Advanced Algorithmic Techniques
(COMP523)

Online Algorithms 2



Recap and plan

e Last lecture:
e Online Algorithms
e Competitive Ratio
e Online load balancing
* Paging
e This lecture:
e Online algorithms for paging.

e A Randomised online algorithm for paging.



Paging Algorithms

LRU (Least Recently Used): Replace the page that was requested
the least recently.

FIFO (First-In First-Out): Replace the page that has been in the
cache the longest.

LIFO (Last-In First-Out): Replace the page that has been in the
cache the shortest.

LFU (Least Frequently Used): Replace the page that was requested
the least frequently so far.

MIN (Offline Optimal): Replace the page whose next request
happens the furthest in the future.
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e Theorem: LRU and FIFO have competitive ratio k.
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 Consider the following algorithm:
* The algorithm proceeds in phases.
e At the beginning of a phase, all the pages are unmarked.
* Whenever a page is requested, it is marked.

e When a “fault” occurs, the algorithm replaces an
unmarked page.

* When all pages in the cache are marked, and a request for
an unmarked page occurs, the phase ends.
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Paging Algorithms

* Theorem: The marking algorithm has competitive ratio k.
e The algorithm “faults” at most k times in every phase.
* Every time it fails, the requested page is marked.

e |f all pages in the cache are marked and a new page is requested,
then the phase changes.

e The optimal offline algorithm “faults” at least once in every phase.
* The phase ends when k+1 different pages are requested.

e The optimal offline algorithm can only keep at most k of those in
the cache.
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Paging Algorithms

e Theorem: LRU and FIFO have competitive ratio k.
e Proof: LRU and FIFO are marking algorithms.

e Corollary: LRU and FIFO are the best online algorithms for
the paging problem.
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Randomisation

e We will use randomisation to achieve a better competitive
ratio.

e \We have to make a distinction, when it come to the power
of the adversary:

e Oblivious Adversary: The adversary fixes an input
sequence in advance.

e Adaptive Adversary: The adversary can change the
iInput sequence based on the realisations of
randomness of the choices of the algorithm.
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Randomised Marking algorithm

 Consider the following algorithm:

The algorithm proceeds in phases.
At the beginning of a phase, all the pages are unmarked.
Whenever a page is requested, it is marked.

When a “fault” occurs, the algorithm replaces an
unmarked page, selecting one uniformly at random.

When all pages in the cache are marked, and a request for
an unmarked page occurs, the phase ends.



Randomised Marking algorithm

e Theorem: The Randomised Marking algorithm has
competitive ratio 2Hk against oblivious adversaries.



The proof



The proof

* Assume without loss of generality that RMA makes a “fault” on the first
request.



The proof

* Assume without loss of generality that RMA makes a “fault” on the first
request.

e Consider phase i,



The proof

* Assume without loss of generality that RMA makes a “fault” on the first
request.

e Consider phase i,

* |let mi be the number of “new” pages in the phase, i.e., pages which
were not requested in phase i-1.



The proof

* Assume without loss of generality that RMA makes a “fault” on the first
request.

e Consider phase i,

* |let mi be the number of “new” pages in the phase, i.e., pages which
were not requested in phase i-1.

e call the remaining k-mj pages “old”.



The proof

* Assume without loss of generality that RMA makes a “fault” on the first
request.

e Consider phase i,

* |let mi be the number of “new” pages in the phase, i.e., pages which
were not requested in phase i-1.

e call the remaining k-mj pages “old”.

e Every time a “new” page is requested, we have a “fault”.



The proof

Assume without loss of generality that RMA makes a “fault” on the first
request.

Consider phase |,

* |let mi be the number of “new” pages in the phase, i.e., pages which
were not requested in phase i-1.

e call the remaining k-mj pages “old”.
Every time a “new” page is requested, we have a “fault”.

Every time an “ol/d” page is requested, we may have “fault”.



The proof

Assume without loss of generality that RMA makes a “fault” on the first
request.

Consider phase |,

* |let mi be the number of “new” pages in the phase, i.e., pages which
were not requested in phase i-1.

e call the remaining k-mj pages “old”.
Every time a “new” page is requested, we have a “fault”.
Every time an “ol/d” page is requested, we may have “fault”.

e The “fault” happens if we replaced the “old” page with a “new” one.
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Randomised Marking
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fault does not happen
because we did not
substitute 5.




The proof

Assume without loss of generality that RMA makes a “fault” on the first
request.

Consider phase |,

* |let mi be the number of “new” pages in the phase, i.e., pages which
were not requested in phase i-1.

e call the remaining k-mj pages “old”.
Every time a “new” page is requested, we have a “fault”.
Every time an “ol/d” page is requested, we may have “fault”.

e The “fault” happens if we replaced the “old” page with a “new” one.
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The proof

 The “fault” happens if we replaced the “old” page with a
“new” one.

* What is the probability of that happening?

e Assume (wlog) that the mi requests for “new” pages come
first and the k-mi requests for “o/d” pages follow.

e What is the probabillity that on the second “old” page
request, we make a “fault”, given that we made a “fault”
on the first “old” page request?

e This is mi/(k-1).



The proof

* The expected number of “faults” of our algorithm in phase
| IS

mi + mi/kK + mi/(k-1) + ... + mi/(k-(k-mi)+1 < m; Hk

e Summing up over all the phases, we have that:

E[cost of RMA] < H, ) m,
i=1



Arguing about the OPT

e What is the number of “faults” that the optimal offline algorithm
makes?

 Let’s look at two consecutive phases i-1 and |.

* Let ni-1 and ni be the number of “faults” of OPT on those phases.

e By the definition of a phase, there are minew pages in phases
-1 and I.

e |t holds that ni-1 + ni <m;

1 n
e Summing up, we get: OPT > — Z m,
2 i=1



Combining

n 1 n
E[cost of RMA] < H, )" m, OPT 2 — Y om,
i=1 i=1

The competitive ratio of RMA is 2Hxk



