
Advanced Algorithmic Techniques
(COMP523)

Online Algorithms

Recap and plan

• Last lectures:

• Randomised Algorithms

• Randomised approximation algorithms.

• Applications: MAX-SAT, MAX-3SAT, MAX-CUT

• Final two lectures:

• Online algorithms.

• Competitive Analysis.

Motivating Examples

Motivating Examples
• Suppose that you need to take 4 modules in your Masters

programme, but you don’t know the difficulty, the content of
each module, or the lecturer of the module. You need to
make a decision based on limited information (topic, last
year’s curriculum, etc).

Motivating Examples
• Suppose that you need to take 4 modules in your Masters

programme, but you don’t know the difficulty, the content of
each module, or the lecturer of the module. You need to
make a decision based on limited information (topic, last
year’s curriculum, etc).

• Suppose that you have completed your Masters programme
successfully and now you are looking for jobs. You have
made several applications and you receive an offer from
some company. Should you accept it, or should you wait to
see if you might get a better offer from another company?

Motivating Examples
• Suppose that you need to take 4 modules in your Masters

programme, but you don’t know the difficulty, the content of
each module, or the lecturer of the module. You need to
make a decision based on limited information (topic, last
year’s curriculum, etc).

• Suppose that you have completed your Masters programme
successfully and now you are looking for jobs. You have
made several applications and you receive an offer from
some company. Should you accept it, or should you wait to
see if you might get a better offer from another company?

• Life is an online setting…

Hindsight is 20/20

Hindsight is 20/20
• If you knew what would happen in the future, you could make all

the right decisions.

Hindsight is 20/20
• If you knew what would happen in the future, you could make all

the right decisions.

• But you are not clairvoyant.

Hindsight is 20/20
• If you knew what would happen in the future, you could make all

the right decisions.

• But you are not clairvoyant.

• Let’s say that you make a series of local (myopic) decisions, based
only on information that you have seen so far (and possibly what
you expect to see in the future).

Hindsight is 20/20
• If you knew what would happen in the future, you could make all

the right decisions.

• But you are not clairvoyant.

• Let’s say that you make a series of local (myopic) decisions, based
only on information that you have seen so far (and possibly what
you expect to see in the future).

• You can compare the quality of your decisions to that of the
clairvoyant.

Hindsight is 20/20
• If you knew what would happen in the future, you could make all

the right decisions.

• But you are not clairvoyant.

• Let’s say that you make a series of local (myopic) decisions, based
only on information that you have seen so far (and possibly what
you expect to see in the future).

• You can compare the quality of your decisions to that of the
clairvoyant.

• If they are not much worse, then you can convince yourself that
you have made good decisions.

Let’s talk about algorithms

Let’s talk about algorithms
• Suppose that the input of a problem P is given to you in steps.

Let’s talk about algorithms
• Suppose that the input of a problem P is given to you in steps.

• You have to make a decision in every step.

Let’s talk about algorithms
• Suppose that the input of a problem P is given to you in steps.

• You have to make a decision in every step.

• The goal is to optimise some objective (e.g., minimise some
cost).

Let’s talk about algorithms
• Suppose that the input of a problem P is given to you in steps.

• You have to make a decision in every step.

• The goal is to optimise some objective (e.g., minimise some
cost).

• You don’t know the length of the input - the input supply might
stop at any point.

Let’s talk about algorithms
• Suppose that the input of a problem P is given to you in steps.

• You have to make a decision in every step.

• The goal is to optimise some objective (e.g., minimise some
cost).

• You don’t know the length of the input - the input supply might
stop at any point.

• You will compare against the offline optimal algorithm, which
knows the future, and computes the optimal solution on the
entire input.

Online algorithms

• Online Algorithm: An algorithm that must make decisions
now about events that will happen in the future, without
having knowledge of these events.

Recall: Load Balancing
• We have a set of m identical machines M1, … , Mm

• We have a set of n jobs, with job j having processing time tj.

• We want to assign every job to some machine.

• Let A(i) be the set of jobs assigned to machine i.

• The load of machine i is

• The goal is to minimise the makespan, i.e., 
 
 T = maxi Ti

Ti = ∑
j∈A(i)

tj

Online Load Balancing
• We have a set of m identical machines M1, … , Mm

• We have a set of n jobs, with job j having processing time tj.

