Advanced Algorithmic Techniques (COMP523)

Recursion and Divide and Conquer Techniques \#3

Recap and plan

Recap and plan

- Last lecture:
- Sorting with the MergeSort algorithm.
- Sorting with the QuickSort algorithm.
- The limitations of comparison-based sorting.

Recap and plan

- Last lecture:
- Sorting with the MergeSort algorithm.
- Sorting with the QuickSort algorithm.
- The limitations of comparison-based sorting.
- This lecture:
- Finding the closest pair of points.
- Integer Multiplication.

Quick Recap

- Searching:

- LinearSearch: Time O(n), (Aux.) Memory O(1)
- BinarySearch: Time O(log n), (Aux.) Memory O(log n)
- Sorting:
- InsertionSort: Time O(n²), (Aux.) Memory O(1)
- MergeSort: Time O(n) log n, (Aux.) Memory ?
- QuickSort: Time O(n²), (Aux.) Memory ?
- Majority:
- General array: Time O(n), (Aux.) Memory ?
- Sorted array: Time O(log n), (Aux.) Memory?

Finding the closest pair of points

Finding the closest pair of points

n points on the plane
Points are given as $p_{i}=\left(x_{i}, y_{i}\right)$
Find two points with the smallest distance

Finding the closest pair of points

n points on the plane
Points are given as $p_{i}=\left(x_{i}, y_{i}\right)$
Find two points with the smallest distance

Naive solution

Naive solution

- For every point, find the distance to each other point.

Naive solution

- For every point, find the distance to each other point.
- Output two points that have the smallest distance.

Naive solution

- For every point, find the distance to each other point.
- Output two points that have the smallest distance.
- Running time?

Naive solution

- For every point, find the distance to each other point.
- Output two points that have the smallest distance.
- Running time?
- $\Omega\left(\mathrm{n}^{2}\right)$

Naive solution

- For every point, find the distance to each other point.
- Output two points that have the smallest distance.
- Running time?
- $\Omega\left(\mathrm{n}^{2}\right)$
- Can we do better?

Warmup: Points on the line

Warmup: Points on the line

Warmup: Points on the line

Points are now $\mathbf{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$

Warmup: Points on the line

Points are now $\mathbf{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$
Sort the points $x_{1}, x_{2}, \ldots, x_{n}$

Warmup: Points on the line

Points are now $X_{1}, x_{2}, \ldots, x_{n}$
Sort the points $x_{1}, x_{2}, \ldots, x_{n}$ Consider only distances between consecutive points

Warmup: Points on the line

Points are now $\mathrm{X}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$
Sort the points $x_{1}, x_{2}, \ldots, x_{n}$ Consider only distances between consecutive points

What is the worst-case running time?

Warmup: Points on the line

Points are now $\mathbf{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$
Sort the points $x_{1}, x_{2}, \ldots, x_{n}$
Consider only distances between consecutive points

What is the worst-case running time?

Can be done in O(n $\log \mathrm{n})$

Finding the closest pair of points

n points on the plane
Find two points with the smallest distance

Finding the closest pair of points

Finding the closest pair of points

n points on the plane
Find two points with the smallest distance

Finding the closest pair of points

n points on the plane
Find two points with the smallest distance

Finding the closest pair of points

Finding the closest pair of points

Finding the closest pair of points

Preprocessing:

Finding the closest pair of points

Preprocessing:

- Maintain two arrays H and V for the horizontal and vertical coordinates of the points respectively.

Finding the closest pair of points

Preprocessing:

- Maintain two arrays H and V for the horizontal and vertical coordinates of the points respectively.
- To populate H and V , simply run through the given points $p_{1}=\left(x_{1}, y_{1}\right), p_{2}=\left(x_{2}, y_{2}\right), \ldots, p_{n}=\left(x_{n}, y_{n}\right)$ and put $x_{1}, x_{2}, \ldots, x_{n}$ into H and $y_{1}, y_{2}, \ldots, y_{n}$ into V.

