Advanced Algorithmic Techniques (COMP523)

Randomised Algorithms 3

Recap and plan

- Previous lecture:
- Randomised global cuts in multi-graphs.
- This lecture:
- Types of randomised algorithms
- Randomised approximation algorithms.
- Applications: MAX-SAT, MAX-3SAT, MAX-CUT

Types of algorithms

- There are two (main) types of randomised algorithms:
- Monte Carlo algorithms: The algorithm computes the correct solution with high probability, and the algorithm always terminates.
- Las Vegas algorithms: The algorithm always computes the correct solution, and its running time is a random variable with bounded expectation.

Types of algorithms

- There are two (main) types of randomised algorithms:
- Monte Carlo algorithms: The algorithm computes the correct solution with high probability, and the algorithm always terminates.
- Las Vegas algorithms: The algorithm always computes the correct solution, and its running time is a random variable with bounded expectation.
- i.e., it might fail to terminate with some small probability.

Examples

- Example of Monte Carlo algorithm:
- The global minimum cut algorithm on multi-graphs.
- Examples of Las Vegas algorithms:
- Randomised Partition (runs in expected time $O(n)$)
- Randomised Quicksort (runs in expected time O(n log n)
- These algorithms pick the pivot element uniformly at random.

Recall: The Partition procedure

Procedure Partition($\mathbf{A}[i, \ldots, j])$

Choose a pivot element \mathbf{x} of \mathbf{A}

$$
k=i-1
$$

$$
\text { For } h=i \text { to } j-1 \text { do }
$$

$$
\text { If } \mathbf{A}[h] \leq \mathbf{x}
$$

$$
k=k+1
$$

$$
\text { Swap } \mathbf{A}[k] \text { with } \mathbf{A}[h]
$$

Swap $\mathbf{A}[k+1]$ with $\mathbf{A}[]]$
Return k+1

Partition

All pivot elements are equally likely.
Some give good partitions.
Some give bad partitions.
The running time is a random variable.
Its expectation can be calculated
using an appropriate recurrence relation.

Partition

All pivot elements are equally likely.
Some give good partitions.
More details: CLRS
Some give bad partitions.
The running time is a random variable.
Its expectation can be calculated
using an appropriate recurrence relation.

Randomised Approximation algorithms

- We will use randomisation to design good approximation algorithms.
- These algorithms will always terminate.
- Their approximation ratio will be calculated with respect to their expected outcome.

Approximation ratio

- For maximisation problems, we define

$$
\max _{x} \operatorname{opt}(x) / \operatorname{obj}(A(x))
$$

- i.e., the worst case ratio of the optimal value of the objective over the value of the objective achieved by the algorithm, over all possible inputs to the problem.
- Convention, to have approximation ratios always be ≥ 1.

Approximation ratio

- For maximisation problems, we define

$$
\max \times \operatorname{opt}(x) / E[o b j(A(x))]
$$

- i.e., the worst case ratio of the optimal value of the objective over the expected value of the objective achieved by the algorithm, over all possible inputs to the problem.
- Convention, to have approximation ratios always be ≥ 1.

3 SAT

- A CNF formula with m clauses and k literals.

$$
\phi=\left(x_{1} \vee x_{5} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{6} \vee \vee x_{5}\right) \wedge \ldots \wedge\left(x_{3} \vee x_{8} \vee x_{12}\right)
$$

- ("An AND of ORs").
- Each clause has three literals.
- Truth assignment: A value in $\{0,1\}$ for each variable x_{i}.
- Satisfying assignment: A truth assignment which makes the formula evaluate to 1 (= true).
- Computational problem 3SAT : Decide if the input formula ϕ has a satisfying assignment.

