
Advanced Algorithmic Techniques
(COMP523)

Online Algorithms 2

Recap and plan

• Last lecture:

• Online Algorithms

• Competitive Ratio

• Online load balancing

• Paging

• This lecture:

• Online algorithms for paging.

• A Randomised online algorithm for paging.

Paging Algorithms
• LRU (Least Recently Used): Replace the page that was requested

the least recently.

• FIFO (First-In First-Out): Replace the page that has been in the
cache the longest.

• LIFO (Last-In First-Out): Replace the page that has been in the
cache the shortest.

• LFU (Least Frequently Used): Replace the page that was requested
the least frequently so far.

• MIN (Offline Optimal): Replace the page whose next request
happens the furthest in the future.

Paging Algorithms

• Theorem: LRU and FIFO have competitive ratio k.

Marking algorithm
• Consider the following algorithm:

Marking algorithm
• Consider the following algorithm:

• The algorithm proceeds in phases.

Marking algorithm
• Consider the following algorithm:

• The algorithm proceeds in phases.

• At the beginning of a phase, all the pages are unmarked.

Marking algorithm
• Consider the following algorithm:

• The algorithm proceeds in phases.

• At the beginning of a phase, all the pages are unmarked.

• Whenever a page is requested, it is marked.

Marking algorithm
• Consider the following algorithm:

• The algorithm proceeds in phases.

• At the beginning of a phase, all the pages are unmarked.

• Whenever a page is requested, it is marked.

• When a “fault” occurs, the algorithm replaces an
unmarked page.

Marking algorithm
• Consider the following algorithm:

• The algorithm proceeds in phases.

• At the beginning of a phase, all the pages are unmarked.

• Whenever a page is requested, it is marked.

• When a “fault” occurs, the algorithm replaces an
unmarked page.

• When all pages in the cache are marked, and a request for
an unmarked page occurs, the phase ends.

Marking algorithm

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1 2 53 41 6

Marking algorithm

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

2

request

2 53 41 6

Marking algorithm

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

2

request

22

53 41 6

Marking algorithm

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

2

request

2

5

request

2

53 41 6

Marking algorithm

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

2

request

2

5

request

2 55

3 41 6

Marking algorithm

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

2

request

2

5

request

2 55

3

request

3 41 6

Marking algorithm

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

2

request

2

5

request

2 55

3

request

33

41 6

Marking algorithm

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

2

request

2

5

request

2 55

3

request

3

4

request

3

41 6

Marking algorithm

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

2

request

2

5

request

2 55

3

request

3

4

request

3 44

1 6

Marking algorithm

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

2

request

2

5

request

2 55

3

request

3

4

request

1

request

3 44

1 6

Marking algorithm

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

2

request

2

5

request

2 55

3

request

3

4

request

1

request

3 4411

6

Marking algorithm

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

2

request

2

5

request

2 55

3

request

3

4

request

1

request

6

request

3 4411

6

Marking algorithm

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

2

request

2

5

request

2 55

3

request

3

4

request

1

request

6

request

3 44112 5 3 1 4

6

Marking algorithm

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

2

request

2

5

request

2 55

3

request

3

4

request

1

request

6

request

3 44112 5 3 1 466

Paging Algorithms
• Theorem: The marking algorithm has competitive ratio k.

Paging Algorithms
• Theorem: The marking algorithm has competitive ratio k.

• The algorithm “faults” at most k times in every phase.

Paging Algorithms
• Theorem: The marking algorithm has competitive ratio k.

• The algorithm “faults” at most k times in every phase.

• Every time it fails, the requested page is marked.

Paging Algorithms
• Theorem: The marking algorithm has competitive ratio k.

• The algorithm “faults” at most k times in every phase.

• Every time it fails, the requested page is marked.

• If all pages in the cache are marked and a new page is requested,
then the phase changes.

Paging Algorithms
• Theorem: The marking algorithm has competitive ratio k.

• The algorithm “faults” at most k times in every phase.

• Every time it fails, the requested page is marked.

• If all pages in the cache are marked and a new page is requested,
then the phase changes.

• The optimal offline algorithm “faults” at least once in every phase.