Finding the closest pair of points

Preprocessing:

- Maintain two arrays H and V for the horizontal and vertical coordinates of the points respectively.
- To populate H and V , simply run through the given points $p_{1}=\left(x_{1}, y_{1}\right), p_{2}=\left(x_{2}, y_{2}\right), \ldots, p_{n}=\left(x_{n}, y_{n}\right)$ and put $x_{1}, x_{2}, \ldots, x_{n}$ into H and $y_{1}, y_{2}, \ldots, y_{n}$ into V.
- Sort the points in H and in V , using some sorting algorithm.

Finding the closest pair of points

Finding the closest pair of points

Main algorithm:

Finding the closest pair of points

Main algorithm:

- Partition array H into two halves H_{1} and H_{2}, according to the sorted order.

Finding the closest pair of points

Finding the closest pair of points

Finding the closest pair of points

Finding the closest pair of points

Main algorithm:

Finding the closest pair of points

Main algorithm:

- Partition array H into two halves H_{1} and H_{2}, according to the sorted order.

Finding the closest pair of points

Main algorithm:

- Partition array H into two halves H_{1} and H_{2}, according to the sorted order.
- For each element in H_{i}, put the element in V_{i}, for $\dot{i}=1,2$.

Finding the closest pair of points

Main algorithm:

- Partition array H into two halves H_{1} and H_{2}, according to the sorted order.
- For each element in H_{i}, put the element in V_{i}, for $i=1,2$.
- Call the algorithm recursively on the two halves (with access to the sub-arrays H_{i} and V_{i}, for $i=1,2$.

Finding the closest pair of points

Main algorithm:

- Partition array H into two halves H_{1} and H_{2}, according to the sorted order.
- For each element in H_{i}, put the element in V_{i}, for $i=1,2$.
- Call the algorithm recursively on the two halves (with access to the sub-arrays H_{i} and V_{i}, for $i=1,2$.
- Let $\left(l_{1}, l_{2}\right)$ and $(r 1, r 2)$ be the set of points returned by the runs of the algorithm on the two halves.

Finding the closest pair of points

Main algorithm:

- Partition array H into two halves H_{1} and H_{2}, according to the sorted order.
- For each element in H_{i}, put the element in V_{i}, for $i=1,2$.
- Call the algorithm recursively on the two halves (with access to the sub-arrays H_{i} and V_{i}, for $i=1,2$.
- Let $\left(l_{1}, l_{2}\right)$ and $(r 1, r 2)$ be the set of points returned by the runs of the algorithm on the two halves.
- We haven't really developed that part yet!

ClosestPair Pseudocode

Algorithm ClosestPair($\mathrm{p}_{1}, \ldots, \mathrm{p}_{n}$)
Construct arrays H and V
$\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)=\operatorname{ClosestPairRec}(\mathrm{H}, \mathrm{V})$

Procedure ClosestPairRec(H, V)

Construct $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{~V}_{1}, \mathrm{~V}_{2}$
$\left(\mathrm{I}_{1}, \mathrm{I}_{2}\right)=$ ClosestPairRec $\left(\mathrm{H}_{1}, \mathrm{~V}_{1}\right)$
$\left(r_{1}, r_{2}\right)=$ ClosestPairRec $\left(H_{2}, V_{2}\right)$

ClosestPair Pseudocode

Algorithm ClosestPair($\mathrm{p}_{1}, \ldots, \mathrm{p}_{n}$)
Construct arrays H and V
$\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)=\operatorname{ClosestPairRec}(\mathrm{H}, \mathrm{V})$

Procedure ClosestPairRec(H, V)
If $|\mathrm{H}|=|\mathrm{V}| \leq 3$
Check all pairwise distances
Construct $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{~V}_{1}, \mathrm{~V}_{2}$
$\left(\mathrm{l}_{1}, \mathrm{I}_{2}\right)=$ ClosestPairRec $\left(\mathrm{H}_{1}, \mathrm{~V}_{1}\right)$
$\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right)=$ ClosestPairRec $\left(\mathrm{H}_{2}, \mathrm{~V}_{2}\right)$

Divide and Conquer

Divide and Conquer

- We have successfully divided the problem into smaller parts.