MAX 3SAT

- A CNF formula with m clauses and k literals.

$$
\phi=\left(x_{1} \vee x_{5} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{6} \vee \vee x_{5}\right) \wedge \ldots \wedge\left(x_{3} \vee x_{8} \vee x_{12}\right)
$$

- ("An AND of ORs").
- Each clause has three literals.
- Truth assignment: A value in $\{0,1\}$ for each variable x_{i}.
- Satisfying assignment: A truth assignment which makes the formula evaluate to 1 (= true).
- Computational problem MAX-3SAT : Find an assignment that satisfies as many clauses of ϕ as possible.

MAX SAT

- A CNF formula with m clauses and k literals.

$$
\phi=\left(x_{1} \vee x_{5} \vee x_{3} \vee \ldots\right) \wedge\left(x_{2} \vee x_{6} \vee x_{5} \vee \ldots\right) \wedge \ldots \wedge\left(x_{3} \vee x_{8} \vee x_{12} \vee \ldots\right)
$$

- ("An AND of ORs").
- Each clause has three literals.
- Truth assignment: A value in $\{0,1\}$ for each variable x_{i}.
- Satisfying assignment: A truth assignment which makes the formula evaluate to 1 (= true).
- Computational problem MAX-SAT : Find an assignment that satisfies as many clauses of ϕ as possible.

A 2-approximation algorithm for MAX-SAT

- Algorithm: For each variable x_{i}, set x_{i} to 1 with probability $1 / 2$ and to 0 with probability 1/2.

Analysis

- Let Y_{j} be a random variable such that:
$Y_{j}=1$, if clause j is satisfied.
$Y_{j}=0$, otherwise.
- Let X be a random variable, which is equal to the number of satisfied clauses.
- By definition: $\quad X=\sum_{j=1}^{m} Y_{j}$

Analysis

Analysis

- We have that:

$$
E[X]=E\left[\sum_{j=1}^{m} Y_{j}\right]=\sum_{j=1}^{m} E\left[Y_{j}\right]=\sum_{j=1}^{m} \operatorname{Pr}[\text { clause } j \text { is satisfied }]
$$

Analysis

- We have that:

$$
E[X]=E\left[\sum_{j=1}^{m} Y_{j}\right]=\sum_{j=1}^{m} E\left[Y_{j}\right]=\sum_{j=1}^{m} \operatorname{Pr}[\text { clause } j \text { is satisfied }]
$$

- What is the probability that clause j is not satisfied?

Analysis

- We have that:

$$
E[X]=E\left[\sum_{j=1}^{m} Y_{j}\right]=\sum_{j=1}^{m} E\left[Y_{j}\right]=\sum_{j=1}^{m} \operatorname{Pr}[\text { clause } j \text { is satisfied }]
$$

- What is the probability that clause j is not satisfied?
- The probability that
each positive literal is set to 0 .
each negative literal is set to 1 .

Analysis

- We have that:

$$
E[X]=E\left[\sum_{j=1}^{m} Y_{j}\right]=\sum_{j=1}^{m} E\left[Y_{j}\right]=\sum_{j=1}^{m} \operatorname{Pr}[\text { clause } j \text { is satisfied }]
$$

- What is the probability that clause j is not satisfied?
- The probability that each positive literal is set to 0 . each negative literal is set to 1 .
- each one of those happens with probability $1 / 2$, independently.

Analysis

- We have that:

$$
E[X]=E\left[\sum_{j=1}^{m} Y_{j}\right]=\sum_{j=1}^{m} E\left[Y_{j}\right]=\sum_{j=1}^{m} \operatorname{Pr}[\text { clause } j \text { is satisfied }]
$$

- What is the probability that clause j is not satisfied?
- The probability that each positive literal is set to 0 . each negative literal is set to 1 .
- each one of those happens with probability $1 / 2$, independently.
- overall, this happens with probability $(1 / 2)^{f(0)}$

Analysis

- We have that:

$$
E[X]=E\left[\sum_{j=1}^{m} Y_{j}\right]=\sum_{j=1}^{m} E\left[Y_{j}\right]=\sum_{j=1}^{m} \operatorname{Pr}[\text { clause } j \text { is satisfied }]
$$

- What is the probability that clause j is not satisfied?
- The probability that each positive literal is set to 0 . each negative literal is set to 1 .
- each one of those happens with probability $1 / 2$, independently.
- overall, this happens with probability $(1 / 2)^{f(0)}$
- $\mathrm{f}(\mathrm{j})$ is the number of literals in clause j.

