
Advanced Algorithmic Techniques  
(COMP523)

Online Algorithms



Recap and plan

• Last lectures: 

• Randomised Algorithms


• Randomised approximation algorithms.


• Applications: MAX-SAT, MAX-3SAT, MAX-CUT


• Final two lectures: 

• Online algorithms.


• Competitive Analysis.
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Motivating Examples
• Suppose that you need to take 4 modules in your Masters 

programme, but you don’t know the difficulty, the content of 
each module, or the lecturer of the module. You need to 
make a decision based on limited information (topic, last 
year’s curriculum, etc). 

• Suppose that you have completed your Masters programme 
successfully and now you are looking for jobs. You have 
made several applications and you receive an offer from 
some company. Should you accept it, or should you wait to 
see if you might get a better offer from another company?

• Life is an online setting…
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Hindsight is 20/20
• If you knew what would happen in the future, you could make all 

the right decisions.

• But you are not clairvoyant.

• Let’s say that you make a series of local (myopic) decisions, based 
only on information that you have seen so far (and possibly what 
you expect to see in the future).

• You can compare the quality of your decisions to that of the 
clairvoyant. 

• If they are not much worse, then you can convince yourself that 
you have made good decisions.
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Let’s talk about algorithms
• Suppose that the input of a problem P is given to you in steps.

• You have to make a decision in every step.

• The goal is to optimise some objective (e.g., minimise some 
cost).

• You don’t know the length of the input - the input supply might 
stop at any point.

• You will compare against the offline optimal algorithm, which 
knows the future, and computes the optimal solution on the 
entire input.



Online algorithms

• Online Algorithm: An algorithm that must make decisions 
now about events that will happen in the future, without 
having knowledge of these events.
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Online Load Balancing
• We have a set of m identical machines M1, … , Mm


• We have a set of n jobs, with job j having processing time tj.


• The jobs arrive over time, one in each time step.


• We want to assign every job to some machine.


• We will assign a job immediately upon arrival to some machine.


• Let A(i) be the set of jobs assigned to machine i.


• The load of machine i is


• The goal is to minimise the makespan, i.e., 
 
   T = maxi Ti 

Ti = ∑
j∈A(i)

tj
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Online algorithms

• Let’s design an online algorithm for Load Balancing.


• Ideas?



Approximation Ratio
• Consider a minimisation problem P and an objective obj.


• Here: Load Balancing on identical machines and makespan.


• Consider an approximation algorithm A.


• Consider an input x to the problem P.


• Let obj(A(x)) be the value of the objective from the solution 
of A on x. 


• Let opt(x) be the minimum possible value of the objective 
on x.



Approximation ratio

• The approximation ratio of A is defined as 
 
                   maxx  obj(A(x)) / opt(x)


• i.e., the worst case ratio of the objective achieved by 
the algorithm over the optimal value of the objective, 
over all possible inputs to the problem.



Competitive Ratio

• The competitive ratio of algorithm A is defined as 
 
                   maxx  obj(A(x)) / opt(x)


• i.e., the worst case ratio of the objective achieved by 
the online algorithm over the optimal value of the 
objective, over all possible inputs to the problem.



Competitive Ratio vs 
Approximation Ratio

• Very similar notions.


• Difference:


• Approximation ratio: The constraint of our algorithm is 
that it must run in polynomial time. If we didn’t have a 
time constraint, we would obtain the optimal.


• Competitive Ratio: The constraint of our algorithm is 
that it does not know the future part of the input. If we 
had access to the future part of the input, we would 
obtain the optimal.



Greedy algorithm for load 
balancing

• Pick any job.


• Assign it to the machine with the smallest load so far.


• Remove it from the pile of jobs.

Algorithm Greedy-Balance 
 
Start with no jobs assigned 
Set Ti = 0 and A(i) = ∅ for all machines Mi 

For j = 1 , …, n 
       Let Mi be the machine that achieves the minimum mink Tk 
       Assign job j to machine Mi 
       Set A(i)  = A(i) U { j } 
       Set Ti = Ti + tj 
EndFor



Greedy algorithm for online 
load balancing

• Pick the job that arrives in the current time step.


• Assign it to the machine with the smallest load so far.


• Remove it from the pile of jobs.

