Advanced Algorithmic Techniques (COMP523)

Randomised Algorithms 4

Recap and plan

- Last lecture:
- Types of randomised algorithms
- Randomised approximation algorithms.
- Applications: MAX-SAT, MAX-3SAT, MAX-CUT
- This lecture:
- Derandomisation using conditional expectations.
- Randomised Rounding.
- Application: MAX-SAT

A 2-approximation algorithm for MAX-SAT

- Algorithm: For each variable x_{i}, set x_{i} to 1 with probability $1 / 2$ and to 0 with probability 1/2.

Derandomisation

- Sometimes it is possible to "derandomise" a randomised algorithm Arand and obtain a deterministic algorithm Adet.
- The performance of $A_{\text {det }}$ is the same as the expected performance of Arand.
- We can use randomisation at no extra cost! (except a polynomial running time overhead).
- Different methods for derandomisation.
- Can be very complicated (pseudo-random generators).
- Can be relatively simple (conditional expectations).

Derandomisation

- Algorithm: For each variable x_{i}, set x_{i} to 1 with probability $1 / 2$ and to 0 with probability 1/2.

Derandomisation

- Algorithm: For each variable x_{i}, set x_{i} to 1 with probability $1 / 2$ and to 0 with probability 1/2.
- Algorithm: Set variable x_{i} to 1 or 0 deterministically, and the remaining variables to 1 with probability $1 / 2$ and to 0 with probability $1 / 2$, as before.

Derandomisation

- Algorithm: For each variable x_{i}, set x_{i} to 1 with probability $1 / 2$ and to 0 with probability 1/2.
- Algorithm: Set variable x_{i} to 1 or 0 deterministically, and the remaining variables to 1 with probability $1 / 2$ and to 0 with probability $1 / 2$, as before.
- How to set x_{i} ?

Derandomisation

- Algorithm: For each variable x_{i}, set x_{i} to 1 with probability $1 / 2$ and to 0 with probability 1/2.
- Algorithm: Set variable x_{i} to 1 or 0 deterministically, and the remaining variables to 1 with probability $1 / 2$ and to 0 with probability $1 / 2$, as before.
- How to set x_{i} ?
- To maximise the expected value W of the algorithm.

Derandomisation

- We have:

$$
\begin{aligned}
\mathbb{E}[W] & =\mathbb{E}\left[W \mid x_{1} \leftarrow 1\right] \cdot \operatorname{Pr}\left[x_{1} \leftarrow 1\right]+\mathbb{E}\left[W \mid x_{1} \leftarrow 0\right] \cdot \operatorname{Pr}\left[x_{1} \leftarrow 0\right] \\
& =\frac{1}{2}\left(\mathbb{E}\left[W \mid x_{1} \leftarrow 1\right] \cdot+\mathbb{E}\left[W \mid x_{1} \leftarrow 0\right]\right)
\end{aligned}
$$

- We set x_{1} to 1 if $\mathbb{E}\left[W \mid x_{1} \leftarrow 1\right] \geq \mathbb{E}\left[W \mid x_{1} \leftarrow 1\right]$ and to 0 otherwise.
- Generally, if b_{1} is picked to maximise the conditional expectation, it holds that:

$$
\mathbb{E}\left[W \mid x_{1} \leftarrow b_{1}\right] \geq \mathbb{E}[W]
$$

Applying this to all variables

- Assume that we have set variables x_{1}, \ldots, x_{i} to $b_{1}, \ldots b_{i}$ this way.
- We set x_{i+1} to 1 if this holds and to 0 otherwise.

$$
\begin{aligned}
& \mathbb{E}\left[W \mid x_{1} \leftarrow b_{1}, x_{2} \leftarrow b_{2}, \ldots, x_{i} \leftarrow b_{i}, x_{i+1} \leftarrow 1\right] \geq \\
& \mathbb{E}\left[W \mid x_{1} \leftarrow b_{1}, x_{2} \leftarrow b_{2}, \ldots, x_{i} \leftarrow b_{i}, x_{i+1} \leftarrow 0\right]
\end{aligned}
$$

- Again, if b_{i+1} is picked to maximise the conditional expectation, it holds that:

$$
\mathbb{E}\left[W \mid x_{1} \leftarrow b_{1}, x_{2} \leftarrow b_{2}, \ldots, x_{i} \leftarrow b_{i}, x_{i+1} \leftarrow b_{i+1}\right] \geq \mathbb{E}[W]
$$

In the end

In the end

- In the end we have set all variables deterministically.

In the end

- In the end we have set all variables deterministically.
- We have $\mathbb{E}\left[W \mid x_{1} \leftarrow b_{1}, x_{2} \leftarrow b_{2}, \ldots, x_{n-1} \leftarrow b_{n-1}, x_{n} \leftarrow b_{n}\right] \geq \mathbb{E}[W]$

In the end

- In the end we have set all variables deterministically.
- We have $\mathbb{E}\left[W \mid x_{1} \leftarrow b_{1}, x_{2} \leftarrow b_{2}, \ldots, x_{n-1} \leftarrow b_{n-1}, x_{n} \leftarrow b_{n}\right] \geq \mathbb{E}[W]$
- We know that $\mathbb{E}[W] \geq \frac{1}{2} \cdot O P T$

In the end

- In the end we have set all variables deterministically.
- We have $\mathbb{E}\left[W \mid x_{1} \leftarrow b_{1}, x_{2} \leftarrow b_{2}, \ldots, x_{n-1} \leftarrow b_{n-1}, x_{n} \leftarrow b_{n}\right] \geq \mathbb{E}[W]$
- We know that $\mathbb{E}[W] \geq \frac{1}{2} \cdot O P T$
- We have devised a deterministic 2-approximation algorithm.

