
Advanced Algorithmic Techniques  
(COMP523)
Module Recap



Lectures 1-5

• We designed and analysed algorithms for searching, 
sorting, majority, selection, closest pair of points, integer 
multiplication. 


• Emphasis on: correctness, running time, memory.


• The design paradigm here was divide-and-conquer.



Lectures 6-8

• We designed and analysed graph algorithms for graph 
traversal (DFS, BFS), bipartiteness, strong connectivity, 
topological ordering, strongly connected components.


• Emphasis on: correctness, running time.


• Additional emphasis on: graph concepts, which were 
used in other parts of the module.


• The design paradigm here was divide-and-conquer.



Lectures 9-11

• We designed and analysed greedy algorithms for interval 
scheduling, minimum spanning trees, clustering. 

• Emphasis on: correctness. 

• Additional emphasis on: the greedy paradigm was used in 
other parts of the module. 

• The design paradigm here was greedy.



Lectures 12-13

• We designed and analysed dynamic programming 
algorithms for weighted interval scheduling, subset sum 
and knapsack. 

• Emphasis on: correctness, running time (polynomial time 
vs pseudo-polynomial time). 

• The design paradigm here was dynamic programming.



Lectures 14-16

• We designed and analysed network flow algorithms for 
maximum flow and minimum cut. 

• Emphasis on: correctness, running time,  

• Additional emphasis on: modelling with flows, how to use 
flow algorithms to solve other problems. 

• The design paradigm here was greedy.



Lectures 17-18
• We discussed the notions of NP-hardness and NP-

completeness and their implications for the polynomial-time 
solvability of problems.


• We discussed the concept of a reduction, which is used to 
show NP-hardness.


• We saw a catalogue of NP-complete problems.


• Emphasis on: The implications of NP-completeness, the 
decision vs optimisation versions of problems and the fact 
that we dealt with mostly NP-complete problems in the 
remainder of the module.



Lecture 19
• We introduced the concept of linear programs and integer 

linear programs. 


• We introduced the notion of duality.


• Emphasis on: Modelling problems as LPs and ILPs to 
solve them either exactly or approximately (relevant to the 
following lectures). We also later used duality to design 
approximation algorithms for some problems. 


• Additional emphasis on: Using total unimodularity to show 
that some LPs (e.g., flows) have integer solutions.



Lectures 20-23
• We designed and analysed various approximation algorithms for 

NP-hard problems.


• e.g., load balancing, vertex cover, 0/1-knapsack.


• Emphasis on: 


• Notions: Approximation ratio, inapproximability, integrality gap. 

• Algorithms: How to use the design techniques to come up with 
approximation algorithms and how to analyse their performance. 

• Design paradigms: greedy, pricing method (primal-dual), LP-
relaxation and rounding, dynamic programming on rounded inputs.



Lectures 24 - 27
• We designed and analysed randomised algorithms for various 

problems e.g., minimum cuts, MAX-SAT and MAX-CUT.


• Emphasis on: 


• Working with probabilities (random variables, expectations, 
analysis). 

• Success Amplification. 

• Randomisation as a tool for approximation algorithms. 

• The design paradigms here were greedy and LP-relaxation and 
rounding.



Lectures 28 - 29 

• We designed and analysed online algorithms for online 
load balancing and paging.


• Emphasis on:


• Notions: Competitive Ratio 

• Algorithms: Analysis for algorithms and impossibilities.