• The jobs arrive over time, one in each time step.

• We want to assign every job to some machine.

• We will assign a job immediately upon arrival to some machine.

• Let A(i) be the set of jobs assigned to machine i.

• The load of machine i is

• The goal is to minimise the makespan, i.e., 
 
 T = maxi Ti

Ti = ∑
j∈A(i)

tj

Example

jobs M1 M2 M3

Example
2

jobs M1 M2 M3

Example

2
jobs M1 M2 M3

Example

2

3

jobs M1 M2 M3

Example

2 3

jobs M1 M2 M3

Example

2 3

4

jobs M1 M2 M3

Example

2 3 4

jobs M1 M2 M3

Example

2 3 4

6

jobs M1 M2 M3

Example

2 3 4

6

jobs M1 M2 M3

Example

2

2

3 4

6

jobs M1 M2 M3

Example

2

2

3 4

6

jobs M1 M2 M3

Example

2
2

2

3 4

6

jobs M1 M2 M3

Example

2

2
2

3 4

6

jobs M1 M2 M3

Example

2

2
2

3 4

6

jobs M1 M2 M3

makespan = 8

Online algorithms

• Let’s design an online algorithm for Load Balancing.

• Ideas?

Approximation Ratio
• Consider a minimisation problem P and an objective obj.

• Here: Load Balancing on identical machines and makespan.

• Consider an approximation algorithm A.

• Consider an input x to the problem P.

• Let obj(A(x)) be the value of the objective from the solution
of A on x.

• Let opt(x) be the minimum possible value of the objective
on x.

Approximation ratio

• The approximation ratio of A is defined as 
 
 maxx obj(A(x)) / opt(x)

• i.e., the worst case ratio of the objective achieved by
the algorithm over the optimal value of the objective,
over all possible inputs to the problem.

Competitive Ratio

• The competitive ratio of algorithm A is defined as 
 
 maxx obj(A(x)) / opt(x)

• i.e., the worst case ratio of the objective achieved by
the online algorithm over the optimal value of the
objective, over all possible inputs to the problem.

Competitive Ratio vs
Approximation Ratio

• Very similar notions.

• Difference:

• Approximation ratio: The constraint of our algorithm is
that it must run in polynomial time. If we didn’t have a
time constraint, we would obtain the optimal.

• Competitive Ratio: The constraint of our algorithm is
that it does not know the future part of the input. If we
had access to the future part of the input, we would
obtain the optimal.

Greedy algorithm for load
balancing

• Pick any job.

• Assign it to the machine with the smallest load so far.

• Remove it from the pile of jobs.

Algorithm Greedy-Balance 
 
Start with no jobs assigned 
Set Ti = 0 and A(i) = ∅ for all machines Mi 

For j = 1 , …, n 
 Let Mi be the machine that achieves the minimum mink Tk 
 Assign job j to machine Mi 
 Set A(i) = A(i) U { j } 
 Set Ti = Ti + tj 
EndFor

Greedy algorithm for online
load balancing

• Pick the job that arrives in the current time step.

• Assign it to the machine with the smallest load so far.

• Remove it from the pile of jobs.

Algorithm Greedy-Balance 
 
Start with no jobs assigned 
Set Ti = 0 and A(i) = ∅ for all machines Mi 

For j = 1 , …, n 
 Let Mi be the machine that achieves the minimum mink Tk 
 Assign job j to machine Mi 
 Set A(i) = A(i) U { j } 
 Set Ti = Ti + tj 
EndFor

Competitive ratio of Greedy

• What is the competitive ratio of the Greedy algorithm?

Competitive ratio of Greedy

• What is the competitive ratio of the Greedy algorithm?

• We have already done the analysis for the
approximation ratio!

Competitive ratio of Greedy

• What is the competitive ratio of the Greedy algorithm?

• We have already done the analysis for the
approximation ratio!

• 2 (using a “generous” analysis)

Competitive ratio of Greedy

• What is the competitive ratio of the Greedy algorithm?

• We have already done the analysis for the
approximation ratio!

• 2 (using a “generous” analysis)

• 2 - 1/m (using tighter analysis).