In the end

- In the end we have set all variables deterministically.
- We have $\mathbb{E}\left[W \mid x_{1} \leftarrow b_{1}, x_{2} \leftarrow b_{2}, \ldots, x_{n-1} \leftarrow b_{n-1}, x_{n} \leftarrow b_{n}\right] \geq \mathbb{E}[W]$
- We know that $\mathbb{E}[W] \geq \frac{1}{2} \cdot O P T$
- We have devised a deterministic 2-approximation algorithm.
- Is it polynomial-time?

Computing the expectations

- We have to be able to compute the conditional expectations in polynomial time.

$$
\begin{array}{r}
\mathbb{E}\left[W \mid x_{1} \leftarrow b_{1}, \ldots, x_{i} \leftarrow b_{i}\right]=\sum_{j=1}^{m} w_{j} \cdot \mathbb{E}\left[Y_{j} \mid x_{1} \leftarrow b_{1}, \ldots, x_{i} \leftarrow b_{i}\right] \\
\quad=\sum_{j=1}^{m} w_{j} \cdot \operatorname{Pr}\left[\text { clause } C_{j} \text { is satisfied } \mid x_{1} \leftarrow b_{1}, \ldots, x_{i} \leftarrow b_{i}\right]
\end{array}
$$

- The probability is
- 1 if the variables already set satisfy the clause.
- $1-(1 / 2)^{k}$ otherwise, where k is the set of unset variables.

Method of conditional expectations

- Derandomisation using conditional expectations.
- Works for a wide variety of applications as long as
- The variables are set independently.
- The conditional expectations can be calculated in polynomial time.

Recall: Deterministic Rounding

- We can solve the LP-relaxation in polynomial time, to find an optimal solution.
- The optimal solution is a "fractional" vertex cover, where variables can take values between 0 and 1 .
- We round the fractional solution to an integer solution.

Recall: Deterministic Rounding

- We can solve the LP-relaxation in polynomial time, to find an optimal solution.
- The optimal solution is a "fractional" vertex cover, where variables can take values between 0 and 1 .
- We round the fractional solution to an integer solution.
- We pick a variable x_{i} and we set it to 1 or 0 .

Recall: Deterministic Rounding

- We can solve the LP-relaxation in polynomial time, to find an optimal solution.
- The optimal solution is a "fractional" vertex cover, where variables can take values between 0 and 1 .
- We round the fractional solution to an integer solution.
- We pick a variable x_{i} and we set it to 1 or 0 .
- If we set everything to 0 , it is not a vertex cover.

Recall: Deterministic Rounding

- We can solve the LP-relaxation in polynomial time, to find an optimal solution.
- The optimal solution is a "fractional" vertex cover, where variables can take values between 0 and 1 .
- We round the fractional solution to an integer solution.
- We pick a variable x_{i} and we set it to 1 or 0 .
- If we set everything to 0 , it is not a vertex cover.
- If we set everything to 1 , we "pay" too much.

Recall: Deterministic Rounding

- We can solve the LP-relaxation in polynomial time, to find an optimal solution.
- The optimal solution is a "fractional" vertex cover, where variables can take values between 0 and 1 .
- We round the fractional solution to an integer solution.
- We pick a variable x_{i} and we set it to 1 or 0 .
- If we set everything to 0 , it is not a vertex cover.
- If we set everything to 1 , we "pay" too much.
- We set variable x_{i} to 1 if $x_{i} \geq 1 / 2$ and to 0 otherwise.

Randomised Rounding

- We formulate the problem as an ILP.
- We write the LP-relaxation.
- We solve the LP-relaxation.
- We round the variables with probabilities that can depend on their values.

MAX SAT as an ILP

MAX SAT as an ILP

Variables: $y_{i}=1$ if x_{i} is true and 0 otherwise.

MAX SAT as an ILP

Variables: $y_{i}=1$ if x_{i} is true and 0 otherwise.

We denote clause C_{j} by $\quad \bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \bar{x}_{i}$

MAX SAT as an ILP

Variables: $y_{i}=1$ if x_{i} is true and 0 otherwise.

We denote clause C_{j} by $\quad \bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \bar{x}_{i}$
Variables: $\mathrm{z}_{\mathrm{j}}=1$ if clause C_{j} is satisfied and 0 otherwise.

MAX SAT as an ILP

Variables: $y_{i}=1$ if x_{i} is true and 0 otherwise.

