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Recap and plan

• Last lecture: 

• Types of randomised algorithms


• Randomised approximation algorithms.


• Applications: MAX-SAT, MAX-3SAT, MAX-CUT


• This lecture: 

• Derandomisation using conditional expectations.


• Randomised Rounding.


• Application: MAX-SAT



A 2-approximation 
algorithm for MAX-SAT

• Algorithm: For each variable xi, set xi to 1 with probability 
1/2 and to 0 with probability 1/2.



Derandomisation
• Sometimes it is possible to “derandomise” a randomised  algorithm 

Arand and obtain a deterministic algorithm Adet.


• The performance of Adet is the same as the expected performance 
of Arand.


• We can use randomisation at no extra cost! (except a polynomial 
running time overhead).


• Different methods for derandomisation.


• Can be very complicated (pseudo-random generators).


• Can be relatively simple (conditional expectations).
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Derandomisation

• Algorithm: For each variable xi, set xi to 1 with probability 
1/2 and to 0 with probability 1/2.

• Algorithm: Set variable xi to 1 or 0 deterministically, and 
the remaining variables to 1 with probability 1/2 and to 0 
with probability 1/2, as before.

• How to set xi?

• To maximise the expected value W of the algorithm. 



Derandomisation
• We have:  

 

• We set x1 to 1 if                                             and to 0 
otherwise.


• Generally, if b1 is picked to maximise the conditional 
expectation, it holds that: 
 

𝔼[W ] = 𝔼[W |x1 ← 1] ⋅ Pr[x1 ← 1] + 𝔼[W |x1 ← 0] ⋅ Pr[x1 ← 0]

=
1
2 (𝔼[W |x1 ← 1] ⋅ +𝔼[W |x1 ← 0])

𝔼[W |x1 ← 1] ≥ 𝔼[W |x1 ← 1]

𝔼[W |x1 ← b1] ≥ 𝔼[W ]



Applying this to all variables

• Assume that we have set variables x1, …, xi to b1, … bi this way.


• We set xi+1 to 1 if this holds and to 0 otherwise. 
 
 
 

• Again, if bi+1 is picked to maximise the conditional expectation, 
it holds that: 
 
 

𝔼[W |x1 ← b1, x2 ← b2, …, xi ← bi, xi+1 ← 1] ≥
𝔼[W |x1 ← b1, x2 ← b2, …, xi ← bi, xi+1 ← 0]

𝔼[W |x1 ← b1, x2 ← b2, …, xi ← bi, xi+1 ← bi+1] ≥ 𝔼[W ]
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• We have

• We know that 

• We have devised a deterministic 2-approximation 
algorithm.
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In the end

• In the end we have set all variables deterministically.

• We have

• We know that 

• We have devised a deterministic 2-approximation 
algorithm.

• Is it polynomial-time?

𝔼[W |x1 ← b1, x2 ← b2, …, xn−1 ← bn−1, xn ← bn] ≥ 𝔼[W ]

𝔼[W ] ≥
1
2

⋅ OPT



Computing the 
expectations

• We have to be able to compute the conditional 
expectations in polynomial time.

𝔼[W |x1 ← b1, …, xi ← bi] =
m

∑
j=1

wj ⋅ 𝔼[Yj |x1 ← b1, …, xi ← bi]

=
m

∑
j=1

wj ⋅ Pr[clause Cj is satisfied |x1 ← b1, …, xi ← bi]

• The probability is 


• 1 if the variables already set satisfy the clause.


• 1-(1/2)k otherwise, where k is the set of unset variables.



Method of conditional 
expectations

• Derandomisation using conditional expectations.


• Works for a wide variety of applications as long as


• The variables are set independently.


• The conditional expectations can be calculated in 
polynomial time.
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Recall: Deterministic Rounding

• We can solve the LP-relaxation in polynomial time, to find an optimal 
solution.

• The optimal solution is a “fractional” vertex cover, where variables can 
take values between 0 and 1.

• We round the fractional solution to an integer solution.

• We pick a variable xi and we set it to 1 or 0.

• If we set everything to 0, it is not a vertex cover.

• If we set everything to 1, we “pay” too much.

• We set variable xi to 1 if xi  ≥ 1/2 and to 0 otherwise.



Randomised Rounding

• We formulate the problem as an ILP.


• We write the LP-relaxation.


• We solve the LP-relaxation.


• We round the variables with probabilities that can depend 
on their values.



MAX SAT as an ILP
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MAX SAT as an ILP

We denote clause Cj by ⋁
i∈Pj

xi ∨ ⋁
i∈Nj

x̄i

Variables: yi = 1 if xi is true and 0 otherwise.

We have the inequality: ∑
i∈Pj

yi + ∑
i∈Nj

(1 − yi) ≥ zj

Variables: zj = 1 if clause Cj is satisfied and 0 otherwise.



MAX SAT as an ILP

for all Cj = ⋁
i∈Pj

xi ∨ ⋁
i∈Nj

x̄i∑
i∈Pj

yi + ∑
i∈Nj

(1 − yi) ≥ zj

maximise 
m

∑
j=1

wj ⋅ zj

subject to

yi ∈ {0,1}

0 ≤ zj ≤ 1

i = 1,…, n

j = 1,…, m



MAX SAT LP-relaxation

for all Cj = ⋁
i∈Pj

xi ∨ ⋁
i∈Nj

x̄i∑
i∈Pj

yi + ∑
i∈Nj

(1 − yi) ≥ zj

maximise 
m

∑
j=1

wj ⋅ zj

subject to

0 ≤ yi ≤ 1

0 ≤ zj ≤ 1

i = 1,…, n

j = 1,…, m
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Randomised Rounding

• Let (y*, z*) be a solution to the LP-relaxation.