Divide and Conquer

- We have successfully divided the problem into smaller parts.
- How do we combine these parts to get a solution to the original problem?

Divide and Conquer

- We have successfully divided the problem into smaller parts.
- How do we combine these parts to get a solution to the original problem?
- What might be the problem here?

Divide and Conquer

- We have successfully divided the problem into smaller parts.
- How do we combine these parts to get a solution to the original problem?
- What might be the problem here?
- What if the smallest distance is between points in $\left(\mathrm{H}_{1}, \mathrm{~V}_{1}\right)$ and $\left(\mathrm{H}_{2}, \mathrm{~V}_{2}\right)$?

Finding the closest pair of points

Finding the closest pair of points

Combining the solutions

- Let δ be the $\min \left(\mathrm{d}\left(\mathrm{l}_{1}, \mathrm{I}_{2}\right), \mathrm{d}\left(\mathrm{r}_{1}, r_{2}\right)\right)$ be the minimum distance among the two solutions provided.
- Draw a vertical line L over the rightmost point of the set H_{1}.

Finding the closest pair of points

Finding the closest pair of points

Combining the solutions

- Let δ be the $\min \left(d\left(l_{1}, l_{2}\right), d\left(r_{1}, r_{2}\right)\right)$ be the minimum distance among the two solutions provided.
- Draw a vertical line L over the rightmost point of the set H_{1}.
- This basically means that the separating line is a "tight" as possible.
- Let S be the set of points of distance within δ of L.

Finding the closest pair of points

Finding the closest pair of points

Combining the solutions

- Let δ be the $\min \left(d\left(l_{1}, l_{2}\right), d\left(r_{1}, r_{2}\right)\right)$ be the minimum distance among the two solutions provided.
- Draw a vertical line L over the rightmost point of the set H_{1}.
- This basically means that the separating line is a "tight" as possible.
- Let S be the set of points of distance within δ of L.

Is it safe to only consider the points in S ?

Is it safe to only consider the points in S ?

Is it safe to only consider the points in S ?

Is it safe to only consider the points in $S ?$

Constructing the set S

Array V

Constructing the set S

Array V

Constructing the set S

Array V

Do we get more than a set?

Constructing the set S

Array

Do we get more than a set?
We actually get a sorted list!
(sorted in the y-coordinate)
Call this S_{v}.

Finding the closest pair of points

Finding the closest pair of points

Zooming in

Partitioning the square

Claims

- Claim 1: In each box, there can only be a single point.

Partitioning the square

Partitioning the square

Partitioning the square

Partitioning the square

Claims

- Claim 1: In each box, there can only be a single point.
- Claim 2: If two points p_{1} and p_{2} are such that $d\left(p_{1}, p_{2}\right)<\delta$, then $\mathrm{S}_{\mathrm{v}}\left[\mathrm{p}_{1 \mathrm{y}}\right]-\mathrm{S}_{\mathrm{v}}\left[\mathrm{p}_{2 \mathrm{y}}\right] \leq 15$
- In other words, the two points are within 15 positions of each other in the sorted array S_{v}.

Claims

Claims

- Claim 2: If two points p_{1} and p_{2} are such that $d\left(p_{1}, p_{2}\right)<\delta$, then $\mathrm{S}_{\mathrm{v}}\left[\mathrm{p}_{1 \mathrm{y}}\right]-\mathrm{S}_{\mathrm{v}}\left[\mathrm{p}_{2 \mathrm{y}}\right] \leq 15$

Claims

- Claim 2: If two points p_{1} and p_{2} are such that $d\left(p_{1}, p_{2}\right)<\delta$, then $\mathrm{S}_{\mathrm{v}}\left[\mathrm{p}_{1 \mathrm{y}}\right]-\mathrm{S}_{\mathrm{v}}\left[\mathrm{p}_{2 \mathrm{y}}\right] \leq 15$
- Assume by contradiction that this is not the case, and p_{1} and p_{2} are at least 16 positions apart in S_{v}.