The limits of online algorithms

• Lower bounds: We can show lower bounds on the
competitive ratio of any online algorithm, using
elementary arguments.

• This comes in contrast to approximation algorithms,
where inapproximability results typically required
advanced techniques.

Terminology

• We will say that the input is given by an adversary, who
wishes to minimise the competitive ratio of the algorithm.

• This is equivalent to considering the worst possible case
for the input sequence.

Example: Load Balancing
with m=2

jobs M1 M2

Example: Load Balancing
with m=2

1

jobs M1 M2

Example: Load Balancing
with m=2

1

jobs M1 M2

Example: Load Balancing
with m=2

1

1

jobs M1 M2

Example: Load Balancing
with m=2

1

1

jobs M1 M2

Example: Load Balancing
with m=2

1

1

jobs M1 M2

Case 1: Both jobs go to M1

Example: Load Balancing
with m=2

1

1

jobs M1 M2

Case 1: Both jobs go to M1

Competitive ratio is 2.

Example: Load Balancing
with m=2

jobs M1 M2

Example: Load Balancing
with m=2

1

jobs M1 M2

Example: Load Balancing
with m=2

1

jobs M1 M2

Example: Load Balancing
with m=2

1

1

jobs M1 M2

Example: Load Balancing
with m=2

11

jobs M1 M2

Example: Load Balancing
with m=2

11

jobs M1 M2

Case 2: Each job goes to a different machine.

Example: Load Balancing
with m=2

11

jobs M1 M2

Case 2: Each job goes to a different machine.
The adversary introduces a new job with size 2.

Example: Load Balancing
with m=2

2
11

jobs M1 M2

Case 2: Each job goes to a different machine.
The adversary introduces a new job with size 2.

Example: Load Balancing
with m=2

2

11

jobs M1 M2

Case 2: Each job goes to a different machine.
The adversary introduces a new job with size 2.

Example: Load Balancing
with m=2

2

11

jobs M1 M2

Case 2: Each job goes to a different machine.
The adversary introduces a new job with size 2.

Competitive ratio is 3/2.

Example: Load Balancing
with m=2

2

11

jobs M1 M2

Case 2: Each job goes to a different machine.
The adversary introduces a new job with size 2.

Competitive ratio is 3/2.

The greedy algorithm achieves 3/2.

Example: Load Balancing
with m=2

2

11

jobs M1 M2

Case 2: Each job goes to a different machine.
The adversary introduces a new job with size 2.

Competitive ratio is 3/2.

The greedy algorithm achieves 3/2.
The greedy algorithm is the best possible for two machines.

Example: Load Balancing
with m=3

11

jobs

1

3 3 3

6

Example: Load Balancing
with m=3

11

jobs

1

3 3 3

6

Case 1: These do not go 
to 3 different machines

1 1 1

Example: Load Balancing
with m=3

11

jobs

1

3 3 3

6

Case 1: These do not go 
to 3 different machines

1 1 1

The adversary stops the 
sequence, the competitive 

ratio is 2.

Example: Load Balancing
with m=3

11

jobs

1

3 3 3

6

Case 1: These do not go 
to 3 different machines

1 1 1

The adversary stops the 
sequence, the competitive 

ratio is 2.
Case 2: These do not go 
to 3 different machines

3 3 3

Example: Load Balancing
with m=3

11

jobs

1

3 3 3

6

Case 1: These do not go 
to 3 different machines

1 1 1

The adversary stops the 
sequence, the competitive 

ratio is 2.
Case 2: These do not go 
to 3 different machines

3 3 3

The adversary stops the 
sequence, the competitive 

ratio is 7/4.

Example: Load Balancing
with m=3

11

jobs

1

3 3 3

6

Case 1: These do not go 
to 3 different machines

1 1 1

The adversary stops the 
sequence, the competitive 

ratio is 2.
Case 2: These do not go 
to 3 different machines

3 3 3

The adversary stops the 
sequence, the competitive 

ratio is 7/4.

Case 3: Every machine has

load 4 before adding this

Example: Load Balancing
with m=3

11

jobs

1

3 3 3

6

Case 1: These do not go 
to 3 different machines

1 1 1

The adversary stops the 
sequence, the competitive 

ratio is 2.
Case 2: These do not go 
to 3 different machines

3 3 3

The adversary stops the 
sequence, the competitive 

ratio is 7/4.