We denote clause C_{j} by $\quad \bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \bar{x}_{i}$
Variables: $\mathrm{z}_{\mathrm{j}}=1$ if clause C_{j} is satisfied and 0 otherwise.
We have the inequality: $\quad \sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) \geq z_{j}$

MAX SAT as an ILP

$$
\begin{array}{cl}
\text { maximise } & \sum_{j=1}^{m} w_{j} \cdot z_{j} \\
\text { subject to } & \sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) \geq z_{j} \\
\text { for all } C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \bar{x}_{i} \\
y_{i} \in\{0,1\} & i=1, \ldots, n \\
0 \leq z_{j} \leq 1 & j=1, \ldots, m
\end{array}
$$

MAX SAT LP-relaxation

$$
\begin{array}{cl}
\text { maximise } & \sum_{j=1}^{m} w_{j} \cdot z_{j} \\
\text { subject to } & \sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) \geq z_{j} \\
\text { for all } C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \bar{x}_{i} \\
0 \leq y_{i} \leq 1 & i=1, \ldots, n \\
0 \leq z_{j} \leq 1 & j=1, \ldots, m
\end{array}
$$

Randomised Rounding

- Let $\left(y^{*}, z^{*}\right)$ be a solution to the LP-relaxation.

Randomised Rounding

- Let $\left(y^{*}, z^{*}\right)$ be a solution to the LP-relaxation.
- Rounding: Set x_{i} to true independently with probability $y_{i}{ }^{*}$.

Randomised Rounding

- Let $\left(y^{*}, z^{*}\right)$ be a solution to the LP-relaxation.
- Rounding: Set x_{i} to true independently with probability $y_{i}{ }^{*}$.
- e.g., if $y^{*}=(1 / 3,1 / 4,5 / 6,1 / 2, \ldots)$ we will set variables $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \ldots$ to true with probabilities $1 / 3,1 / 4,5 / 6$, $1 / 2, \ldots$ respectively.

Analysis

Analysis

$\operatorname{Pr}\left[\right.$ clause C_{j} is not satisfied $]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right)+\prod_{i \in N_{j}} y_{i}^{*}$

Analysis

$\operatorname{Pr}\left[\right.$ clause C_{j} is not satisfied $]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right)+\prod_{i \in N_{j}} y_{i}^{*}$

$$
\leq\left[\frac{1}{\ell_{j}}\left(\sum_{i \in P_{j}}\left(1-y_{i}^{*}\right)+\sum_{i \in N_{j}} y_{i}^{*}\right)\right]^{\ell_{j}}
$$

Analysis

$\operatorname{Pr}\left[\right.$ clause C_{j} is not satisfied $]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right)+\prod_{i \in N_{j}} y_{i}^{*}$

$$
\leq\left[\frac{1}{\ell_{j}}\left(\sum_{i \in P_{j}}\left(1-y_{i}^{*}\right)+\sum_{i \in N_{j}} y_{i}^{*}\right)\right]
$$

Arithmetic-Geometric

Analysis

$\operatorname{Pr}\left[\right.$ clause C_{j} is not satisfied $]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right)+\prod_{i \in N_{j}} y_{i}^{*}$

Number of literals in clause C_{j}.

Arithmetic-Geometric

Analysis
$\operatorname{Pr}\left[\right.$ clause C_{j} is not satisfied $]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right)+\prod_{i \in N_{j}} y_{i}^{*}$
Number of literals
$\leq\left[\frac{1}{\ell_{j}}\left(\sum_{i \in P_{j}}\left(1-y_{i}^{*}\right)+\sum_{i \in N_{j}} y_{i}^{*}\right)^{\frac{\ell_{j}}{m}}\right.$
in clause C_{j}.

$$
\leq\left[1-\frac{1}{\ell_{j}}\left(\sum_{i \in P_{j}} y_{i}^{*}+\sum_{i \in N_{j}}\left(1-y_{i}^{*}\right)\right]\right]^{\ell_{j}}
$$

Arithmetic-Geometric

Analysis

$$
\left(\frac{\Pi}{n} \cdot\right)^{2}=\leq \frac{1}{x} \frac{\sum_{n}^{n}}{}
$$

$\operatorname{Pr}\left[\right.$ clause C_{j} is not satisfied $]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right)+\prod_{i \in N_{j}} y_{i}^{*}$

Number of literals
in clause C_{j}.

$$
=\left(1-\frac{-5}{5}\right)^{\prime}
$$

Arithmetic-Geometric

Analysis

$$
\left(\frac{\Pi}{n} \cdot\right)^{2}=\leq \frac{1}{x} \frac{\sum_{n}^{n}}{}
$$

$\operatorname{Pr}\left[\right.$ clause C_{j} is not satisfied $]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right)+\prod_{i \in N_{j}} y_{i}^{*}$

Number of literals
in clause C_{j}.

$$
\leq\left(1-\frac{z_{j}^{*}}{\ell_{j}}\right)^{\ell_{j}} \quad \text { why? }
$$

MAX SAT as an ILP

Variables: $y_{i}=1$ if x_{i} is true and 0 otherwise.

We denote clause C_{j} by $\quad \bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \bar{x}_{i}$
Variables: $\mathrm{z}_{\mathrm{j}}=1$ if clause C_{j} is satisfied and 0 otherwise.
We have the inequality: $\quad \sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) \geq z_{j}$

MAX SAT as an ILP

Variables: $y_{i}=1$ if x_{i} is true and 0 otherwise.

We denote clause C_{j} by $\quad \bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \bar{x}_{i}$
Variables: $\mathrm{z}_{\mathrm{j}}=1$ if clause C_{j} is satisfied and 0 otherwise.