Claims

- Claim 2: If two points p_{1} and p_{2} are such that $d\left(p_{1}, p_{2}\right)<\delta$, then $\mathrm{S}_{\mathrm{v}}\left[\mathrm{p}_{1 \mathrm{y}}\right]-\mathrm{S}_{\mathrm{v}}\left[\mathrm{p}_{2 \mathrm{y}}\right] \leq 15$
- Assume by contradiction that this is not the case, and p_{1} and p_{2} are at least 16 positions apart in S_{v}.
- By Claim 1, there can be at most one point in each box.

Claims

- Claim 2: If two points p_{1} and p_{2} are such that $d\left(p_{1}, p_{2}\right)<\delta$, then $\mathrm{S}_{\mathrm{v}}\left[\mathrm{p}_{1 \mathrm{y}}\right]-\mathrm{S}_{\mathrm{v}}\left[\mathrm{p}_{2 \mathrm{y}}\right] \leq 15$
- Assume by contradiction that this is not the case, and p_{1} and p_{2} are at least 16 positions apart in S_{v}.
- By Claim 1, there can be at most one point in each box.
- To be 16 positions apart, there must be at least 3 rows of boxes separating the points.

Claims

- Claim 2: If two points p_{1} and p_{2} are such that $d\left(p_{1}, p_{2}\right)<\delta$, then $\mathrm{S}_{\mathrm{v}}\left[\mathrm{p}_{1 \mathrm{y}}\right]-\mathrm{S}_{\mathrm{v}}\left[\mathrm{p}_{2 \mathrm{y}}\right] \leq 15$
- Assume by contradiction that this is not the case, and p_{1} and p_{2} are at least 16 positions apart in S_{v}.
- By Claim 1, there can be at most one point in each box.
- To be 16 positions apart, there must be at least 3 rows of boxes separating the points.
- But then the distance is at least $3 \delta / 2$, a contradiction.

Partitioning the square

Partitioning the square

Concluding the algorithm

Concluding the algorithm

- Make pass through S_{v}, and for each element, find the distance to the next 15 elements in the array.

Concluding the algorithm

- Make pass through S_{v}, and for each element, find the distance to the next 15 elements in the array.
- Find the pair of points p_{1} and p_{2} for which the minimum of all these distances is achieved.

Concluding the algorithm

- Make pass through S_{v}, and for each element, find the distance to the next 15 elements in the array.
- Find the pair of points p_{1} and p_{2} for which the minimum of all these distances is achieved.
- Compare this to δ and output the pair with the minimum distance.

ClosestPair Pseudocode

Algorithm ClosestPair($p_{1, \ldots,} p_{n}$)
Construct arrays H and V
$\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)=$ ClosestPairRec(H, V)

Procedure ClosestPairRec(H,V)

$$
\text { If }|\mathrm{H}|=|\mathrm{V}| \leq 3
$$

Check all pairwise distances Construct $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{~V}_{1}, \mathrm{~V}_{2}$ $\left(1_{1}, l_{2}\right)=$ ClosestPairRec $\left(\mathrm{H}_{1}, \mathrm{~V}_{1}\right)$ $\left(r_{1}, r_{2}\right)=$ ClosestPairRec $\left(\mathrm{H}_{2}, \mathrm{~V}_{2}\right)$
$\delta=\min \left(\mathrm{d}\left(l_{1}, l_{2}\right), \mathrm{d}\left(r_{1}, r_{2}\right)\right)$
$x^{*}=\max _{i} x_{i}$ for $\mathrm{i}=1, \ldots, n$
$\mathbf{L}=\left\{(x, y): x=x^{*}\right\}$
$\mathbf{S}=$ set of points within distance δ of \mathbf{L}.

Construct S_{v}
For each point s in S_{v}
Compute distance between s and the next 15 points of S_{v}. Return the pair of points (s_{1}, s_{2}) that minimises this distance.