• Rounding: Set xi to true independently with probability yi*.

• e.g., if y* = (1/3, 1/4, 5/6, 1/2, …) we will set variables 
x1, x2, x3, x4, … to true with probabilities 1/3, 1/4, 5/6, 
1/2, … respectively.   
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MAX SAT as an ILP

We denote clause Cj by ⋁
i∈Pj

xi ∨ ⋁
i∈Nj

x̄i

Variables: yi = 1 if xi is true and 0 otherwise.

We have the inequality: 

Variables: zj = 1 if clause Cj is satisfied and 0 otherwise.

∑
i∈Pj

yi + ∑
i∈Nj

(1 − yi) ≥ zj

∑
i∈Pj

y*i + ∑
i∈Nj

(1 − y*i ) ≥ z*j
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y*i
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z*j

concave function

a+b

a

Pr[clause Cj is satisfied] ≥ 1 − (1 −
z*j
ℓj )

ℓj
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1
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• This is better than 1.618. (why this?)

• Sidenote: 1.618 = φ. 
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The better of the two

Pr[clause Cj is satisfied ≥ (1 − ( 1
2 )

ℓj

)Algorithm 1:

Algorithm 2: Pr[clause Cj is satisfied] ≥ 1 − (1 −
1
ℓj )

ℓj

z*j

 If the clause is short, Algorithm 1 performs well.

If the clause is long, Algorithm 2 performs well.

Algorithm 3: Choose the better of Algorithm 1 and Algorithm 2. 
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1
2 (1 − ( 1

2 )
ℓj

) +
1
2

1 − (1 −
1
ℓj )

ℓj

This quantity:

For l j = 1, it evaluates to 3/4.

For l j = 2, it evaluates to 3/4.

For l j ≥ 3, we have: (1 − ( 1
2 )

ℓj

) ≥
7
8

1 − (1 −
1
ℓj )

ℓj

≥ 1 −
1
e

And:
1
2 (1 −

1
e ) +

1
2

⋅ 78 ≈ 0.753 ≥
3
4
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Algorithms for MAX-SAT
• Our randomised algorithm gives an approximation ratio of 

1/(1-1/e) ≈ 1.59.

• This is better than 2.

• This is better than 1.618. (why this?)

• Sidenote: 1.618 = φ. 

• The “better of the two” algorithm has approximation ratio 
4/3 ≈ 1.33.
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• Is our RR algorithm the best possible?

• How do we (attempt to) show that?

• Integrality gap.
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Integrality Gap of MAX-SAT
• Consider the formula:  

 
(x1 ⌵ x2) ⌃ (⌝x1 ⌵ x2) ⌃ (x1 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ ⌝x2)

• The optimal integral solution satisfied 3 clauses.

• The optimal fractional solution sets  
 
            y1 = y2 =1/2 and zj = 1 for all j 
 
and satisfies 4 clauses.

• The integrality gap is at least 4/3.
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What does this mean?
• We can not hope to design an LP-relaxation and rounding-based algorithm 

(for this ILP formulation) that outperforms our “better of the two” algorithm.

• Can we design one that matches the 4/3 approximation ratio?

• Yes we can!

• Instead of “Set xi to true independently with probability yi*”,

• We use “Set xi to true independently with probability f(yi*), for some 
function f. 

• Which function f?

• Any function such that 1 - 4-x ≤ f(x) ≤ 4x-1
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Pr[clause Cj is not satisfied] = ∏
i∈Pj

(1 − f(y*i ))∏
i∈Nj

f(y*i )

≤ ∏
i∈Pj

4−y*i ∏
i∈Nj

4y*i −1

1 − 4−x ≤ f(x) ≤ 4x−1

= 4
−(∑i∈Pj

y*i + ∑i∈Nj
(1 − y*i ))

∑
i∈Pj

y*i + ∑
i∈Nj

(1 − y*i ) ≥ z*j

≤ 4−z*j

Pr[clause Cj is satisfied] ≥ 1 − 4−z*j ≥ (1 −
1
4 ) z*j =

3
4

z*j

concave function

a+b

a
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Analysis
𝔼[W ] =

m

∑
j=1

wj ⋅ Pr[clause Cj is satisfied]

≥
m

∑
j=1

3
4

wj ⋅ z*j

≥
3
4

⋅ OPT

Remark: Other choices of the function f work as well.
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• Our randomised algorithm gives an approximation ratio of 1/(1-1/e) 
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• This is better than 2.

• This is better than 1.618. (why this?)

• Sidenote: 1.618 = φ. 

• The “better of the two” algorithm has approximation ratio 4/3 ≈ 
1.33.
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• Our randomised algorithm gives an approximation ratio of 1/(1-1/e) 

≈ 1.59.

• This is better than 2.

• This is better than 1.618. (why this?)

• Sidenote: 1.618 = φ. 

• The “better of the two” algorithm has approximation ratio 4/3 ≈ 
1.33.

• The more sophisticated RR algorithm has an approximation ratio of 
4/3 ≈ 1.33. 