Analysis

- This is the probability that clause j is not satisfied.

Analysis

- This is the probability that clause j is not satisfied.
- The probability that clause j is satisfied is

$$
\left(1-\left(\frac{1}{2}\right)^{f(j)}\right) \geq \frac{1}{2}
$$

Analysis

- This is the probability that clause j is not satisfied.
- The probability that clause j is satisfied is

$$
\left(1-\left(\frac{1}{2}\right)^{f(j)}\right) \geq \frac{1}{2}
$$

- We have:

$$
E[X]=E\left[\sum_{j=1}^{m} Y_{j}\right]=\sum_{j=1}^{m} E\left[Y_{j}\right]=\sum_{j=1}^{m} \operatorname{Pr}[\text { clause } j \text { is satisfied }] \geq \frac{m}{2}
$$

Analysis

- This is the probability that clause j is not satisfied.
- The probability that clause j is satisfied is

$$
\left(1-\left(\frac{1}{2}\right)^{f(j)}\right) \geq \frac{1}{2}
$$

- We have:

$$
E[X]=E\left[\sum_{j=1}^{m} Y_{j}\right]=\sum_{j=1}^{m} E\left[Y_{j}\right]=\sum_{j=1}^{m} \operatorname{Pr}[\text { clause } j \text { is satisfied }] \geq \frac{m}{2}
$$

- If we use the trivial upper bound of m on the value of the optimal, we get the 2-approximation.

MAX 3SAT

- A CNF formula with m clauses and k literals.

$$
\phi=\left(x_{1} \vee x_{5} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{6} \vee \vee x_{5}\right) \wedge \ldots \wedge\left(x_{3} \vee x_{8} \vee x_{12}\right)
$$

- ("An AND of ORs").
- Each clause has three literals.
- Truth assignment: A value in $\{0,1\}$ for each variable x_{i}.
- Satisfying assignment: A truth assignment which makes the formula evaluate to 1 (= true).
- Computational problem MAX-3SAT : Find an assignment that satisfies as many clauses of ϕ as possible.

MAX 3SAT

- A CNF formula with m clauses and k literals.

$$
\phi=\left(x_{1} \vee x_{5} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{6} \vee \vee x_{5}\right) \wedge \ldots \wedge\left(x_{3} \vee x_{8} \vee x_{12}\right)
$$

- ("An AND of ORs").
- Each clause has three literals.
- Truth assignment: A value in $\{0,1\}$ for each variable x_{i}.
- Satisfying assignment: A truth assignment which makes the formula evaluate to 1 (= true).
- Computational problem MAX-3SAT : Find an assignment that satisfies as many clauses of ϕ as possible.

Analysis

- This is the probability that clause j is not satisfied.

Analysis

- This is the probability that clause j is not satisfied.
- The probability that clause j is satisfied is

$$
\left(1-\left(\frac{1}{2}\right)^{f(j)}\right) \geq \frac{1}{2}
$$

Analysis

- This is the probability that clause j is not satisfied.
- The probability that clause j is satisfied is

$$
\left(1-\left(\frac{1}{2}\right)^{f(j)}\right) \geq \frac{1}{2}
$$

- We have:

$$
E[X]=E\left[\sum_{j=1}^{m} Y_{j}\right]=\sum_{j=1}^{m} E\left[Y_{j}\right]=\sum_{j=1}^{m} \operatorname{Pr}[\text { clause } j \text { is satisfied }] \geq \frac{m}{2}
$$

Analysis

- This is the probability that clause j is not satisfied.
- The probability that clause j is satisfied is

$$
\left(1-\left(\frac{1}{2}\right)^{f(j)}\right) \geq \frac{1}{2}
$$

- We have:

$$
E[X]=E\left[\sum_{j=1}^{m} Y_{j}\right]=\sum_{j=1}^{m} E\left[Y_{j}\right]=\sum_{j=1}^{m} \operatorname{Pr}[\text { clause } j \text { is satisfied }] \geq \frac{m}{2}
$$

- If we use the trivial upper bound of m on the value of the optimal, we get the 2-approximation.