Running Time

Algorithm ClosestPair($p_{1, \ldots,} p_{n}$)
Construct arrays H and
$\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)=$ ClosestPairRec(H,V)
Procedure ClosestPairRec(H, V)

$$
\text { If }|\mathrm{H}|=|\mathrm{V}| \leq 3
$$

Check all pairwise distances Construct $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{~V}_{1}, \mathrm{~V}_{2}$ $\left(1_{1}, l_{2}\right)=$ ClosestPairRec $\left(\mathrm{H}_{1}, \mathrm{~V}_{1}\right)$ $\left(r_{1}, r_{2}\right)=$ ClosestPairRec $\left(\mathrm{H}_{2}, \mathrm{~V}_{2}\right)$
$\delta=\min \left(\mathrm{d}\left(l_{1}, l_{2}\right), \mathrm{d}\left(r_{1}, r_{2}\right)\right)$
$x^{*}=\max _{i} x_{i}$ for $\mathrm{i}=1, \ldots, n$
$\mathbf{L}=\left\{(x, y): x=x^{*}\right\}$
$S=$ set of points within distance δ of L.

Construct S_{v}
For each point s in S_{v}
Compute distance between s and the next 15 points of S_{v}. Return the pair of points (s_{1}, s_{2}) that minimises this distance.

If $\mathrm{d}\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right) \leq \delta$

$$
\text { Return }\left(s_{1}, s_{2}\right)
$$

Else if $\mathrm{d}\left(l_{1}, l_{2}\right)<\mathrm{d}\left(r_{1}, r_{2}\right)$
Return $\left(l_{1}, l_{2}\right)$
Else return $\left(r_{1}, r_{2}\right)$

Running Time

Algorithm ClosestPair(p_{1}, \ldots, p_{n})
Construct arrays H and $\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)=$ ClosestPairRec (H, V)

Procedure ClosestPairRec (H, V)

$$
\text { If }|\mathrm{H}|=|\mathrm{V}| \leq 3
$$

Check all pairwise distances Construct $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{~V}_{1}, \mathrm{~V}_{2}$ $\left(1_{1}, l_{2}\right)=$ ClosestPairRec $\left(\mathrm{H}_{1}, \mathrm{~V}_{1}\right)$ $\left(r_{1}, r_{2}\right)=$ ClosestPairRec $\left(\mathrm{H}_{2}, \mathrm{~V}_{2}\right)$
$\delta=\min \left(\mathrm{d}\left(l_{1}, l_{2}\right), \mathrm{d}\left(r_{1}, r_{2}\right)\right)$
$x^{*}=\max _{i} x_{i}$ for $\mathrm{i}=1, \ldots, n$
$\mathbf{L}=\left\{(x, y): x=x^{*}\right\}$
$\mathbf{S}=$ set of points within distance δ of \mathbf{L}.

Construct S_{v}
For each point s in S_{v}
Compute distance between s and the next 15 points of S_{v}. Return the pair of points (s_{1}, s_{2}) that minimises this distance.

If $\mathrm{d}\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right) \leq \delta$

$$
\text { Return }\left(s_{1}, s_{2}\right)
$$

Else if $\mathrm{d}\left(l_{1}, l_{2}\right)<\mathrm{d}\left(r_{1}, r_{2}\right)$
Return $\left(l_{1}, l_{2}\right)$
Else return $\left(r_{1}, r_{2}\right)$

Finding the closest pair of points

Finding the closest pair of points

Preprocessing:

Finding the closest pair of points

Preprocessing:

- Maintain two arrays H and V for the horizontal and vertical coordinates of the points respectively.

Finding the closest pair of points

Preprocessing:

- Maintain two arrays H and V for the horizontal and vertical coordinates of the points respectively.
- To populate H and V , simply run through the given points $p_{1}=\left(x_{1}, y_{1}\right), p_{2}=\left(x_{2}, y_{2}\right), \ldots, p_{n}=\left(x_{n}, y_{n}\right)$ and put $x_{1}, x_{2}, \ldots, x_{n}$ into H and $y_{1}, y_{2}, \ldots, y_{n}$ into V.