We have the inequality:

$$
\sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) \geq z_{j}
$$

MAX SAT as an ILP

Variables: $y_{i}=1$ if x_{i} is true and 0 otherwise.

We denote clause C_{j} by $\quad \bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \bar{x}_{i}$
Variables: $\mathrm{z}_{\mathrm{j}}=1$ if clause C_{j} is satisfied and 0 otherwise.

We have the inequality:

$$
\sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) \geq z_{j}
$$

$$
\sum_{i \in P_{j}} y_{i}^{*}+\sum_{i \in N_{j}}\left(1-y_{i}^{*}\right) \geq z_{j}^{*}
$$

Arithmetic-Geometric

Analysis
Mean Inequality

$$
\left(\prod_{=1}^{n} a^{\prime}\right)^{k} \leq \frac{1}{k} \sum_{i=1}^{n} a_{i}
$$

$\operatorname{Pr}\left[\right.$ clause C_{j} is not satisfied $]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right) \prod_{i \in N_{j}} y_{i}^{*}$

Number of literals
in clause C_{j}.

$$
\begin{aligned}
& \leq\left[1-\frac{1}{\ell_{j}}\left(\sum_{i \in P_{j}} y_{i}^{*}+\sum_{i \in N_{j}}\left(1-y_{i}^{*}\right)\right]\right]^{\ell_{j}} \\
& \leq\left(1-\frac{z_{j}^{*}}{\ell_{j}}\right)^{\ell_{j}}
\end{aligned}
$$

Analysis

$\operatorname{Pr}\left[\right.$ clause C_{j} is not satisfied $]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right) \prod_{i \in N_{j}} y_{i}^{*}$

$$
\leq\left(1-\frac{z_{j}^{*}}{\ell_{j}}\right)^{\ell_{j}}
$$

Analysis

$\operatorname{Pr}\left[\right.$ clause C_{j} is not satisfied $]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right) \prod_{i \in N_{j}} y_{i}^{*}$

$$
\leq\left(1-\frac{z_{j}^{*}}{\ell_{j}}\right)^{\ell_{j}}
$$

$\operatorname{Pr}\left[\right.$ clause C_{j} is satisfied]

$$
\geq 1-\left(1-\frac{z_{j}^{*}}{\ell_{j}}\right)^{\ell_{j}}
$$

Analysis

$\operatorname{Pr}\left[\right.$ clause C_{j} is not satisfied $]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right) \prod_{i \in N_{j}} y_{i}^{*}$

$$
\leq\left(1-\frac{z_{j}^{*}}{\ell_{j}}\right)^{\ell_{j}}
$$

$\operatorname{Pr}\left[\right.$ clause C_{j} is satisfied]

$$
\begin{aligned}
& \geq 1-\left(1-\frac{z_{j}^{*}}{\ell_{j}}\right)^{\ell_{j}} \\
& \geq\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right] z_{j}^{*}
\end{aligned}
$$

Analysis

$\operatorname{Pr}\left[\right.$ clause C_{j} is not satisfied $]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right) \prod_{i \in N_{j}} y_{i}^{*}$

$$
\leq\left(1-\frac{z_{j}^{*}}{\ell_{j}}\right)^{\ell_{j}}
$$

$\operatorname{Pr}\left[\right.$ clause C_{j} is satisfied]

$$
\begin{aligned}
& \geq 1-\left(1-\frac{z_{j}^{*}}{\ell_{j}}\right)^{\ell_{j}} \\
& \geq\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right] z_{j}^{*}
\end{aligned}
$$

Analysis

$$
\mathbb{E}[W]=\sum_{j=1}^{m} w_{j} \cdot \operatorname{Pr}\left[\text { clause } C_{j} \text { is satisfied }\right]
$$

Analysis

$$
\begin{aligned}
\mathbb{E}[W] & =\sum_{j=1}^{m} w_{j} \cdot \operatorname{Pr}\left[\text { clause } C_{j} \text { is satisfied }\right] \\
& \geq \sum_{j=1}^{m} w_{j} \cdot z_{j}^{*} \cdot\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right]
\end{aligned}
$$

Analysis

$$
\begin{aligned}
\mathbb{E}[W] & =\sum_{j=1}^{m} w_{j} \cdot \operatorname{Pr}\left[\text { clause } C_{j} \text { is satisfied }\right] \\
& \geq \sum_{j=1}^{m} w_{j} \cdot z_{j}^{*} \cdot\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right] \\
& \geq \min _{k \geq 1}\left[1-\left(1-\frac{1}{k}\right)^{k}\right] \sum_{j=1}^{m} w_{j} \cdot z_{j}^{*}
\end{aligned}
$$

Analysis

$$
\begin{aligned}
\mathbb{E}[W] & =\sum_{j=1}^{m} w_{j} \cdot \operatorname{Pr}\left[\text { clause } C_{j} \text { is satisfied }\right] \\
& \geq \sum_{j=1}^{m} w_{j} \cdot z_{j}^{*} \cdot\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right] \\
& \geq \min _{k \geq 1}\left[1-\left(1-\frac{1}{k}\right)^{k}\right] \sum_{j=1}^{m} w_{j} \cdot z_{j}^{*} \\
& \geq\left(1-\frac{1}{e}\right) \sum_{j=1}^{m} w_{j} \cdot z_{j}^{*}
\end{aligned}
$$

