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Recap and plan

• Last lecture: 

• Online Algorithms


• Competitive Ratio


• Online load balancing


• Paging


• This lecture: 

• Online algorithms for paging.


• A Randomised online algorithm for paging.



Paging Algorithms
• LRU (Least Recently Used): Replace the page that was requested 

the least recently. 


• FIFO (First-In First-Out): Replace the page that has been in the 
cache the longest.


• LIFO (Last-In First-Out): Replace the page that has been in the 
cache the shortest.


• LFU (Least Frequently Used): Replace the page that was requested 
the least frequently so far.


• MIN (Offline Optimal): Replace the page whose next request 
happens the furthest in the future.



Paging Algorithms

• Theorem: LRU and FIFO have competitive ratio k.
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Marking algorithm
• Consider the following algorithm:

• The algorithm proceeds in phases.

• At the beginning of a phase, all the pages are unmarked.

• Whenever a page is requested, it is marked.

• When a “fault” occurs, the algorithm replaces an 
unmarked page.

• When all pages in the cache are marked, and a request for 
an unmarked page occurs, the phase ends.
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Paging Algorithms
• Theorem: The marking algorithm has competitive ratio k.

• The algorithm “faults” at most k times in every phase.

• Every time it fails, the requested page is marked.

• If all pages in the cache are marked and a new page is requested, 
then the phase changes.

• The optimal offline algorithm “faults” at least once in every phase.

• The phase ends when k+1 different pages are requested.

• The optimal offline algorithm can only keep at most k of those in 
the cache.
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Paging Algorithms

• Theorem: LRU and FIFO have competitive ratio k.

• Proof: LRU and FIFO are marking algorithms.

• Corollary: LRU and FIFO are the best online algorithms for 
the paging problem.
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Randomisation
• We will use randomisation to achieve a better competitive 

ratio.

• We have to make a distinction, when it come to the power 
of the adversary:

• Oblivious Adversary: The adversary fixes an input 
sequence in advance.

• Adaptive Adversary: The adversary can change the 
input sequence based on the realisations of 
randomness of the choices of the algorithm.



Marking algorithm
• Consider the following algorithm:


• The algorithm proceeds in phases.


• At the beginning of a phase, all the pages are unmarked.


• Whenever a page is requested, it is marked.
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Randomised Marking algorithm

• Consider the following algorithm:


• The algorithm proceeds in phases.


• At the beginning of a phase, all the pages are unmarked.


• Whenever a page is requested, it is marked.


• When a “fault” occurs, the algorithm replaces an 
unmarked page, selecting one uniformly at random.


• When all pages in the cache are marked, and a request for 
an unmarked page occurs, the phase ends.



Randomised Marking algorithm

• Theorem: The Randomised Marking algorithm has 
competitive ratio 2Hk against oblivious adversaries.
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The proof
• Assume without loss of generality that RMA makes a “fault” on the first 

request.

• Consider phase i, 

• let mi be the number of “new” pages in the phase, i.e., pages which 
were not requested in phase i-1.

• call the remaining k-mi pages “old”.

• Every time a “new” page is requested, we have a “fault”.

• Every time an “old” page is requested, we may have “fault”.

• The “fault” happens if we replaced the “old” page with a “new” one.
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Randomised Marking
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fault does not happen 
because we did not  

substitute 5.



The proof
• Assume without loss of generality that RMA makes a “fault” on the first 

request.


• Consider phase i, 


• let mi be the number of “new” pages in the phase, i.e., pages which 
were not requested in phase i-1.


• call the remaining k-mi pages “old”.


• Every time a “new” page is requested, we have a “fault”.


• Every time an “old” page is requested, we may have “fault”.


• The “fault” happens if we replaced the “old” page with a “new” one.
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• It is the probability that the “old” page was replaced 
on the first request, or the second request or, …, or 
the the mi’th request.

• This is mi/k.
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The proof
• The “fault” happens if we replaced the “old” page with a 

“new” one.

• What is the probability of that happening?

• Assume (wlog) that the mi requests for “new” pages come 
first and the k-mi requests for “old” pages follow.

• What is the probability that on the second “old” page 
request, we make a “fault”, given that we made a “fault” 
on the first “old” page request?

• This is mi/(k-1).



The proof

• The expected number of “faults” of our algorithm in phase 
i is 
 
mi  + mi/k + mi/(k-1) + … + mi/(k-(k-mi)+1 ≤ mi Hk


• Summing up over all the phases, we have that: 
 

𝔼[cost of RMA] ≤ Hk

n

∑
i=1

mi



Arguing about the OPT
• What is the number of “faults” that the optimal offline algorithm 

makes?


• Let’s look at two consecutive phases i-1 and i.


• Let ni-1 and ni be the number of “faults” of OPT on those phases.


• By the definition of a phase, there are mi new pages in phases 
i-1 and i.


• It holds that ni-1 + ni  ≤ mi 


• Summing up, we get: OPT ≥
1
2

n

∑
i=1

mi



Combining

𝔼[cost of RMA] ≤ Hk

n

∑
i=1

mi OPT ≥
1
2

n

∑
i=1

mi

The competitive ratio of RMA is 2Hk