Finding the closest pair of points

Preprocessing:

- Maintain two arrays H and V for the horizontal and vertical coordinates of the points respectively.
- To populate H and V , simply run through the given points $p_{1}=\left(x_{1}, y_{1}\right), p_{2}=\left(x_{2}, y_{2}\right), \ldots, p_{n}=\left(x_{n}, y_{n}\right)$ and put $x_{1}, x_{2}, \ldots, x_{n}$ into H and $y_{1}, y_{2}, \ldots, y_{n}$ into V.
- Sort the points in H and in V , using some sorting algorithm.

Running Time

Algorithm ClosestPair(p_{1}, \ldots, p_{n})
Construct arrays H and $\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)=$ ClosestPairRec (H, V)

Procedure ClosestPairRec (H, V)

$$
\text { If }|\mathrm{H}|=|\mathrm{V}| \leq 3
$$

Check all pairwise distances Construct $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{~V}_{1}, \mathrm{~V}_{2}$ $\left(1_{1}, l_{2}\right)=$ ClosestPairRec $\left(\mathrm{H}_{1}, \mathrm{~V}_{1}\right)$ $\left(r_{1}, r_{2}\right)=$ ClosestPairRec $\left(\mathrm{H}_{2}, \mathrm{~V}_{2}\right)$
$\delta=\min \left(\mathrm{d}\left(l_{1}, l_{2}\right), \mathrm{d}\left(r_{1}, r_{2}\right)\right)$
$x^{*}=\max _{i} x_{i}$ for $\mathrm{i}=1, \ldots, n$
$\mathbf{L}=\left\{(x, y): x=x^{*}\right\}$
$\mathbf{S}=$ set of points within distance δ of \mathbf{L}.

Construct S_{v}
For each point s in S_{v}
Compute distance between s and the next 15 points of S_{v}. Return the pair of points (s_{1}, s_{2}) that minimises this distance.

If $\mathrm{d}\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right) \leq \delta$

$$
\text { Return }\left(s_{1}, s_{2}\right)
$$

Else if $\mathrm{d}\left(l_{1}, l_{2}\right)<\mathrm{d}\left(r_{1}, r_{2}\right)$
Return $\left(l_{1}, l_{2}\right)$
Else return $\left(r_{1}, r_{2}\right)$

Running Time

Algorithm ClosestPair $\left(p_{1, \ldots,}, p_{n}\right)$
Construct arrays H and $\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)=$ ClosestPairRec(H,V)

O(n $\log n)$

Procedure ClosestPairRec(H, V)

$$
\text { If }|\mathrm{H}|=|\mathrm{V}| \leq 3
$$

Check all pairwise distances Construct $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{~V}_{1}, \mathrm{~V}_{2}$ $\left(1_{1}, l_{2}\right)=$ ClosestPairRec $\left(\mathrm{H}_{1}, \mathrm{~V}_{1}\right)$ $\left(r_{1}, r_{2}\right)=$ ClosestPairRec $\left(\mathrm{H}_{2}, \mathrm{~V}_{2}\right)$
$\delta=\min \left(\mathrm{d}\left(l_{1}, l_{2}\right), \mathrm{d}\left(r_{1}, r_{2}\right)\right)$
$x^{*}=\max _{i} x_{i}$ for $\mathrm{i}=1, \ldots, n$
$\mathbf{L}=\left\{(x, y): x=x^{*}\right\}$
$\mathbf{S}=$ set of points within distance δ of \mathbf{L}.

Construct S_{v}
For each point s in S_{v}
Compute distance between s and the next 15 points of S_{v}. Return the pair of points (s_{1}, s_{2}) that minimises this distance.