Analysis

$$
\begin{aligned}
\mathbb{E}[W] & =\sum_{j=1}^{m} w_{j} \cdot \operatorname{Pr}\left[\text { clause } C_{j} \text { is satisfied }\right] \\
& \geq \sum_{j=1}^{m} w_{j} \cdot z_{j}^{*} \cdot\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right] \\
& \geq \min _{k \geq 1}\left[1-\left(1-\frac{1}{k}\right)^{k}\right] \sum_{j=1}^{m} w_{j} \cdot z_{j}^{*} \\
& \geq\left(1-\frac{1}{e}\right) \sum_{j=1}^{m} w_{j} \cdot z_{j}^{*} \\
& \geq\left(1-\frac{1}{e}\right) O P T
\end{aligned}
$$

Randomised Rounding for MAX-SAT

- Our randomised algorithm gives an approximation ratio of $1 /(1-1 / e) \approx 1.59$.

Randomised Rounding for MAX-SAT

- Our randomised algorithm gives an approximation ratio of $1 /(1-1 / e) \approx 1.59$.
- This is better than 2.

Randomised Rounding for MAX-SAT

- Our randomised algorithm gives an approximation ratio of $1 /(1-1 / e) \approx 1.59$.
- This is better than 2.
- This is better than 1.618. (why this?)

Randomised Rounding for MAX-SAT

- Our randomised algorithm gives an approximation ratio of $1 /(1-1 / e) \approx 1.59$.
- This is better than 2.
- This is better than 1.618. (why this?)
- Sidenote: $1.618=\phi$.

The better of the two

Algorithm 1: $\operatorname{Pr}\left[\right.$ clause C_{j} is satisfied $\geq\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right)$

Algorithm 2: $\quad \operatorname{Pr}\left[\right.$ clause C_{j} is satisfied $] \geq\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{t_{j}}\right] z_{j}^{*}$

The better of the two

Algorithm 1: $\operatorname{Pr}\left[\right.$ clause C_{j} is satisfied $\geq\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right)$

Algorithm 2: $\quad \operatorname{Pr}\left[\right.$ clause C_{j} is satisfied $] \geq\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right] z_{j}^{*}$

If the clause is short, Algorithm 1 performs well. If the clause is long, Algorithm 2 performs well.

The better of the two

Algorithm 1: $\operatorname{Pr}\left[\right.$ clause C_{j} is satisfied $\geq\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right)$

Algorithm 2: $\quad \operatorname{Pr}\left[\right.$ clause C_{j} is satisfied $] \geq\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right] z_{j}^{*}$

If the clause is short, Algorithm 1 performs well. If the clause is long, Algorithm 2 performs well.

Algorithm 3: Choose the better of Algorithm 1 and Algorithm 2.

Analysis

Analysis

$\mathbb{E}[W]=\mathbb{E}\left[\max \left(W_{1}, W_{2}\right)\right]$

Analysis

$$
\begin{aligned}
\mathbb{E}[W] & =\mathbb{E}\left[\max \left(W_{1}, W_{2}\right)\right] \\
& \geq \mathbb{E}\left[\frac{1}{2} W_{1}+\frac{1}{2} W_{2}\right]
\end{aligned}
$$

Analysis

$$
\begin{aligned}
\mathbb{E}[W] & =\mathbb{E}\left[\max \left(W_{1}, W_{2}\right)\right] \\
& \geq \mathbb{E}\left[\frac{1}{2} W_{1}+\frac{1}{2} W_{2}\right] \\
& \geq \frac{1}{2} \mathbb{E}\left[W_{1}\right]+\frac{1}{2} \mathbb{E}\left[W_{2}\right]
\end{aligned}
$$

Analysis

$$
\begin{aligned}
\mathbb{E}[W] & =\mathbb{E}\left[\max \left(W_{1}, W_{2}\right)\right] \\
& \geq \mathbb{E}\left[\frac{1}{2} W_{1}+\frac{1}{2} W_{2}\right] \\
& \geq \frac{1}{2} \mathbb{E}\left[W_{1}\right]+\frac{1}{2} \mathbb{E}\left[W_{2}\right] \\
& \geq \frac{1}{2} \sum_{j=1}^{m} w_{j}\left[1-\left(\frac{1}{2}\right)^{\ell_{j}}\right]+\frac{1}{2} \sum_{j=1}^{m} w_{j} \cdot z_{j}^{*}\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right]
\end{aligned}
$$

Analysis

$\mathbb{E}[W]=\mathbb{E}\left[\max \left(W_{1}, W_{2}\right)\right]$

$$
\begin{aligned}
& \geq \mathbb{E}\left[\frac{1}{2} W_{1}+\frac{1}{2} W_{2}\right] \\
& \geq \frac{1}{2} \mathbb{E}\left[W_{1}\right]+\frac{1}{2} \mathbb{E}\left[W_{2}\right] \\
& \geq \frac{1}{2} \sum_{j=1}^{m} w_{j}\left[1-\left(\frac{1}{2}\right)^{\ell_{j}}\right]+\frac{1}{2} \sum_{j=1}^{m} w_{j} \cdot z_{j}^{*}\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right] \\
& \geq \sum_{j=1}^{m} w_{j} \cdot z_{j}^{*}\left[\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right)+\frac{1}{2}\left(1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right)\right]
\end{aligned}
$$

Analysis

This quantity: $\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right)+\frac{1}{2}\left(1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right)$

Analysis

This quantity: $\quad \frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right)+\frac{1}{2}\left(1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right)$

For $\ell_{j}=1$, it evaluates to $3 / 4$.

