
Advanced Algorithmic Techniques
(COMP523)

Recursion and Divide and Conquer Techniques #2

Recap and plan

Recap and plan
• Last lecture:

• Asymptotic Complexity.

• Searching in logarithmic time.

• Finding majority in an array.

Recap and plan
• Last lecture:

• Asymptotic Complexity.

• Searching in logarithmic time.

• Finding majority in an array.

• This lecture:

• Sorting with the MergeSort algorithm.

• Sorting with the QuickSort algorithm.

• The limitations of comparison-based sorting.

Sorting with Mergesort

Merging two sorted arrays

• Given two sorted arrays A[1,…,n] and B[1,…,m], produce
a sorted array C[1, …, n+m] containing all the elements of
A and B.

Merging two sorted arrays

• Given two sorted arrays A[1,…,n] and B[1,…,m], produce
a sorted array C[1, …, n+m] containing all the elements of
A and B.

5 7 9 12

Merging two sorted arrays

• Given two sorted arrays A[1,…,n] and B[1,…,m], produce
a sorted array C[1, …, n+m] containing all the elements of
A and B.

5 7 9 12 3 10 11

Merging two sorted arrays

• Given two sorted arrays A[1,…,n] and B[1,…,m], produce
a sorted array C[1, …, n+m] containing all the elements of
A and B.

5 7 9 12 3 10 11

3 5 7 9 10 11 12

How would you do this?

How would you do this?

How would you do this?

How would you do this?

How would you do this?

How would you do this?

How would you do this?

How would you do this?

How would you do this?

How would you do this?

How would you do this?

How would you do this?

How would you do this?

How would you do this?

How would you do this?

Procedure Merge
Procedure Merge(A, B) 
/* Recall that |A| = n and |B| = m */ 
 
Initialise array C of size n+m

i=1, j=1

For k=1, … , m+n-1 
  
 If A[i] ≤ B[j] 
 C[k] = A[i] 
 i=i+1 
 Else 
 C[k] = B[j] 
 j=j+1 

Procedure Merge
Procedure Merge(A, B) 
/* Recall that |A| = n and |B| = m */ 
 
Initialise array C of size n+m

i=1, j=1

For k=1, … , m+n-1 
  
 If A[i] ≤ B[j] 
 C[k] = A[i] 
 i=i+1 
 Else 
 C[k] = B[j] 
 j=j+1 

Procedure Merge
Procedure Merge(A, B) 
/* Recall that |A| = n and |B| = m */ 
 
Initialise array C of size n+m

i=1, j=1

For k=1, … , m+n-1 
  
 If A[i] ≤ B[j] 
 C[k] = A[i] 
 i=i+1 
 Else 
 C[k] = B[j] 
 j=j+1 

What is the running time of Merge?

Procedure Merge
Procedure Merge(A, B) 
/* Recall that |A| = n and |B| = m */ 
 
Initialise array C of size n+m

i=1, j=1

For k=1, … , m+n-1 
  
 If A[i] ≤ B[j] 
 C[k] = A[i] 
 i=i+1 
 Else 
 C[k] = B[j] 
 j=j+1 

What is the running time of Merge?

How many times can an element

be compared in the worst case?

Procedure Merge
Procedure Merge(A, B) 
/* Recall that |A| = n and |B| = m */ 
 
Initialise array C of size n+m

i=1, j=1

For k=1, … , m+n-1 
  
 If A[i] ≤ B[j] 
 C[k] = A[i] 
 i=i+1 
 Else 
 C[k] = B[j] 
 j=j+1 

What is the running time of Merge?

How many times can an element

be compared in the worst case?

1, 3 ,5 , … , 2n-1
n, n+2 ,n+4 , … , 3n-2

Procedure Merge
Procedure Merge(A, B) 
/* Recall that |A| = n and |B| = m */ 
 
Initialise array C of size n+m

i=1, j=1

For k=1, … , m+n-1 
  
 If A[i] ≤ B[j] 
 C[k] = A[i] 
 i=i+1 
 Else 
 C[k] = B[j] 
 j=j+1 

What is the running time of Merge?

How many times can an element

be compared in the worst case?

1, 3 ,5 , … , 2n-1
n, n+2 ,n+4 , … , 3n-2

Charging argument: The cost

of each iteration is “charged”

to the “winner” of the comparison.

