignment: A truth assignment which makes the formula 
evaluate to 1 (= true).


• Computational problem MAX-3SAT : Find an assignment that satisfies as 
many clauses of φ as possible.



MAX 3SAT
• A CNF formula with m clauses and k literals. 

 
φ = (x1 ⌵ x5 ⌵ x3 ) ⌃ (x2 ⌵ x6 ⌵ ⌝x5 ) ⌃ … ⌃  (x3 ⌵ x8 ⌵ x12 )


• (“An AND of ORs”).


• Each clause has three literals.


• Truth assignment: A value in {0,1} for each variable xi.


• Satisfying assignment: A truth assignment which makes the formula 
evaluate to 1 (= true).


• Computational problem MAX-3SAT : Find an assignment that satisfies as 
many clauses of φ as possible.

Can we use the same idea to get 
an approximation algorithm for MAX 3SAT?
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Global Minimum Cut

• We are given an undirected graph G=(V, E).


• A cut of G is a partition of the nodes of the graph into two 
sets, A and B.


• The size of a cut (A, B) is the number of edges with one 
endpoint in A and one endpoint in B.


• A global minimum cut is a cut of minimum size.



Maximum Cut

• We are given an undirected graph G=(V, E).


• A cut of G is a partition of the nodes of the graph into two 
sets, A and B.


• The size of a cut (A, B) is the number of edges with one 
endpoint in A and one endpoint in B.


• A global maximum cut is a cut of maximum size.



Minimum Cut vs Maximum Cut
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Minimum Cut vs Maximum Cut

• Minimum Cut can be solved in polynomial time.

• Always correctly, by flow algorithms.

• Almost always correctly, by the contraction algorithm.

• Maximum Cut is NP-hard.

• We will design an approximation algorithm for MAX-CUT.



MAX-CUT algorithm

• For every vertex v in V independently,  
place v in A with probability 1/2, 
place v in B with probability 1/2.



MAX-CUT algorithm

• For every vertex v in V independently,  
place v in A with probability 1/2, 
place v in B with probability 1/2.

• 7-10 minute exercise: Prove that the approximation ratio 
of this algorithm for the maximum cut problem is 2.



Analysis

• Let Xij be a random variable such that: 
 
Xij = 1, if edge (i, j) crosses the cut. 
Xij  = 0, otherwise. 

• Let Z be a random variable, which is equal to the number 
of edges that cross the cut.


• By definition: Z = ∑
(i,j) ∈ E

Xj
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Analysis
• We have that: 

 
 E[Z] = E ∑

(i, j)∈E
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Analysis
• We have that: 

 
 

• What is the probability that edge (i, j) crosses the cut?

• The probability that nodes i and j are in different sets.

E[Z] = E ∑
(i, j)∈E

Xj = ∑
(i, j)∈E

E[Xj] = ∑
(i, j)∈E

Pr[edge (i, j) crosses the cut]



Analysis
• We have that: 

 
 

• What is the probability that edge (i, j) crosses the cut?

• The probability that nodes i and j are in different sets.

• This happens with probability 1/2.

E[Z] = E ∑
(i, j)∈E

Xj = ∑
(i, j)∈E

E[Xj] = ∑
(i, j)∈E

Pr[edge (i, j) crosses the cut]

E[Z] = ∑
(i, j)∈E

Pr[edge (i, j) crosses the cut] =
m
2



Comparing solutions
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Comparing solutions

• Assume that you have a deterministic algorithm that has a 
2-approximation for a problem, and a randomised 
algorithm that has a 2-approximation for the problem.

• Which one would you pick?

• The answer can depend on many factors (running time, 
implementation complexity, etc).

• What if you only cared about the approximation ratio?
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• The randomised algorithm works well in expectation.
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Comparing solutions

• The randomised algorithm works well in expectation.

• The deterministic algorithm works well always.

• What if things go horribly wrong?
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and obtain a deterministic algorithm Adet.



Derandomisation
• Sometimes it is possible to “derandomise” a randomised  algorithm Arand 

and obtain a deterministic algorithm Adet.

• The performance of Adet is the same as the expected performance of Arand.



Derandomisation
• Sometimes it is possible to “derandomise” a randomised  algorithm Arand 

and obtain a deterministic algorithm Adet.

• The performance of Adet is the same as the expected performance of Arand.

• We can use randomisation at no extra cost! (except a polynomial running 
time overhead).



Derandomisation
• Sometimes it is possible to “derandomise” a randomised  algorithm Arand 

and obtain a deterministic algorithm Adet.

• The performance of Adet is the same as the expected performance of Arand.

• We can use randomisation at no extra cost! (except a polynomial running 
time overhead).

• Different methods for derandomisation.



Derandomisation
• Sometimes it is possible to “derandomise” a randomised  algorithm Arand 

and obtain a deterministic algorithm Adet.

• The performance of Adet is the same as the expected performance of Arand.

• We can use randomisation at no extra cost! (except a polynomial running 
time overhead).

• Different methods for derandomisation.

• Can be very complicated (pseudo-random generators).



Derandomisation
• Sometimes it is possible to “derandomise” a randomised  algorithm Arand 

and obtain a deterministic algorithm Adet.

• The performance of Adet is the same as the expected performance of Arand.

• We can use randomisation at no extra cost! (except a polynomial running 
time overhead).

• Different methods for derandomisation.

• Can be very complicated (pseudo-random generators).

• Can be relatively simple (conditional expectations).



Derandomisation
• Sometimes it is possible to “derandomise” a randomised  algorithm Arand 

and obtain a deterministic algorithm Adet.

• The performance of Adet is the same as the expected performance of Arand.

• We can use randomisation at no extra cost! (except a polynomial running 
time overhead).

• Different methods for derandomisation.

• Can be very complicated (pseudo-random generators).

• Can be relatively simple (conditional expectations).

• Next lecture!