Analysis

This quantity: $\quad \frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right)+\frac{1}{2}\left(1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right)$

For $\ell_{j}=1$, it evaluates to $3 / 4$.
For $\ell_{j}=2$, it evaluates to $3 / 4$.

Analysis

This quantity: $\quad \frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right)+\frac{1}{2}\left(1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right)$

For $\ell_{j}=1$, it evaluates to $3 / 4$.
For $\ell_{j}=2$, it evaluates to $3 / 4$.
For $\ell_{j} \geq 3$, we have: $\quad\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right) \geq \frac{7}{8} \quad\left(1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right) \geq 1-\frac{1}{e}$

Analysis

This quantity:

$$
\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right)+\frac{1}{2}\left(1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right)
$$

For $\ell_{j}=1$, it evaluates to $3 / 4$.
For $\ell_{j}=2$, it evaluates to $3 / 4$.
For $\ell_{j} \geq 3$, we have: $\quad\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right) \geq \frac{7}{8} \quad\left(1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right) \geq 1-\frac{1}{e}$

$$
\text { And: } \quad \frac{1}{2}\left(1-\frac{1}{e}\right)+\frac{1}{2} \cdot 78 \approx 0.753 \geq \frac{3}{4}
$$

Algorithms for MAX-SAT

- Our randomised algorithm gives an approximation ratio of $1 /(1-1 / e) \approx 1.59$.
- This is better than 2.
- This is better than 1.618. (why this?)
- Sidenote: $1.618=\varnothing$.

Algorithms for MAX-SAT

- Our randomised algorithm gives an approximation ratio of $1 /(1-1 / e) \approx 1.59$.
- This is better than 2.
- This is better than 1.618. (why this?)
- Sidenote: $1.618=\varnothing$.
- The "better of the two" algorithm has approximation ratio $4 / 3 \approx 1.33$.

Back to Randomised Rounding

- Is our RR algorithm the best possible?

Back to Randomised Rounding

- Is our RR algorithm the best possible?
- How do we (attempt to) show that?

Back to Randomised Rounding

- Is our RR algorithm the best possible?
- How do we (attempt to) show that?
- Integrality gap.

Integrality Gap of MAX-SAT

Integrality Gap of MAX-SAT

- Consider the formula:

$$
\left(x_{1} \vee x_{2}\right) \wedge\left({ }^{`} x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee{ }^{\wedge} x_{2}\right) \wedge\left({ }^{\top} x_{1} \vee{ }^{\wedge} x_{2}\right)
$$

Integrality Gap of MAX-SAT

- Consider the formula:
$\left(x_{1} \vee X_{2}\right) \wedge\left({ }^{\wedge} X_{1} \vee X_{2}\right) \wedge\left(x_{1} \vee{ }^{\wedge} X_{2}\right) \wedge\left({ }^{\wedge} X_{1} \vee{ }^{\wedge} X_{2}\right)$
- The optimal integral solution satisfied 3 clauses.

Integrality Gap of MAX-SAT

- Consider the formula:
$\left(x_{1} \vee x_{2}\right) \wedge\left({ }^{\wedge} x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee{ }^{\wedge} x_{2}\right) \wedge\left({ }^{`} x_{1} \vee{ }^{\wedge} x_{2}\right)$
- The optimal integral solution satisfied 3 clauses.
- The optimal fractional solution sets

$$
\mathrm{y}_{1}=\mathrm{y}_{2}=1 / 2 \text { and } \mathrm{z}_{\mathrm{j}}=1 \text { for all } j
$$

and satisfies 4 clauses.

Integrality Gap of MAX-SAT

- Consider the formula:
$\left(x_{1} \vee x_{2}\right) \wedge\left({ }^{\wedge} x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee{ }^{\wedge} x_{2}\right) \wedge\left({ }^{`} x_{1} \vee{ }^{\wedge} x_{2}\right)$
- The optimal integral solution satisfied 3 clauses.
- The optimal fractional solution sets

$$
\mathrm{y}_{1}=\mathrm{y}_{2}=1 / 2 \text { and } \mathrm{z}_{\mathrm{j}}=1 \text { for all } j
$$

and satisfies 4 clauses.

- The integrality gap is at least $4 / 3$.

What does this mean?

What does this mean?

- We can not hope to design an LP-relaxation and rounding-based algorithm (for this ILP formulation) that outperforms our "better of the two" algorithm.

What does this mean?

- We can not hope to design an LP-relaxation and rounding-based algorithm (for this ILP formulation) that outperforms our "better of the two" algorithm.
- Can we design one that matches the $4 / 3$ approximation ratio?

What does this mean?