Global Minimum Cut

- We are given an undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
- A cut of G is a partition of the nodes of the graph into two sets, A and B.
- The size of a cut (A, B) is the number of edges with one endpoint in A and one endpoint in B .
- A global minimum cut is a cut of minimum size.

Maximum Cut

- We are given an undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
- A cut of G is a partition of the nodes of the graph into two sets, A and B.
- The size of a cut (A, B) is the number of edges with one endpoint in A and one endpoint in B .
- A global maximum cut is a cut of maximum size.

Minimum Cut vs Maximum Cut

Minimum Cut vs Maximum Cut

- Minimum Cut can be solved in polynomial time.

Minimum Cut vs Maximum Cut

- Minimum Cut can be solved in polynomial time.
- Always correctly, by flow algorithms.

Minimum Cut vs Maximum Cut

- Minimum Cut can be solved in polynomial time.
- Always correctly, by flow algorithms.
- Almost always correctly, by the contraction algorithm.

Minimum Cut vs Maximum Cut

- Minimum Cut can be solved in polynomial time.
- Always correctly, by flow algorithms.
- Almost always correctly, by the contraction algorithm.
- Maximum Cut is NP-hard.

Minimum Cut vs Maximum Cut

- Minimum Cut can be solved in polynomial time.
- Always correctly, by flow algorithms.
- Almost always correctly, by the contraction algorithm.
- Maximum Cut is NP-hard.
- We will design an approximation algorithm for MAX-CUT.

MAX-CUT algorithm

- For every vertex v in V independently, place v in A with probability $1 / 2$, place v in B with probability $1 / 2$.

MAX-CUT algorithm

- For every vertex v in V independently, place v in A with probability $1 / 2$, place v in B with probability $1 / 2$.
- 7-10 minute exercise: Prove that the approximation ratio of this algorithm for the maximum cut problem is 2 .

Analysis

- Let $X_{i j}$ be a random variable such that:
$X_{i j}=1$, if edge (i, j) crosses the cut. $X_{i j}=0$, otherwise.
- Let Z be a random variable, which is equal to the number of edges that cross the cut.
- By definition: $Z=\sum_{(i, j) \in E} X_{j}$

Analysis

Analysis

- We have that:

$$
E[Z]=E\left[\sum_{(i, j) \in E} X_{j}\right]=\sum_{(i, j) \in E} E\left[X_{j}\right]=\sum_{(i, j) \in E} \operatorname{Pr}[\text { edge }(i, j) \text { crosses the cut }]
$$

Analysis

- We have that:

$$
E[Z]=E\left[\sum_{(i, j) \in E} X_{j}\right]=\sum_{(i, j) \in E} E\left[X_{j}\right]=\sum_{(i, j) \in E} \operatorname{Pr}[\text { edge }(i, j) \text { crosses the cut }]
$$

- What is the probability that edge (i, j) crosses the cut?

Analysis

- We have that:

$$
E[Z]=E\left[\sum_{(i, j) \in E} X_{j}\right]=\sum_{(i, j) \in E} E\left[X_{j}\right]=\sum_{(i, j) \in E} \operatorname{Pr}[\text { edge }(i, j) \text { crosses the cut }]
$$

- What is the probability that edge (i, j) crosses the cut?
- The probability that nodes i and j are in different sets.

