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Recap and plan



Recap and plan
• Last lecture: 

• Asymptotic Complexity.


• Searching in logarithmic time.


• Finding majority in an array.



Recap and plan
• Last lecture: 

• Asymptotic Complexity.


• Searching in logarithmic time.


• Finding majority in an array.

• This lecture: 

• Sorting with the MergeSort algorithm.


• Sorting with the QuickSort algorithm.


• The limitations of comparison-based sorting.
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• Given two sorted arrays A[1,…,n] and B[1,…,m], produce 
a sorted array C[1, …, n+m] containing all the elements of 
A and B.
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Procedure Merge
Procedure Merge(A, B) 
/* Recall that |A| = n and |B| = m */ 
 
Initialise array C of size n+m 

i=1, j=1


For k=1, … , m+n-1 
       
        If A[i] ≤ B[j] 
               C[k] = A[i] 
               i=i+1 
        Else 
               C[k] = B[j] 
               j=j+1 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Procedure Merge
Procedure Merge(A, B) 
/* Recall that |A| = n and |B| = m */ 
 
Initialise array C of size n+m 

i=1, j=1


For k=1, … , m+n-1 
       
        If A[i] ≤ B[j] 
               C[k] = A[i] 
               i=i+1 
        Else 
               C[k] = B[j] 
               j=j+1 
 

What is the running time of Merge?

How many times can an element

be compared in the worst case?

1, 3 ,5 , … , 2n-1
n, n+2 ,n+4 , … , 3n-2

Charging argument: The cost

of each iteration is “charged”


to the “winner” of the comparison.

O(m+n)



The Mergesort algorithm
• Divide and conquer algorithm.


• Split the array A[1,…,n] to two subarrays,  
A[1,…,n/2] and A[n/2+1, …, n]


• Sort each subarray using Mergesort. 

• Stop the recursion when the subarray contains only one 
element.


• Merge the sorted subarrays A[1,…,n/2] and A[n/2+1, …, n] 
using the Merge procedure.



Mergesort pseudocode

Algorithm Mergesort(A[i,…,j]) 
 
If i=j, return i 

q=(i+j)/2


Aleft=Mergesort(A[i,…,q]) 
Aright=Mergesort(A[q+1,…,n]) 
return Merge( Aleft , Aright )



Mergesort pseudocode

Algorithm Mergesort(A[i,…,j]) 
 
If i=j, return i 

q=(i+j)/2


Aleft=Mergesort(A[i,…,q]) 
Aright=Mergesort(A[q+1,…,n]) 
return Merge( Aleft , Aright )

Initial call: Mergesort(A[i,…,n])
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Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2 1 3

64 8 921 3

divide merge

1 2 3 4 6 8 9



Running time of Mergesort

• We could guess the running time and prove it using 
induction, as we saw in the previous lecture.


• Instead, we will try to “figure out” what the running time 
should be.


• We will use the method of recursion trees. 

• The running time is generally  
 
        T(n) = 2T(n/2) + f(n) 
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Running time of Mergesort
For simplicity, assume n = 2k

First iteration: Price of f(n) plus the cost of two subproblems of size n/2

f(n)

T(n/2) T(n/2)

Second iteration: Price of f(n/2) for each subproblem, plus the cost of two subproblems of size n/4

f(n)

f(n/2) f(n/2)

T(n/4)T(n/4)T(n/4)T(n/4)



Running time of Mergesort
• In total, there will be log n + 1 levels (input halved every 

time).


• Level 0 has cost C0(n) = f(n)


• Level 1 has cost C1(n) = 2f(n/2)


• Level 2 has cost C2(n) = 4f(n/4)


• Level j has cost Cj(n) = 2j f(n/2j)


• The last level has cost f(n)



Running time of Mergesort



Running time of Mergesort
• Recurrence relation:

T(n) =
log n−1

∑
j=1

Cj(n) + f(n)



Running time of Mergesort
• Recurrence relation:

T(n) =
log n−1

∑
j=1

Cj(n) + f(n)



Running time of Mergesort
• Recurrence relation:

T(n) =
log n−1

∑
j=1

Cj(n) + f(n)



Running time of Mergesort
• Recurrence relation:

• It also holds that f(n) ≤ dn for some large enough d.

T(n) =
log n−1

∑
j=1

Cj(n) + f(n)



Running time of Mergesort
• Recurrence relation:

• It also holds that f(n) ≤ dn for some large enough d.

• It also holds that Cj(n) = 2j f(n/2j) is at most dn for some large 
enough d.

T(n) =
log n−1

∑
j=1

Cj(n) + f(n)



Running time of Mergesort
• Recurrence relation:

• It also holds that f(n) ≤ dn for some large enough d.

• It also holds that Cj(n) = 2j f(n/2j) is at most dn for some large 
enough d.

