Advanced Algorithmic Techniques
(COMP523)

Online Algorithms 2

Recap and plan

e Last lecture:
e Online Algorithms
e Competitive Ratio
e Online load balancing
* Paging
e This lecture:
e Online algorithms for paging.

e A Randomised online algorithm for paging.

Paging Algorithms

LRU (Least Recently Used): Replace the page that was requested
the least recently.

FIFO (First-In First-Out): Replace the page that has been in the
cache the longest.

LIFO (Last-In First-Out): Replace the page that has been in the
cache the shortest.

LFU (Least Frequently Used): Replace the page that was requested
the least frequently so far.

MIN (Offline Optimal): Replace the page whose next request
happens the furthest in the future.

Paging Algorithms

e Theorem: LRU and FIFO have competitive ratio k.

Marking algorithm

 Consider the following algorithm:

Marking algorithm

 Consider the following algorithm:

* The algorithm proceeds in phases.

Marking algorithm

 Consider the following algorithm:
* The algorithm proceeds in phases.

e At the beginning of a phase, all the pages are unmarked.

Marking algorithm

 Consider the following algorithm:
* The algorithm proceeds in phases.
e At the beginning of a phase, all the pages are unmarked.

* Whenever a page is requested, it is marked.

Marking algorithm

 Consider the following algorithm:
* The algorithm proceeds in phases.
e At the beginning of a phase, all the pages are unmarked.
* Whenever a page is requested, it is marked.

e When a “fault” occurs, the algorithm replaces an
unmarked page.

Marking algorithm

 Consider the following algorithm:
* The algorithm proceeds in phases.
e At the beginning of a phase, all the pages are unmarked.
* Whenever a page is requested, it is marked.

e When a “fault” occurs, the algorithm replaces an
unmarked page.

* When all pages in the cache are marked, and a request for
an unmarked page occurs, the phase ends.

Marking algorithm

main memory
n=k+1 3

Marking algorithm

--

cache
main memory
n=k+1 3
IIII!III
request

Marking algorithm

| N

cache
main memory
n=k+1 3
IIII!III
request

Marking algorithm

main memory
n=k+1 3

-
request request

Marking algorithm

main memory
n=k+1 3

-
request request

Marking algorithm

main memory
Nn=k+1 3

IIII!III IIIEIIII IIIH!III
request request request

Marking algorithm

main memory
Nn=k+1 3

IIII!III IIIEIIII IIIH!III
request request request

Marking algorithm

- OO0
S

--

request request request request

main memory
Nn=k+1

Marking algorithm

main memory
n=k+1 3

IIII!III IIIEIIII IIIHIII\ IIIIIIIl
request request request request

Marking algorithm

SmuEE -
N .

request request request request request

main memory
Nn=k+1

Marking algorithm

- L
B .

request request request request request

main memory
Nn=k+1

Marking algorithm

- L
B .

request request request request request request

main memory
Nn=k+1

Marking algorithm

--

request request request request request request

cache

main memory
Nn=k+1

Marking algorithm

request request request request request request

cache

main memory
Nn=k+1

Paging Algorithms

* Theorem: The marking algorithm has competitive ratio k.

Paging Algorithms

* Theorem: The marking algorithm has competitive ratio k.

e The algorithm “faults” at most k times in every phase.

Paging Algorithms

* Theorem: The marking algorithm has competitive ratio k.
e The algorithm “faults” at most k times in every phase.

* Every time it fails, the requested page is marked.

Paging Algorithms

* Theorem: The marking algorithm has competitive ratio k.
e The algorithm “faults” at most k times in every phase.
* Every time it fails, the requested page is marked.

e |f all pages in the cache are marked and a new page is requested,
then the phase changes.

Paging Algorithms

* Theorem: The marking algorithm has competitive ratio k.
e The algorithm “faults” at most k times in every phase.
* Every time it fails, the requested page is marked.

e |f all pages in the cache are marked and a new page is requested,
then the phase changes.

e The optimal offline algorithm “faults” at least once in every phase.

Paging Algorithms

* Theorem: The marking algorithm has competitive ratio k.
e The algorithm “faults” at most k times in every phase.
* Every time it fails, the requested page is marked.

e |f all pages in the cache are marked and a new page is requested,
then the phase changes.

e The optimal offline algorithm “faults” at least once in every phase.