Procedure Merge
Procedure Merge(A, B) 
/* Recall that |A| = n and |B| = m */ 
 
Initialise array C of size n+m

i=1, j=1

For k=1, … , m+n-1 
  
 If A[i] ≤ B[j] 
 C[k] = A[i] 
 i=i+1 
 Else 
 C[k] = B[j] 
 j=j+1 

What is the running time of Merge?

How many times can an element

be compared in the worst case?

1, 3 ,5 , … , 2n-1
n, n+2 ,n+4 , … , 3n-2

Charging argument: The cost

of each iteration is “charged”

to the “winner” of the comparison.

O(m+n)

The Mergesort algorithm
• Divide and conquer algorithm.

• Split the array A[1,…,n] to two subarrays,  
A[1,…,n/2] and A[n/2+1, …, n]

• Sort each subarray using Mergesort.

• Stop the recursion when the subarray contains only one
element.

• Merge the sorted subarrays A[1,…,n/2] and A[n/2+1, …, n]
using the Merge procedure.

Mergesort pseudocode

Algorithm Mergesort(A[i,…,j]) 
 
If i=j, return i

q=(i+j)/2

Aleft=Mergesort(A[i,…,q]) 
Aright=Mergesort(A[q+1,…,n]) 
return Merge(Aleft , Aright)

Mergesort pseudocode

Algorithm Mergesort(A[i,…,j]) 
 
If i=j, return i

q=(i+j)/2

Aleft=Mergesort(A[i,…,q]) 
Aright=Mergesort(A[q+1,…,n]) 
return Merge(Aleft , Aright)

Initial call: Mergesort(A[i,…,n])

Mergesort example

6 4 8 9 2 1 3

Mergesort example

6 4 8 9 2 1 3

divide

Mergesort example
6 4 8 9 2 1 3

divide

Mergesort example
6 4 8 9 2 1 3

6

divide

Mergesort example
6 4 8 9 2 1 3

6 4 8

divide

Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2

divide

Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2 1 3

divide

Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2 1 3

6

divide

Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2 1 3

6 4

divide

Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2 1 3

6 4 8

divide

Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2 1 3

6 4 8 9

divide

Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2 1 3

6 4 8 9 2

divide

Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2 1 3

6 4 8 9 2 1

divide

Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2 1 3

6 4 8 9 2 1 3

divide

Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2 1 3

6 4 8 9 2 1 3

divide merge

Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2 1 3

6 4 8 92 1 3

divide merge

Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2 1 3

64 8 921 3

divide merge

Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2 1 3

64 8 921 3

divide merge

1 2 3 4 6 8 9

Running time of Mergesort

• We could guess the running time and prove it using
induction, as we saw in the previous lecture.

• Instead, we will try to “figure out” what the running time
should be.

• We will use the method of recursion trees.

• The running time is generally  
 
 T(n) = 2T(n/2) + f(n)

Running time of Mergesort

Running time of Mergesort
For simplicity, assume n = 2k

Running time of Mergesort
For simplicity, assume n = 2k

First iteration: Price of f(n) plus the cost of two subproblems of size n/2

f(n)

T(n/2) T(n/2)

Running time of Mergesort
For simplicity, assume n = 2k

First iteration: Price of f(n) plus the cost of two subproblems of size n/2

f(n)

T(n/2) T(n/2)

Second iteration: Price of f(n/2) for each subproblem, plus the cost of two subproblems of size n/4

f(n)

f(n/2) f(n/2)

T(n/4)T(n/4)T(n/4)T(n/4)

Running time of Mergesort
• In total, there will be log n + 1 levels (input halved every

time).

• Level 0 has cost C0(n) = f(n)

• Level 1 has cost C1(n) = 2f(n/2)

• Level 2 has cost C2(n) = 4f(n/4)

• Level j has cost Cj(n) = 2j f(n/2j)

• The last level has cost f(n)

Running time of Mergesort

Running time of Mergesort
• Recurrence relation:

T(n) =
log n−1

∑
j=1

Cj(n) + f(n)

Running time of Mergesort
• Recurrence relation:

T(n) =
log n−1

∑
j=1

Cj(n) + f(n)

Running time of Mergesort
• Recurrence relation:

T(n) =
log n−1

∑
j=1

Cj(n) + f(n)

Running time of Mergesort
• Recurrence relation:

• It also holds that f(n) ≤ dn for some large enough d.