Algorithm Greedy-Balance 
 
Start with no jobs assigned 
Set Ti = 0 and A(i) = ∅ for all machines Mi 

For j = 1 , …, n 
       Let Mi be the machine that achieves the minimum mink Tk 
       Assign job j to machine Mi 
       Set A(i)  = A(i) U { j } 
       Set Ti = Ti + tj 
EndFor
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Competitive ratio of Greedy

• What is the competitive ratio of the Greedy algorithm?

• We have already done the analysis for the 
approximation ratio!

• 2 (using a “generous” analysis)

• 2 - 1/m (using tighter analysis).



The limits of online algorithms

• Lower bounds: We can show lower bounds on the 
competitive ratio of any online algorithm, using 
elementary arguments.


• This comes in contrast to approximation algorithms, 
where inapproximability results typically required 
advanced techniques. 



Terminology

• We will say that the input is given by an adversary, who 
wishes to minimise the competitive ratio of the algorithm.


• This is equivalent to considering the worst possible case 
for the input sequence.
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with m=2

2
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jobs M1 M2

Case 2: Each job goes to a different machine.
The adversary introduces a new job with size 2.

Competitive ratio is 3/2.

The greedy algorithm achieves 3/2.
The greedy algorithm is the best possible for two machines.
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load 4 before adding this

After adding this, the maximum load is 10, 

but the optimal  is 6. The competitive 
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The greedy algorithm achieves 5/3.
The greedy algorithm is the best possible for three machines.



Example: Load Balancing 
with m≥4

• It can be proven using similar arguments that for m ≥ 4 
machines, the competitive ratio of any online algorithm is 
at least 1.70.


• The Greedy Algorithm achieves 1.75 for m = 4, so it is not 
the best possible for this case. 
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Better Algorithms
• We saw several better algorithms for Load Balancing.

• The problem even has an FPTAS.

• Could we use those instead of Greedy?

• You might be tempted to think so, but not really!

• Greedy approximation algorithms can sometimes be used 
as online algorithms, but in general  
 
approximation algorithms ≠ online algorithms
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Better Algorithms
• It is possible to design better online algorithms for the 

scheduling problem.

• For example, for m = 4,  there is an algorithm with 
competitive ratio at 1.733.

• Lower bound: For m = 4, no online algorithm has competitive 
ratio better than 1.732.

• For general m, the best possible competitive ratio is between 
1.88 and 1.92.

• Idea: The Tetris principle - maintain imbalance. 
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Paging
• We have two types of memory, a fast memory (cache) and a slow 

memory. 

• The cache has capacity k pages, the slow memory has capacity n pages.

• We have a sequence of page requests.

• If the page is in the cache, the algorithm returns it at no cost.

• If the page is not in the cache, the algorithm “faults” and has to bring it 
from the cache, paying a cost of 1.

• The algorithm must also choose a page in the cache to replace with the 
page brought from the slow memory.
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Costs
• The cost of an algorithm is the number of “faults” that it 

makes.

• How does the cost of an online algorithm compare to the 
cost of the optimal offline algorithm?

• The online algorithm makes x “faults”.

• The offline optimal makes y ≤ x “faults”.

• We are interested in x/y. 



Lower bound on Paging algorithms

• Theorem: The competitive ratio of any online algorithm for 
paging is at least k.
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Lower Bound
• The algorithm “faults” once at every step.

• What about the offline optimal?

• Consider the strategy: “When replacing a page, replace the 
one that will be requested the furthest in the future”.

• Suppose that OPT “faults” on some page p. OPT replaces a page 
(to bring in p) that will not be requested in the next k-1 steps.

• OPT “faults” once every k steps.

• The competitive ratio is at least k.
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Paging Algorithms
• LRU (Least Recently Used): Replace the page that was requested 

the least recently. 


• FIFO (First-In First-Out): Replace the page that has been in the 
cache the longest.


• LIFO (Last-In First-Out): Replace the page that has been in the 
cache the shortest.


• LFU (Least Frequently Used): Replace the page that was requested 
the least frequently so far.


• MIN (Offline Optimal): Replace the page whose next request 
happens the furthest in the future.



Paging Algorithms

• Theorem: LRU and FIFO have competitive ratio k.