Paging Algorithms
• Theorem: The marking algorithm has competitive ratio k.

• The algorithm “faults” at most k times in every phase.

• Every time it fails, the requested page is marked.

• If all pages in the cache are marked and a new page is requested,
then the phase changes.

• The optimal offline algorithm “faults” at least once in every phase.

• The phase ends when k+1 different pages are requested.

Paging Algorithms
• Theorem: The marking algorithm has competitive ratio k.

• The algorithm “faults” at most k times in every phase.

• Every time it fails, the requested page is marked.

• If all pages in the cache are marked and a new page is requested,
then the phase changes.

• The optimal offline algorithm “faults” at least once in every phase.

• The phase ends when k+1 different pages are requested.

• The optimal offline algorithm can only keep at most k of those in
the cache.

Paging Algorithms

• Theorem: LRU and FIFO have competitive ratio k.

Paging Algorithms

• Theorem: LRU and FIFO have competitive ratio k.

• Proof: LRU and FIFO are marking algorithms.

Paging Algorithms

• Theorem: LRU and FIFO have competitive ratio k.

• Proof: LRU and FIFO are marking algorithms.

• Corollary: LRU and FIFO are the best online algorithms for
the paging problem.

Randomisation

Randomisation
• We will use randomisation to achieve a better competitive

ratio.

Randomisation
• We will use randomisation to achieve a better competitive

ratio.

• We have to make a distinction, when it come to the power
of the adversary:

Randomisation
• We will use randomisation to achieve a better competitive

ratio.

• We have to make a distinction, when it come to the power
of the adversary:

• Oblivious Adversary: The adversary fixes an input
sequence in advance.

Randomisation
• We will use randomisation to achieve a better competitive

ratio.

• We have to make a distinction, when it come to the power
of the adversary:

• Oblivious Adversary: The adversary fixes an input
sequence in advance.

• Adaptive Adversary: The adversary can change the
input sequence based on the realisations of
randomness of the choices of the algorithm.

Marking algorithm
• Consider the following algorithm:

• The algorithm proceeds in phases.

• At the beginning of a phase, all the pages are unmarked.

• Whenever a page is requested, it is marked.

• When a “fault” occurs, the algorithm replaces an
unmarked page.

• When all pages in the cache are marked, and a request for
an unmarked page occurs, the phase ends.

Randomised Marking algorithm

• Consider the following algorithm:

• The algorithm proceeds in phases.

• At the beginning of a phase, all the pages are unmarked.

• Whenever a page is requested, it is marked.

• When a “fault” occurs, the algorithm replaces an
unmarked page, selecting one uniformly at random.

• When all pages in the cache are marked, and a request for
an unmarked page occurs, the phase ends.

Randomised Marking algorithm

• Theorem: The Randomised Marking algorithm has
competitive ratio 2Hk against oblivious adversaries.

The proof

The proof
• Assume without loss of generality that RMA makes a “fault” on the first

request.

The proof
• Assume without loss of generality that RMA makes a “fault” on the first

request.

• Consider phase i,

The proof
• Assume without loss of generality that RMA makes a “fault” on the first

request.

• Consider phase i,

• let mi be the number of “new” pages in the phase, i.e., pages which
were not requested in phase i-1.

The proof
• Assume without loss of generality that RMA makes a “fault” on the first

request.

• Consider phase i,

• let mi be the number of “new” pages in the phase, i.e., pages which
were not requested in phase i-1.

• call the remaining k-mi pages “old”.

The proof
• Assume without loss of generality that RMA makes a “fault” on the first

request.

• Consider phase i,

• let mi be the number of “new” pages in the phase, i.e., pages which
were not requested in phase i-1.

• call the remaining k-mi pages “old”.

• Every time a “new” page is requested, we have a “fault”.

The proof
• Assume without loss of generality that RMA makes a “fault” on the first

request.

• Consider phase i,

• let mi be the number of “new” pages in the phase, i.e., pages which
were not requested in phase i-1.

• call the remaining k-mi pages “old”.

• Every time a “new” page is requested, we have a “fault”.

• Every time an “old” page is requested, we may have “fault”.

The proof
• Assume without loss of generality that RMA makes a “fault” on the first

request.