T(n) =
log n−1

∑
j=1

Cj(n) + f(n)

Running time of Mergesort
• Recurrence relation:

• It also holds that f(n) ≤ dn for some large enough d.

• It also holds that Cj(n) = 2j f(n/2j) is at most dn for some large
enough d.

T(n) =
log n−1

∑
j=1

Cj(n) + f(n)

Running time of Mergesort
• Recurrence relation:

• It also holds that f(n) ≤ dn for some large enough d.

• It also holds that Cj(n) = 2j f(n/2j) is at most dn for some large
enough d.

• The overall running time is O(n log n). 

T(n) =
log n−1

∑
j=1

Cj(n) + f(n)

Sorting with Quicksort

The Quicksort algorithm

The Quicksort algorithm
• Mergesort was based on the Merge procedure for joining the

sorted sub-arrays into a sorted array.

The Quicksort algorithm
• Mergesort was based on the Merge procedure for joining the

sorted sub-arrays into a sorted array.

• Quicksort first divides the array into two parts, such that the
first part is “smaller” than the second part.

The Quicksort algorithm
• Mergesort was based on the Merge procedure for joining the

sorted sub-arrays into a sorted array.

• Quicksort first divides the array into two parts, such that the
first part is “smaller” than the second part.

• This is done via the Partition procedure.

The Quicksort algorithm
• Mergesort was based on the Merge procedure for joining the

sorted sub-arrays into a sorted array.

• Quicksort first divides the array into two parts, such that the
first part is “smaller” than the second part.

• This is done via the Partition procedure.

• Then it calls itself recursively.

The Quicksort algorithm
• Mergesort was based on the Merge procedure for joining the

sorted sub-arrays into a sorted array.

• Quicksort first divides the array into two parts, such that the
first part is “smaller” than the second part.

• This is done via the Partition procedure.

• Then it calls itself recursively.

• The two parts are joined, but this is trivial.

The Partition procedure
Procedure Partition(A[i,…,j]) 
 
 Choose a pivot element x of A 
 
 k = i-1 
 
 For h = i to j-1 do 
 
 If A[h] ≤ x  
 k = k + 1 
 Swap A[k] with A[h] 
 
 Swap A[k+1] with A[j]

Return k+1 
 

The Partition procedure
Procedure Partition(A[i,…,j]) 
 
 Choose a pivot element x of A 
 
 k = i-1 
 
 For h = i to j-1 do 
 
 If A[h] ≤ x  
 k = k + 1 
 Swap A[k] with A[h] 
 
 Swap A[k+1] with A[j]

Return k+1 
 

Correctness of Partition: 
(CLRS p. 171-173)

The Partition procedure
Procedure Partition(A[i,…,j]) 
 
 Choose a pivot element x of A 
 
 k = i-1 
 
 For h = i to j-1 do 
 
 If A[h] ≤ x  
 k = k + 1 
 Swap A[k] with A[h] 
 
 Swap A[k+1] with A[j]

Return k+1 
 

Correctness of Partition: 
(CLRS p. 171-173)

Running time O(n)

The Quicksort algorithm

2 8 7 1 3 5 4

The Quicksort algorithm

2 8 7 1 3 5 4

The Quicksort algorithm

2 8 7 1 3 5 4

The Quicksort algorithm

2 8 7 1 3 5 4

The Quicksort algorithm

2 8 7 1 3 5 4

The Quicksort algorithm

2 8 7 1 3 5 4

The Quicksort algorithm

2 871 3 5 4

The Quicksort algorithm

2 871 3 5 4

The Quicksort algorithm

2 8 71 3 5 4

The Quicksort algorithm

2 8 71 3 5 4

The Quicksort algorithm

2 871 3 54

The Quicksort algorithm

2 871 3 54

Sort this using

Quicksort

The Quicksort algorithm

2 871 3 54

Sort this using

Quicksort

Sort this using

Quicksort

The Quicksort algorithm

2 871 3 54

Sort this using

Quicksort

Sort this using

Quicksort

Algorithm Quicksort(A[i,…,j]) 
 
 y = Partition(A[i,…,j]) 
 Quicksort(A[i,…,y-1]) 
 Quicksort(A[y+1,…,j])

Running time of Quicksort

• Can it be as fast as Mergesort?