Case 3: Every machine has

load 4 before adding this

After adding this, the maximum load is 10,

but the optimal is 6. The competitive

ratio is 5/3.

6

Example: Load Balancing
with m=3

11

jobs

1

3 3 3

6

Case 1: These do not go 
to 3 different machines

1 1 1

The adversary stops the 
sequence, the competitive 

ratio is 2.
Case 2: These do not go 
to 3 different machines

3 3 3

The adversary stops the 
sequence, the competitive 

ratio is 7/4.

Case 3: Every machine has

load 4 before adding this

After adding this, the maximum load is 10,

but the optimal is 6. The competitive

ratio is 5/3.

6

The greedy algorithm achieves 5/3.

Example: Load Balancing
with m=3

11

jobs

1

3 3 3

6

Case 1: These do not go 
to 3 different machines

1 1 1

The adversary stops the 
sequence, the competitive 

ratio is 2.
Case 2: These do not go 
to 3 different machines

3 3 3

The adversary stops the 
sequence, the competitive 

ratio is 7/4.

Case 3: Every machine has

load 4 before adding this

After adding this, the maximum load is 10,

but the optimal is 6. The competitive

ratio is 5/3.

6

The greedy algorithm achieves 5/3.
The greedy algorithm is the best possible for three machines.

Example: Load Balancing
with m≥4

• It can be proven using similar arguments that for m ≥ 4
machines, the competitive ratio of any online algorithm is
at least 1.70.

• The Greedy Algorithm achieves 1.75 for m = 4, so it is not
the best possible for this case.

Better Algorithms

Better Algorithms
• We saw several better algorithms for Load Balancing.

Better Algorithms
• We saw several better algorithms for Load Balancing.

• The problem even has an FPTAS.

Better Algorithms
• We saw several better algorithms for Load Balancing.

• The problem even has an FPTAS.

• Could we use those instead of Greedy?

Better Algorithms
• We saw several better algorithms for Load Balancing.

• The problem even has an FPTAS.

• Could we use those instead of Greedy?

• You might be tempted to think so, but not really!

Better Algorithms
• We saw several better algorithms for Load Balancing.

• The problem even has an FPTAS.

• Could we use those instead of Greedy?

• You might be tempted to think so, but not really!

• Greedy approximation algorithms can sometimes be used
as online algorithms, but in general  
 
approximation algorithms ≠ online algorithms

Better Algorithms
• It is possible to design better online algorithms for the

scheduling problem.

Better Algorithms
• It is possible to design better online algorithms for the

scheduling problem.

• For example, for m = 4, there is an algorithm with
competitive ratio at 1.733.

Better Algorithms
• It is possible to design better online algorithms for the

scheduling problem.

• For example, for m = 4, there is an algorithm with
competitive ratio at 1.733.

• Lower bound: For m = 4, no online algorithm has competitive
ratio better than 1.732.

Better Algorithms
• It is possible to design better online algorithms for the

scheduling problem.

• For example, for m = 4, there is an algorithm with
competitive ratio at 1.733.

• Lower bound: For m = 4, no online algorithm has competitive
ratio better than 1.732.

• For general m, the best possible competitive ratio is between
1.88 and 1.92.

Better Algorithms
• It is possible to design better online algorithms for the

scheduling problem.

• For example, for m = 4, there is an algorithm with
competitive ratio at 1.733.

• Lower bound: For m = 4, no online algorithm has competitive
ratio better than 1.732.

• For general m, the best possible competitive ratio is between
1.88 and 1.92.

• Idea: The Tetris principle - maintain imbalance.

Paging

Paging
• We have two types of memory, a fast memory (cache) and a slow

memory.

Paging
• We have two types of memory, a fast memory (cache) and a slow

memory.

• The cache has capacity k pages, the slow memory has capacity n pages.

Paging
• We have two types of memory, a fast memory (cache) and a slow

memory.

• The cache has capacity k pages, the slow memory has capacity n pages.

• We have a sequence of page requests.

Paging
• We have two types of memory, a fast memory (cache) and a slow

memory.

• The cache has capacity k pages, the slow memory has capacity n pages.

• We have a sequence of page requests.