• The overall running time is O(n log n). 
        

T(n) =
log n−1

∑
j=1

Cj(n) + f(n)
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The Quicksort algorithm
• Mergesort was based on the Merge procedure for joining the 

sorted sub-arrays into a sorted array.

• Quicksort first divides the array into two parts, such that the 
first part is “smaller” than the second part.

• This is done via the Partition procedure.

• Then it calls itself recursively.

• The two parts are joined, but this is trivial.



The Partition procedure
Procedure Partition(A[i,…,j]) 
 
    Choose a pivot element x of A 
 
    k = i-1 
 
    For h = i to j-1 do 
 
          If A[h] ≤ x  
                k = k + 1 
                Swap A[k] with A[h] 
 
         Swap A[k+1] with A[j]


Return k+1 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The Partition procedure
Procedure Partition(A[i,…,j]) 
 
    Choose a pivot element x of A 
 
    k = i-1 
 
    For h = i to j-1 do 
 
          If A[h] ≤ x  
                k = k + 1 
                Swap A[k] with A[h] 
 
         Swap A[k+1] with A[j]


Return k+1 
 

Correctness of Partition: 
(CLRS p. 171-173)

Running time O(n)
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Quicksort

Sort this using

Quicksort

Algorithm Quicksort(A[i,…,j]) 
 
            y = Partition(A[i,…,j]) 
                  Quicksort(A[i,…,y-1]) 
                  Quicksort(A[y+1,…,j])
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Running time of Quicksort

• Can it be as fast as Mergesort?

• Can it be slower than Mergesort?

• Can it be faster than Mergesort?

• This will depend on the pivot element!
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Running time of Quicksort

Mergesort: T(n) ≤ 2T(n/2) + cn

Quicksort: T(n) ≤ T(n1) + T(n2) + cn

When n1 = n2 , the running time is the same as Mergesort.

What is the worst possible running time?
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Running time of Quicksort

• Consider the case where we have an unbalanced 
partitioning in every step. 
 
n1 = n-1 
n2 = 0

• We get T(n) = T(n-1) + cn

• What is the solution to this recurrence?

• T(n) = Θ(n2)
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Running time of Quicksort

• Can it be as fast as Mergesort? Yes

• Can it be slower than Mergesort? Yes

• Can it be faster than Mergesort? ?? 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Lower bound for 
(comparison-based) sorting

• We will prove that no algorithm that is based on 
performing comparisons between the elements of the 
array can not run in time asymptotically faster than n log n 

• In other words, we will prove that for any such algorithm, 
the running time is Ω(n log n).



Lower bound for 
(comparison-based) sorting

Is a1 < a2 ?

Is a1 < a3 ? Is a3 < a3 ?

a2    a1    a3

Is a2 < a3 ?

a3    a2    a1 a2    a3    a1

Is a1 < a3 ? a1    a2    a3

a3    a1    a2 a1    a3    a2

No Yes
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Lower bound for 
(comparison-based) sorting

• We need as many comparisons as the depth of the tree 
(length of the longest path from the root to the leaves).

• The decision tree has n! leaves

• A leaf is a permutation of {a1, a2, … , an}

• Every possible permutation can appear as a leaf, since 
every possible permutation is a valid output.
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Lower bound for 
(comparison-based) sorting
• Fact: Every binary tree of depth d has at most 2d leaves.

• Therefore the minimum number of comparisons is log(n!)

• We claim that log(n!) = Ω(n log n)

• Why is that the case? Ideas?

log(n!) = log (1 * 2 * … * n) = log(1) + log(2) + … + log(n)  
                                          ≥ log(n/2) + … + log(n) (half) 
                                          ≥ log(n/2) + … + log(n/2) 
                                          = (n/2) * log(n/2)
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Proving lower bounds
• Consider some criterion A that we would like to minimise  (could 

be running time, memory, etc).

• We want to find the best algorithm (asymptotically) for criterion A.

• The best possible achievable performance is Θ(g(n)) for some 
function g(n).

• Upper bound: We construct an algorithm that has performance 
O(g(n)) for criterion A.

• Lower bound: We show that for any algorithm, the performance 
for criterion A is Ω(g(n)).
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Proving lower bounds

• The best possible achievable performance is Θ(g(n)) for 
some function g(n).

• How do we find this function?

• No easy answer!

• We try to design algorithms which are as good as 
possible and when we feel that we can not improve 
more, we try to prove the matching lower bound.
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Proving lower bounds
• The best possible achievable performance is Θ(g(n)) for 

some function g(n).

• We want to find the best algorithm (asymptotically) for 
criterion A.

• This is only true if g(n) is not a constant function.

• This will be more relevant when we talk about 
approximation algorithms and online algorithms.

• Stay tuned!