* The phase ends when k+1 different pages are requested.

Paging Algorithms

* Theorem: The marking algorithm has competitive ratio k.
e The algorithm “faults” at most k times in every phase.
* Every time it fails, the requested page is marked.

e |f all pages in the cache are marked and a new page is requested,
then the phase changes.

e The optimal offline algorithm “faults” at least once in every phase.
* The phase ends when k+1 different pages are requested.

e The optimal offline algorithm can only keep at most k of those in
the cache.

Paging Algorithms

e Theorem: LRU and FIFO have competitive ratio k.

Paging Algorithms

e Theorem: LRU and FIFO have competitive ratio k.

e Proof: LRU and FIFO are marking algorithms.

Paging Algorithms

e Theorem: LRU and FIFO have competitive ratio k.
e Proof: LRU and FIFO are marking algorithms.

e Corollary: LRU and FIFO are the best online algorithms for
the paging problem.

Randomisation

Randomisation

e We will use randomisation to achieve a better competitive
ratio.

Randomisation

e We will use randomisation to achieve a better competitive
ratio.

e \We have to make a distinction, when it come to the power
of the adversary:

Randomisation

e We will use randomisation to achieve a better competitive
ratio.

e \We have to make a distinction, when it come to the power
of the adversary:

e Oblivious Adversary: The adversary fixes an input
sequence in advance.

Randomisation

e We will use randomisation to achieve a better competitive
ratio.

e \We have to make a distinction, when it come to the power
of the adversary:

e Oblivious Adversary: The adversary fixes an input
sequence in advance.

e Adaptive Adversary: The adversary can change the
iInput sequence based on the realisations of
randomness of the choices of the algorithm.

Marking algorithm

 Consider the following algorithm:
* The algorithm proceeds in phases.
e At the beginning of a phase, all the pages are unmarked.
* Whenever a page is requested, it is marked.

e When a “fault” occurs, the algorithm replaces an
unmarked page.

* When all pages in the cache are marked, and a request for
an unmarked page occurs, the phase ends.

Randomised Marking algorithm

 Consider the following algorithm:

The algorithm proceeds in phases.
At the beginning of a phase, all the pages are unmarked.
Whenever a page is requested, it is marked.

When a “fault” occurs, the algorithm replaces an
unmarked page, selecting one uniformly at random.

When all pages in the cache are marked, and a request for
an unmarked page occurs, the phase ends.

Randomised Marking algorithm

e Theorem: The Randomised Marking algorithm has
competitive ratio 2Hk against oblivious adversaries.

The proof

The proof

* Assume without loss of generality that RMA makes a “fault” on the first
request.

The proof

* Assume without loss of generality that RMA makes a “fault” on the first
request.

e Consider phase i,

The proof

* Assume without loss of generality that RMA makes a “fault” on the first
request.

e Consider phase i,

* |let mi be the number of “new” pages in the phase, i.e., pages which
were not requested in phase i-1.

The proof

* Assume without loss of generality that RMA makes a “fault” on the first
request.

e Consider phase i,

* |let mi be the number of “new” pages in the phase, i.e., pages which
were not requested in phase i-1.

e call the remaining k-mj pages “old”.

The proof

* Assume without loss of generality that RMA makes a “fault” on the first
request.

e Consider phase i,

* |let mi be the number of “new” pages in the phase, i.e., pages which
were not requested in phase i-1.

e call the remaining k-mj pages “old”.

e Every time a “new” page is requested, we have a “fault”.

The proof

Assume without loss of generality that RMA makes a “fault” on the first
request.

Consider phase |,

* |let mi be the number of “new” pages in the phase, i.e., pages which
were not requested in phase i-1.

e call the remaining k-mj pages “old”.
Every time a “new” page is requested, we have a “fault”.

Every time an “ol/d” page is requested, we may have “fault”.

The proof

Assume without loss of generality that RMA makes a “fault” on the first
request.