• Can it be slower than Mergesort?

• Can it be faster than Mergesort?

Running time of Quicksort

• Can it be as fast as Mergesort?

• Can it be slower than Mergesort?

• Can it be faster than Mergesort?

Running time of Quicksort

• Can it be as fast as Mergesort?

• Can it be slower than Mergesort?

• Can it be faster than Mergesort?

• This will depend on the pivot element!

Running time of Quicksort

Running time of Quicksort

Mergesort: T(n) ≤ 2T(n/2) + cn

Running time of Quicksort

Mergesort: T(n) ≤ 2T(n/2) + cn

Quicksort: T(n) ≤ T(n1) + T(n2) + cn

Running time of Quicksort

Mergesort: T(n) ≤ 2T(n/2) + cn

Quicksort: T(n) ≤ T(n1) + T(n2) + cn

When n1 = n2 , the running time is the same as Mergesort.

Running time of Quicksort

Mergesort: T(n) ≤ 2T(n/2) + cn

Quicksort: T(n) ≤ T(n1) + T(n2) + cn

When n1 = n2 , the running time is the same as Mergesort.

What is the worst possible running time?

Running time of Quicksort

Running time of Quicksort

• Consider the case where we have an unbalanced
partitioning in every step. 
 
n1 = n-1 
n2 = 0

Running time of Quicksort

• Consider the case where we have an unbalanced
partitioning in every step. 
 
n1 = n-1 
n2 = 0

• We get T(n) = T(n-1) + cn

Running time of Quicksort

• Consider the case where we have an unbalanced
partitioning in every step. 
 
n1 = n-1 
n2 = 0

• We get T(n) = T(n-1) + cn

• What is the solution to this recurrence?

Running time of Quicksort

• Consider the case where we have an unbalanced
partitioning in every step. 
 
n1 = n-1 
n2 = 0

• We get T(n) = T(n-1) + cn

• What is the solution to this recurrence?

• T(n) = Θ(n2)

Running time of Quicksort

Running time of Quicksort

• Can it be as fast as Mergesort? Yes

Running time of Quicksort

• Can it be as fast as Mergesort? Yes

• Can it be slower than Mergesort? Yes

Running time of Quicksort

• Can it be as fast as Mergesort? Yes

• Can it be slower than Mergesort? Yes

• Can it be faster than Mergesort? ?? 
 
 

Lower bound for
(comparison-based) sorting

Lower bound for
(comparison-based) sorting

• We will prove that no algorithm that is based on
performing comparisons between the elements of the
array can not run in time asymptotically faster than n log n

Lower bound for
(comparison-based) sorting

• We will prove that no algorithm that is based on
performing comparisons between the elements of the
array can not run in time asymptotically faster than n log n

• In other words, we will prove that for any such algorithm,
the running time is Ω(n log n).

Lower bound for
(comparison-based) sorting

Is a1 < a2 ?

Is a1 < a3 ? Is a3 < a3 ?

a2 a1 a3

Is a2 < a3 ?

a3 a2 a1 a2 a3 a1

Is a1 < a3 ? a1 a2 a3

a3 a1 a2 a1 a3 a2

No Yes

Lower bound for
(comparison-based) sorting

Lower bound for
(comparison-based) sorting

• We need as many comparisons as the depth of the tree
(length of the longest path from the root to the leaves).

Lower bound for
(comparison-based) sorting

• We need as many comparisons as the depth of the tree
(length of the longest path from the root to the leaves).

• The decision tree has n! leaves

Lower bound for
(comparison-based) sorting

• We need as many comparisons as the depth of the tree
(length of the longest path from the root to the leaves).

• The decision tree has n! leaves

• A leaf is a permutation of {a1, a2, … , an}

Lower bound for
(comparison-based) sorting

• We need as many comparisons as the depth of the tree
(length of the longest path from the root to the leaves).

• The decision tree has n! leaves

• A leaf is a permutation of {a1, a2, … , an}

• Every possible permutation can appear as a leaf, since
every possible permutation is a valid output.