• If the page is in the cache, the algorithm returns it at no cost.

Paging
• We have two types of memory, a fast memory (cache) and a slow

memory.

• The cache has capacity k pages, the slow memory has capacity n pages.

• We have a sequence of page requests.

• If the page is in the cache, the algorithm returns it at no cost.

• If the page is not in the cache, the algorithm “faults” and has to bring it
from the cache, paying a cost of 1.

Paging
• We have two types of memory, a fast memory (cache) and a slow

memory.

• The cache has capacity k pages, the slow memory has capacity n pages.

• We have a sequence of page requests.

• If the page is in the cache, the algorithm returns it at no cost.

• If the page is not in the cache, the algorithm “faults” and has to bring it
from the cache, paying a cost of 1.

• The algorithm must also choose a page in the cache to replace with the
page brought from the slow memory.

Example

5 3 4 1 8cache

1 2 3 4 5 6 7 8

main memory

Example

5 3 4 1 8cache

1 2 3 4 5 6 7 8

main memory

3

request

Example

5 3 4 1 8cache

1 2 3 4 5 6 7 8

main memory

3

request

Example

5 3 4 1 8cache

1 2 3 4 5 6 7 8

main memory

3

request

6

request

Example

5 3 4 1 8cache

1 2 3 4 5 6 7 8

main memory

3

request

6

request

fault!

Example

5 3 4 1 8cache

1 2 3 4 5

6

7 8

main memory

3

request

6

request

fault!
6

6

Costs

Costs
• The cost of an algorithm is the number of “faults” that it

makes.

Costs
• The cost of an algorithm is the number of “faults” that it

makes.

• How does the cost of an online algorithm compare to the
cost of the optimal offline algorithm?

Costs
• The cost of an algorithm is the number of “faults” that it

makes.

• How does the cost of an online algorithm compare to the
cost of the optimal offline algorithm?

• The online algorithm makes x “faults”.

Costs
• The cost of an algorithm is the number of “faults” that it

makes.

• How does the cost of an online algorithm compare to the
cost of the optimal offline algorithm?

• The online algorithm makes x “faults”.

• The offline optimal makes y ≤ x “faults”.

Costs
• The cost of an algorithm is the number of “faults” that it

makes.

• How does the cost of an online algorithm compare to the
cost of the optimal offline algorithm?

• The online algorithm makes x “faults”.

• The offline optimal makes y ≤ x “faults”.

• We are interested in x/y.

Lower bound on Paging algorithms

• Theorem: The competitive ratio of any online algorithm for
paging is at least k.

Lower Bound

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1 2 53 41 6

Lower Bound

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

Adversary: Always ask for the page missing from the cache for the algorithm.

2 53 41 6

Lower Bound

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

Adversary: Always ask for the page missing from the cache for the algorithm.

2

request

2 53 41 6

Lower Bound

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

Adversary: Always ask for the page missing from the cache for the algorithm.

2

request

22

53 41 6

Lower Bound

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

Adversary: Always ask for the page missing from the cache for the algorithm.

2

request

2

5

request

2

53 41 6

Lower Bound

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

Adversary: Always ask for the page missing from the cache for the algorithm.

2

request

2

5

request

2 55

3 41 6

Lower Bound

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

Adversary: Always ask for the page missing from the cache for the algorithm.

2

request

2

5

request

2 55

3

request

3 41 6

Lower Bound

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

Adversary: Always ask for the page missing from the cache for the algorithm.

2

request

2

5

request

2 55

3

request

33

41 6

Lower Bound

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

Adversary: Always ask for the page missing from the cache for the algorithm.

2

request

2

5

request

2 55

3

request

3

4

request

3

41 6

Lower Bound

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

Adversary: Always ask for the page missing from the cache for the algorithm.

2

request

2

5

request

2 55

3

request

3

4

request

3 44

1 6

Lower Bound

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

Adversary: Always ask for the page missing from the cache for the algorithm.

2

request

2

5

request

2 55

3

request

3

4

request

1

request

3 44

1 6

Lower Bound

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

Adversary: Always ask for the page missing from the cache for the algorithm.

2

request

2

5

request

2 55

3

request

3

4

request

1

request

3 4411

6

Lower Bound

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

Adversary: Always ask for the page missing from the cache for the algorithm.