Consider phase |,

* |let mi be the number of “new” pages in the phase, i.e., pages which
were not requested in phase i-1.

e call the remaining k-mj pages “old”.
Every time a “new” page is requested, we have a “fault”.
Every time an “ol/d” page is requested, we may have “fault”.

e The “fault” happens if we replaced the “old” page with a “new” one.

Randomised Marking

main memory
n=k+1 3

Randomised Marking

--

cache
main memory
Nn=k+1 3
IIII!III
request

Randomised Marking

--

cache
main memory
Nn=k+1 3
IIII!III
request

Randomised Marking

main memory
n=k+1 3

|IIH|II\ |IIEIII\
request request

Randomised Marking

--

-

request request

cache

main memory
Nn=k+1

fault happens because
we substituted 5.

Randomised Marking

main memory
n=k+1 3

Randomised Marking

--

cache
main memory
Nn=k+1 3
IIII!III
request

Randomised Marking

--

cache
main memory
Nn=k+1 3
IIII!III
request

Randomised Marking

main memory
n=k+1 3

|IIH|II\ |IIEIII\
request request

Randomised Marking

-

request request

main memory
Nn=k+1

fault does not happen
because we did not
substitute 5.

The proof

Assume without loss of generality that RMA makes a “fault” on the first
request.

Consider phase |,

* |let mi be the number of “new” pages in the phase, i.e., pages which
were not requested in phase i-1.

e call the remaining k-mj pages “old”.
Every time a “new” page is requested, we have a “fault”.
Every time an “ol/d” page is requested, we may have “fault”.

e The “fault” happens if we replaced the “old” page with a “new” one.

The proof

 Assume (wlog) that the mi requests for “new” pages
come first and the k-mj requests for “old” pages follow.

The proof

 Assume (wlog) that the mi requests for “new” pages
come first and the k-mj requests for “old” pages follow.

 What is the probabillity that on the first “old” page
request, we make a “fault”?

The proof

 Assume (wlog) that the mi requests for “new” pages
come first and the k-mj requests for “old” pages follow.

 What is the probabillity that on the first “old” page
request, we make a “fault”?

* |t is the probability that the “o/d” page was replaced
on the first request, or the second request or, ..., or

the the mi’th request.

The proof

 Assume (wlog) that the mi requests for “new” pages
come first and the k-mj requests for “old” pages follow.

 What is the probabillity that on the first “old” page
request, we make a “fault”?

* |t is the probability that the “o/d” page was replaced
on the first request, or the second request or, ..., or

the the mi’th request.

e This is mi/k.

The proof

 The “fault” happens if we replaced the “old” page with a
“new” one.

* What is the probability of that happening?

e Assume (wlog) that the mi requests for “new” pages come
first and the k-mi requests for “o/d” pages follow.

The proof

 The “fault” happens if we replaced the “old” page with a
“new” one.

* What is the probability of that happening?

e Assume (wlog) that the mi requests for “new” pages come
first and the k-mi requests for “o/d” pages follow.

e What is the probabillity that on the second “old” page
request, we make a “fault”, given that we made a “fault”
on the first “old” page request?

The proof

 The “fault” happens if we replaced the “old” page with a
“new” one.

* What is the probability of that happening?

e Assume (wlog) that the mi requests for “new” pages come
first and the k-mi requests for “o/d” pages follow.

e What is the probabillity that on the second “old” page
request, we make a “fault”, given that we made a “fault”
on the first “old” page request?

e This is mi/(k-1).

The proof

* The expected number of “faults” of our algorithm in phase
| IS

mi + mi/kK + mi/(k-1) + ... + mi/(k-(k-mi)+1 < m; Hk

e Summing up over all the phases, we have that:

E[cost of RMA] < H,) m,
i=1

Arguing about the OPT

e What is the number of “faults” that the optimal offline algorithm
makes?

 Let’s look at two consecutive phases i-1 and |.

* Let ni-1 and ni be the number of “faults” of OPT on those phases.

e By the definition of a phase, there are minew pages in phases
-1 and I.

e |t holds that ni-1 + ni <m;

1 n
e Summing up, we get: OPT > — Z m,
2 i=1

Combining

n 1 n
E[cost of RMA] < H,)" m, OPT 2 — Y om,
i=1 i=1

The competitive ratio of RMA is 2Hxk