• Consider phase i,

• let mi be the number of “new” pages in the phase, i.e., pages which
were not requested in phase i-1.

• call the remaining k-mi pages “old”.

• Every time a “new” page is requested, we have a “fault”.

• Every time an “old” page is requested, we may have “fault”.

• The “fault” happens if we replaced the “old” page with a “new” one.

Randomised Marking

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1 52

Randomised Marking

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

2

request

52

Randomised Marking

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

2

request

2

5

22

Randomised Marking

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

2

request

5

request

2

5

22

Randomised Marking

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

2

request

5

request

2

5

22

fault happens because

we substituted 5.

Randomised Marking

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1 52

Randomised Marking

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

2

request

52

Randomised Marking

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

2

request

5

22

Randomised Marking

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

2

request

5

request

5

22

Randomised Marking

5 3 4 6 1cache

1 2 3 4 5 6
main memory

n=k+1

2

request

5

request

5

22

fault does not happen 
because we did not  

substitute 5.

The proof
• Assume without loss of generality that RMA makes a “fault” on the first

request.

• Consider phase i,

• let mi be the number of “new” pages in the phase, i.e., pages which
were not requested in phase i-1.

• call the remaining k-mi pages “old”.

• Every time a “new” page is requested, we have a “fault”.

• Every time an “old” page is requested, we may have “fault”.

• The “fault” happens if we replaced the “old” page with a “new” one.

The proof
• Assume (wlog) that the mi requests for “new” pages

come first and the k-mi requests for “old” pages follow.

The proof
• Assume (wlog) that the mi requests for “new” pages

come first and the k-mi requests for “old” pages follow.

• What is the probability that on the first “old” page
request, we make a “fault”?

The proof
• Assume (wlog) that the mi requests for “new” pages

come first and the k-mi requests for “old” pages follow.

• What is the probability that on the first “old” page
request, we make a “fault”?

• It is the probability that the “old” page was replaced
on the first request, or the second request or, …, or
the the mi’th request.

The proof
• Assume (wlog) that the mi requests for “new” pages

come first and the k-mi requests for “old” pages follow.

• What is the probability that on the first “old” page
request, we make a “fault”?

• It is the probability that the “old” page was replaced
on the first request, or the second request or, …, or
the the mi’th request.

• This is mi/k.

The proof
• The “fault” happens if we replaced the “old” page with a

“new” one.

• What is the probability of that happening?

• Assume (wlog) that the mi requests for “new” pages come
first and the k-mi requests for “old” pages follow.

The proof
• The “fault” happens if we replaced the “old” page with a

“new” one.

• What is the probability of that happening?

• Assume (wlog) that the mi requests for “new” pages come
first and the k-mi requests for “old” pages follow.

• What is the probability that on the second “old” page
request, we make a “fault”, given that we made a “fault”
on the first “old” page request?

The proof
• The “fault” happens if we replaced the “old” page with a

“new” one.

• What is the probability of that happening?

• Assume (wlog) that the mi requests for “new” pages come
first and the k-mi requests for “old” pages follow.

• What is the probability that on the second “old” page
request, we make a “fault”, given that we made a “fault”
on the first “old” page request?

• This is mi/(k-1).

The proof

• The expected number of “faults” of our algorithm in phase
i is 
 
mi + mi/k + mi/(k-1) + … + mi/(k-(k-mi)+1 ≤ mi Hk

• Summing up over all the phases, we have that: 
 

𝔼[cost of RMA] ≤ Hk

n

∑
i=1

mi

Arguing about the OPT
• What is the number of “faults” that the optimal offline algorithm

makes?

• Let’s look at two consecutive phases i-1 and i.

• Let ni-1 and ni be the number of “faults” of OPT on those phases.

• By the definition of a phase, there are mi new pages in phases
i-1 and i.

• It holds that ni-1 + ni ≤ mi

• Summing up, we get: OPT ≥
1
2

n

∑
i=1

mi

Combining

𝔼[cost of RMA] ≤ Hk

n

∑
i=1

mi OPT ≥
1
2

n

∑
i=1

mi

The competitive ratio of RMA is 2Hk