Analysis

- We have that:

$$
E[Z]=E\left[\sum_{(i, j) \in E} X_{j}\right]=\sum_{(i, j) \in E} E\left[X_{j}\right]=\sum_{(i, j) \in E} \operatorname{Pr}[\text { edge }(i, j) \text { crosses the cut }]
$$

- What is the probability that edge (i, j) crosses the cut?
- The probability that nodes i and j are in different sets.
- This happens with probability $1 / 2$.

$$
E[Z]=\sum_{(i, j) \in E} \operatorname{Pr}[\text { edge }(i, j) \text { crosses the cut }]=\frac{m}{2}
$$

Comparing solutions

- Assume that you have a deterministic algorithm that has a 2-approximation for a problem, and a randomised algorithm that has a 2-approximation for the problem.

Comparing solutions

- Assume that you have a deterministic algorithm that has a 2-approximation for a problem, and a randomised algorithm that has a 2-approximation for the problem.
- Which one would you pick?

Comparing solutions

- Assume that you have a deterministic algorithm that has a 2-approximation for a problem, and a randomised algorithm that has a 2-approximation for the problem.
- Which one would you pick?
- The answer can depend on many factors (running time, implementation complexity, etc).

Comparing solutions

- Assume that you have a deterministic algorithm that has a 2-approximation for a problem, and a randomised algorithm that has a 2-approximation for the problem.
- Which one would you pick?
- The answer can depend on many factors (running time, implementation complexity, etc).
- What if you only cared about the approximation ratio?

Comparing solutions

Comparing solutions

- The randomised algorithm works well in expectation.

Comparing solutions

- The randomised algorithm works well in expectation.
- The deterministic algorithm works well always.

Comparing solutions

- The randomised algorithm works well in expectation.
- The deterministic algorithm works well always.
- What if things go horribly wrong?

Derandomisation

Derandomisation

- Sometimes it is possible to "derandomise" a randomised algorithm Arand and obtain a deterministic algorithm $A_{\text {det }}$.

Derandomisation

- Sometimes it is possible to "derandomise" a randomised algorithm Arand and obtain a deterministic algorithm Adet.
- The performance of $A_{\text {det }}$ is the same as the expected performance of $A_{\text {rand }}$.

Derandomisation

- Sometimes it is possible to "derandomise" a randomised algorithm Arand and obtain a deterministic algorithm Adet.
- The performance of $A_{\text {det }}$ is the same as the expected performance of $A_{\text {rand. }}$
- We can use randomisation at no extra cost! (except a polynomial running time overhead).

Derandomisation

- Sometimes it is possible to "derandomise" a randomised algorithm Arand and obtain a deterministic algorithm Adet.
- The performance of $A_{\text {det }}$ is the same as the expected performance of $A_{\text {rand }}$.
- We can use randomisation at no extra cost! (except a polynomial running time overhead).
- Different methods for derandomisation.

Derandomisation

- Sometimes it is possible to "derandomise" a randomised algorithm Arand and obtain a deterministic algorithm Adet.
- The performance of $A_{\text {det }}$ is the same as the expected performance of $A_{\text {rand }}$.
- We can use randomisation at no extra cost! (except a polynomial running time overhead).
- Different methods for derandomisation.
- Can be very complicated (pseudo-random generators).

Derandomisation

- Sometimes it is possible to "derandomise" a randomised algorithm Arand and obtain a deterministic algorithm Adet.
- The performance of $A_{\text {det }}$ is the same as the expected performance of $A_{\text {rand }}$.
- We can use randomisation at no extra cost! (except a polynomial running time overhead).
- Different methods for derandomisation.
- Can be very complicated (pseudo-random generators).
- Can be relatively simple (conditional expectations).

Derandomisation

- Sometimes it is possible to "derandomise" a randomised algorithm Arand and obtain a deterministic algorithm Adet.
- The performance of $A_{\text {det }}$ is the same as the expected performance of $A_{\text {rand }}$.
- We can use randomisation at no extra cost! (except a polynomial running time overhead).
- Different methods for derandomisation.
- Can be very complicated (pseudo-random generators).
- Can be relatively simple (conditional expectations).
- Next lecture!