Lower bound for
(comparison-based) sorting

Lower bound for
(comparison-based) sorting
• Fact: Every binary tree of depth d has at most 2d leaves.

Lower bound for
(comparison-based) sorting
• Fact: Every binary tree of depth d has at most 2d leaves.

• Therefore the minimum number of comparisons is log(n!)

Lower bound for
(comparison-based) sorting
• Fact: Every binary tree of depth d has at most 2d leaves.

• Therefore the minimum number of comparisons is log(n!)

• We claim that log(n!) = Ω(n log n)

Lower bound for
(comparison-based) sorting
• Fact: Every binary tree of depth d has at most 2d leaves.

• Therefore the minimum number of comparisons is log(n!)

• We claim that log(n!) = Ω(n log n)

• Why is that the case? Ideas?

Lower bound for
(comparison-based) sorting
• Fact: Every binary tree of depth d has at most 2d leaves.

• Therefore the minimum number of comparisons is log(n!)

• We claim that log(n!) = Ω(n log n)

• Why is that the case? Ideas?

log(n!) = log (1 * 2 * … * n) = log(1) + log(2) + … + log(n)  
 ≥ log(n/2) + … + log(n) (half) 
 ≥ log(n/2) + … + log(n/2) 
 = (n/2) * log(n/2)

Proving lower bounds

Proving lower bounds
• Consider some criterion A that we would like to minimise (could

be running time, memory, etc).

Proving lower bounds
• Consider some criterion A that we would like to minimise (could

be running time, memory, etc).

• We want to find the best algorithm (asymptotically) for criterion A.

Proving lower bounds
• Consider some criterion A that we would like to minimise (could

be running time, memory, etc).

• We want to find the best algorithm (asymptotically) for criterion A.

• The best possible achievable performance is Θ(g(n)) for some
function g(n).

Proving lower bounds
• Consider some criterion A that we would like to minimise (could

be running time, memory, etc).

• We want to find the best algorithm (asymptotically) for criterion A.

• The best possible achievable performance is Θ(g(n)) for some
function g(n).

• Upper bound: We construct an algorithm that has performance
O(g(n)) for criterion A.

Proving lower bounds
• Consider some criterion A that we would like to minimise (could

be running time, memory, etc).

• We want to find the best algorithm (asymptotically) for criterion A.

• The best possible achievable performance is Θ(g(n)) for some
function g(n).

• Upper bound: We construct an algorithm that has performance
O(g(n)) for criterion A.

• Lower bound: We show that for any algorithm, the performance
for criterion A is Ω(g(n)).

Proving lower bounds

Proving lower bounds

• The best possible achievable performance is Θ(g(n)) for
some function g(n).

Proving lower bounds

• The best possible achievable performance is Θ(g(n)) for
some function g(n).

• How do we find this function?

Proving lower bounds

• The best possible achievable performance is Θ(g(n)) for
some function g(n).

• How do we find this function?

• No easy answer!

Proving lower bounds

• The best possible achievable performance is Θ(g(n)) for
some function g(n).

• How do we find this function?

• No easy answer!

• We try to design algorithms which are as good as
possible and when we feel that we can not improve
more, we try to prove the matching lower bound.

Proving lower bounds

Proving lower bounds
• The best possible achievable performance is Θ(g(n)) for

some function g(n).

Proving lower bounds
• The best possible achievable performance is Θ(g(n)) for

some function g(n).

• We want to find the best algorithm (asymptotically) for
criterion A.

Proving lower bounds
• The best possible achievable performance is Θ(g(n)) for

some function g(n).

• We want to find the best algorithm (asymptotically) for
criterion A.

• This is only true if g(n) is not a constant function.

Proving lower bounds
• The best possible achievable performance is Θ(g(n)) for

some function g(n).

• We want to find the best algorithm (asymptotically) for
criterion A.

• This is only true if g(n) is not a constant function.

• This will be more relevant when we talk about
approximation algorithms and online algorithms.

Proving lower bounds
• The best possible achievable performance is Θ(g(n)) for

some function g(n).

• We want to find the best algorithm (asymptotically) for
criterion A.

• This is only true if g(n) is not a constant function.

• This will be more relevant when we talk about
approximation algorithms and online algorithms.

• Stay tuned!