- We can not hope to design an LP-relaxation and rounding-based algorithm (for this ILP formulation) that outperforms our "better of the two" algorithm.
- Can we design one that matches the $4 / 3$ approximation ratio?
- Yes we can!

What does this mean?

- We can not hope to design an LP-relaxation and rounding-based algorithm (for this ILP formulation) that outperforms our "better of the two" algorithm.
- Can we design one that matches the $4 / 3$ approximation ratio?
- Yes we can!
- Instead of "Set x_{i} to true independently with probability $y_{i}^{* ",}$

What does this mean?

- We can not hope to design an LP-relaxation and rounding-based algorithm (for this ILP formulation) that outperforms our "better of the two" algorithm.
- Can we design one that matches the $4 / 3$ approximation ratio?
- Yes we can!
- Instead of "Set x_{i} to true independently with probability $y_{i}^{* ",}$
- We use "Set x_{i} to true independently with probability $f\left(y_{i}^{*}\right)$, for some function f .

What does this mean?

- We can not hope to design an LP-relaxation and rounding-based algorithm (for this ILP formulation) that outperforms our "better of the two" algorithm.
- Can we design one that matches the $4 / 3$ approximation ratio?
- Yes we can!
- Instead of "Set x_{i} to true independently with probability $y_{i}^{* ",}$
- We use "Set x_{i} to true independently with probability $f\left(y_{i}^{*}\right)$, for some function f.
- Which function f ?

What does this mean?

- We can not hope to design an LP-relaxation and rounding-based algorithm (for this ILP formulation) that outperforms our "better of the two" algorithm.
- Can we design one that matches the $4 / 3$ approximation ratio?
- Yes we can!
- Instead of "Set x_{i} to true independently with probability $y_{i}^{* ",}$
- We use "Set x_{i} to true independently with probability $f\left(y_{i}^{*}\right)$, for some function f.
- Which function f ?
- Any function such that $1-4^{-x} \leq f(x) \leq 4^{x-1}$

Analysis

Analysis

$\operatorname{Pr}\left[\right.$ clause C_{j} is not satisfied $]=\prod_{i \in P_{j}}\left(1-f\left(y_{i}^{*}\right)\right) \prod_{i \in N_{j}} f\left(y_{i}^{*}\right)$

Analysis

$\operatorname{Pr}\left[\right.$ clause C_{j} is not satisfied $]=\prod_{i \in P_{j}}\left(1-f\left(y_{i}^{*}\right)\right) \prod_{i \in N_{j}} f\left(y_{i}^{*}\right)$

$$
\leq \prod_{i \in P_{j}} 4^{-y_{i}^{*}} \prod_{i \in N_{j}} 4^{y_{i}^{*}-1}
$$

Analysis

$$
1-4^{-x} \leq f(x) \leq 4^{x-1}
$$

$\operatorname{Pr}\left[\right.$ clause C_{j} is not satisfied $]=\prod_{i \in P_{j}}\left(1-f\left(y_{i}^{*}\right)\right) \prod_{i \in N_{j}} f\left(y_{i}^{*}\right)$

$$
\leq \prod_{i \in P_{j}} 4^{-y_{i}^{*}} \prod_{i \in N_{j}} 4^{y_{i}^{*}-1}
$$

Analysis

$$
1-4^{-x} \leq f(x) \leq 4^{x-1}
$$

$\operatorname{Pr}\left[\right.$ clause C_{j} is not satisfied $]=\prod_{i \in P_{j}}\left(1-f\left(y_{i}^{*}\right)\right) \prod_{i \in N_{j}} f\left(y_{i}^{*}\right)$

$$
\begin{aligned}
& \leq \prod_{i \in P_{j}} 4^{-y_{i}^{*}} \prod_{i \in N_{j}} 4^{y_{i}^{*}-1} \\
& =4^{-\left(\sum_{i \in P_{j}} y_{i}^{*}+\sum_{i \in N_{j}}\left(1-y_{i}^{*}\right)\right)}
\end{aligned}
$$

Analysis

$$
1-4^{-x} \leq f(x) \leq 4^{x-1}
$$

$\operatorname{Pr}\left[\right.$ clause C_{j} is not satisfied $]=\prod_{i \in P_{j}}\left(1-f\left(y_{i}^{*}\right)\right) \prod_{i \in N_{j}} f\left(y_{i}^{*}\right)$

$$
\begin{aligned}
& \leq \prod_{i \in P_{j}} 4^{-y_{i}^{*}} \prod_{i \in N_{j}} 4^{y_{i}^{*}-1} \\
& =4^{-\left(\sum_{i \in P_{j}} y_{i}^{*}+\sum_{i \in N_{j}}\left(1-y_{i}^{*}\right)\right)}
\end{aligned}
$$

$$
\leq 4^{-z_{j}^{*}}
$$

Analysis

$$
\sum_{i \in P_{j}} v_{i}^{*}+\sum_{i \in N_{j}}\left(1-y_{i}^{*}\right) \geq z_{j}^{*}
$$

$$
1-4^{-x} \leq f(x) \leq 4^{x-1}
$$

$\operatorname{Pr}\left[\right.$ clause C_{j} is not satisfied $]=\prod_{i \in P_{j}}\left(1-f\left(y_{i}^{*}\right)\right) \prod_{i \in N_{j}} f\left(y_{i}^{*}\right)$