2

request

2

5

request

2 55

3

request

3

4

request

1

request

6

request

3 4411

6

Lower Bound

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

Adversary: Always ask for the page missing from the cache for the algorithm.

2

request

2

5

request

2 55

3

request

3

4

request

1

request

6

request

3 441166

Lower Bound

Lower Bound
• The algorithm “faults” once at every step.

Lower Bound
• The algorithm “faults” once at every step.

• What about the offline optimal?

Lower Bound
• The algorithm “faults” once at every step.

• What about the offline optimal?

• Consider the strategy: “When replacing a page, replace the
one that will be requested the furthest in the future”.

Lower Bound
• The algorithm “faults” once at every step.

• What about the offline optimal?

• Consider the strategy: “When replacing a page, replace the
one that will be requested the furthest in the future”.

• Suppose that OPT “faults” on some page p. OPT replaces a page
(to bring in p) that will not be requested in the next k-1 steps.

Lower Bound
• The algorithm “faults” once at every step.

• What about the offline optimal?

• Consider the strategy: “When replacing a page, replace the
one that will be requested the furthest in the future”.

• Suppose that OPT “faults” on some page p. OPT replaces a page
(to bring in p) that will not be requested in the next k-1 steps.

• OPT “faults” once every k steps.

Lower Bound
• The algorithm “faults” once at every step.

• What about the offline optimal?

• Consider the strategy: “When replacing a page, replace the
one that will be requested the furthest in the future”.

• Suppose that OPT “faults” on some page p. OPT replaces a page
(to bring in p) that will not be requested in the next k-1 steps.

• OPT “faults” once every k steps.

• The competitive ratio is at least k.

Lower Bound

5 3 4 1 3cache

1 2 3 4 5 6
main memory

n=k+1

Adversary: Always ask for the page missing from the cache for the algorithm.

2 5 6

Lower Bound

5 3 4 1 3cache

1 2 3 4 5 6
main memory

n=k+1

Adversary: Always ask for the page missing from the cache for the algorithm.

2

request

2 5 6

Lower Bound

5 3 4 1 3cache

1 2 3 4 5 6
main memory

n=k+1

Adversary: Always ask for the page missing from the cache for the algorithm.

2

request

22

5 6

Lower Bound

5 3 4 1 3cache

1 2 3 4 5 6
main memory

n=k+1

Adversary: Always ask for the page missing from the cache for the algorithm.

2

request

2

5

request

2

5

3

6

Lower Bound

5 3 4 1 3cache

1 2 3 4 5 6
main memory

n=k+1

Adversary: Always ask for the page missing from the cache for the algorithm.

2

request

2

5

request

2

5

3

3

request

6

Lower Bound

5 3 4 1 3cache

1 2 3 4 5 6
main memory

n=k+1

Adversary: Always ask for the page missing from the cache for the algorithm.

2

request

2

5

request

2

5

3

3

request

4

request

6

Lower Bound

5 3 4 1 3cache

1 2 3 4 5 6
main memory

n=k+1

Adversary: Always ask for the page missing from the cache for the algorithm.

2

request

2

5

request

2

5

3

3

request

4

request

1

request

6

Lower Bound

5 3 4 1 3cache

1 2 3 4 5 6
main memory

n=k+1

Adversary: Always ask for the page missing from the cache for the algorithm.

2

request

2

5

request

2

5

3

3

request

4

request

1

request

6

request

6

Lower Bound

5 3 4 1 3cache

1 2 3 4 5 6
main memory

n=k+1

Adversary: Always ask for the page missing from the cache for the algorithm.

2

request

2

5

request

2

5

3

3

request

4

request

1

request

6

request

66

Paging Algorithms
• LRU (Least Recently Used): Replace the page that was requested

the least recently.

• FIFO (First-In First-Out): Replace the page that has been in the
cache the longest.

• LIFO (Last-In First-Out): Replace the page that has been in the
cache the shortest.

• LFU (Least Frequently Used): Replace the page that was requested
the least frequently so far.

• MIN (Offline Optimal): Replace the page whose next request
happens the furthest in the future.

Paging Algorithms

• Theorem: LRU and FIFO have competitive ratio k.