$$
\leq \prod_{i \in P_{j}} 4^{-y_{i}^{*}} \prod_{i \in N_{j}} 4^{y_{i}^{*}-1}
$$

$$
=4^{-\left(\sum_{i \in P_{j}} y_{i}^{*}+\sum_{i \in N_{j}}\left(1-y_{i}^{*}\right)\right)}
$$

$$
\leq 4^{-z_{j}^{*}}
$$

Analysis

$$
\sum_{i \in P_{j}} v_{i}^{*}+\sum_{i \in N_{j}}\left(1-y_{i}^{*}\right) \geq z_{j}^{*}
$$

$$
1-4^{-x} \leq f(x) \leq 4^{x-1}
$$

$\operatorname{Pr}\left[\right.$ clause C_{j} is not satisfied $]=\prod_{i \in P_{j}}\left(1-f\left(y_{i}^{*}\right)\right) \prod_{i \in N_{j}} f\left(y_{i}^{*}\right)$

$$
\leq \prod_{i \in P_{j}} 4^{-y_{i}^{*}} \prod_{i \in N_{j}} 4^{y_{i}^{*}-1}
$$

$$
=4^{-\left(\sum_{i \in P_{j}} y_{i}^{*}+\sum_{i \in N_{j}}\left(1-y_{i}^{*}\right)\right)}
$$

$$
\leq 4^{-z_{j}^{*}}
$$

$\operatorname{Pr}\left[\right.$ clause C_{j} is satisfied $] \geq 1-4^{-z_{j}^{*}} \geq\left(1-\frac{1}{4}\right) z_{j}^{*}=\frac{3}{4} z_{j}^{*}$

Analysis

$$
\sum_{i \in P_{j}} y_{i}^{*}+\sum_{i \in N_{j}}\left(1-y_{i}^{*}\right) \geq z_{j}^{*}
$$

$$
1-4^{-x} \leq f(x) \leq 4^{x-1}
$$

$\operatorname{Pr}\left[\right.$ clause C_{j} is not satisfied $]=\prod_{i \in P_{j}}\left(1-f\left(y_{i}^{*}\right)\right) \prod_{i \in N_{j}} f\left(y_{i}^{*}\right)$

$$
\begin{aligned}
& \leq \prod_{i \in P_{j}} 4^{-y_{i}^{*}} \prod_{i \in N_{j}} 4^{y_{i}^{*}-1} \\
& \left.=4^{-\left(\sum_{i \in P_{j}} y_{i}^{*}+\sum_{i \in N_{j}}\left(1-y_{i}^{* *}\right)\right.}\right) \\
& \leq 4^{-z_{j}^{*}}
\end{aligned}
$$

$\operatorname{Pr}\left[\right.$ clause C_{j} is satisfied $] \geq 1-4^{-z_{j}^{*}} \geq\left(1-\frac{1}{4}\right) z_{j}^{*}=\frac{3}{4} z_{j}^{*}$

Analysis

$$
\mathbb{E}[W]=\sum_{j=1}^{m} w_{j} \cdot \operatorname{Pr}\left[\text { clause } C_{j} \text { is satisfied }\right]
$$

Analysis

$$
\begin{aligned}
\mathbb{E}[W] & =\sum_{j=1}^{m} w_{j} \cdot \operatorname{Pr}\left[\text { clause } C_{j} \text { is satisfied }\right] \\
& \geq \sum_{j=1}^{m} \frac{3}{4} w_{j} \cdot z_{j}^{*}
\end{aligned}
$$

Analysis

$$
\begin{aligned}
\mathbb{E}[W] & =\sum_{j=1}^{m} w_{j} \cdot \operatorname{Pr}\left[\text { clause } C_{j} \text { is satisfied }\right] \\
& \geq \sum_{j=1}^{m} \frac{3}{4} w_{j} \cdot z_{j}^{*} \\
& \geq \frac{3}{4} \cdot O P T
\end{aligned}
$$

Analysis

$$
\begin{aligned}
\mathbb{E}[W] & =\sum_{j=1}^{m} w_{j} \cdot \operatorname{Pr}\left[\text { clause } C_{j} \text { is satisfied }\right] \\
& \geq \sum_{j=1}^{m} \frac{3}{4} w_{j} \cdot z_{j}^{*} \\
& \geq \frac{3}{4} \cdot O P T
\end{aligned}
$$

Remark: Other choices of the function f work as well.

Algorithms for MAX-SAT

- Our randomised algorithm gives an approximation ratio of $1 /(1-1 / e)$ ≈ 1.59.
- This is better than 2.
- This is better than 1.618. (why this?)
- Sidenote: $1.618=\phi$.
- The "better of the two" algorithm has approximation ratio $4 / 3 \approx$ 1.33.

Algorithms for MAX-SAT

- Our randomised algorithm gives an approximation ratio of $1 /(1-1 / e)$ ≈ 1.59.
- This is better than 2.
- This is better than 1.618. (why this?)
- Sidenote: $1.618=\phi$.
- The "better of the two" algorithm has approximation ratio $4 / 3 \approx$ 1.33.
- The more sophisticated RR algorithm has an approximation ratio of $4 / 3 \approx 1.33$.