If $\mathrm{d}\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right) \leq \delta$

$$
\text { Return }\left(s_{1}, s_{2}\right)
$$

Else if $\mathrm{d}\left(l_{1}, l_{2}\right)<\mathrm{d}\left(r_{1}, r_{2}\right)$
Return $\left(l_{1}, l_{2}\right)$
Else return $\left(r_{1}, r_{2}\right)$

Running Time

Algorithm ClosestPair $\left(p_{1, \ldots,}, p_{n}\right)$
Construct arrays H and ($\mathrm{p}_{1}, \mathrm{p}_{2}$) $=$ ClosestPairRec (H, V)

O(n $\log n)$

Procedure ClosestPairRec(H,V)

$$
\text { If }|\mathrm{H}|=|\mathrm{V}| \leq 3
$$

Check all pairwise distances Construct $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{~V}_{1}, \mathrm{~V}_{2}$ $\left(I_{1}, l_{2}\right)=\operatorname{ClosestPairRec}\left(\mathrm{H}_{1}, \mathrm{~V}_{1}\right)$$?$

$$
\left(r_{1}, r_{2}\right)=\text { ClosestPairRec }\left(\mathrm{H}_{2}, \mathrm{~V}_{2}\right)
$$

$\delta=\min \left(\mathrm{d}\left(l_{1}, l_{2}\right), \mathrm{d}\left(r_{1}, r_{2}\right)\right)$
$x^{*}=\max _{i} x_{i}$ for $\mathrm{i}=1, \ldots, n$
$\mathrm{L}=\left\{(x, y): x=x^{*}\right\}$
$S=$ set of points within distance δ of L.

Construct S_{v}
For each point s in S_{v}
Compute distance between s and the next 15 points of S_{v}. Return the pair of points (s_{1}, s_{2}) that minimises this distance.

If $\mathrm{d}\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right) \leq \delta$

$$
\text { Return }\left(s_{1}, s_{2}\right)
$$

Else if $\mathrm{d}\left(l_{1}, l_{2}\right)<\mathrm{d}\left(r_{1}, r_{2}\right)$
Return $\left(l_{1}, l_{2}\right)$
Else return $\left(r_{1}, r_{2}\right)$

Running Time

Algorithm ClosestPair($p_{1, \ldots,}, p_{n}$)
Construct arrays H and ($\mathrm{p}_{1}, \mathrm{p}_{2}$) $=$ ClosestPairRec (H, V)

O(n $\log n)$

Procedure ClosestPairRec(H,V)
If $|\mathrm{H}|=|\mathrm{V}| \leq 3$

Construct S_{v}
For each point s in S_{v}
Compute distance between s and the next 15 points of S_{v}. Return the pair of points $\left(s_{1}, s_{2}\right)$ that minimises this distance.

Check all pairwise distances Construct $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{~V}_{1}, \mathrm{~V}_{2}$

$$
\left(l_{1}, l_{2}\right)=\text { ClosestPairec }\left(\mathrm{H}_{1}, \mathrm{~V}_{1}\right) \quad \mathrm{O}(\mathrm{n} \log \mathrm{n})
$$

$$
\left(r_{1}, r_{2}\right)=\text { ClosestPairRec }\left(\mathrm{H}_{2}, \mathrm{~V}_{2}\right) \quad \text { known recurrence }
$$

$\delta=\min \left(\mathrm{d}\left(l_{1}, l_{2}\right), \mathrm{d}\left(r_{1}, r_{2}\right)\right)$
$x^{*}=\max _{i} x_{i}$ for $\mathrm{i}=1, \ldots, n$
$\mathbf{L}=\left\{(x, y): x=x^{*}\right\}$
$\mathbf{S}=$ set of points within distance δ of \mathbf{L}.

If $\mathrm{d}\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right) \leq \delta$
Return (s_{1}, s_{2})
Else if $\mathrm{d}\left(l_{1}, l_{2}\right)<\mathrm{d}\left(r_{1}, r_{2}\right)$
Return $\left(l_{1}, l_{2}\right)$
Else return $\left(r_{1}, r_{2}\right)$

Running Time

Algorithm ClosestPair($p_{1, \ldots,}, p_{n}$)
Construct arrays H and ($\mathrm{p}_{1}, \mathrm{p}_{2}$) $=$ ClosestPairRec(H, V)
$O(n \log n)$

Procedure ClosestPairRec(H,V)
If $|\mathrm{H}|=|\mathrm{V}| \leq 3$

Construct $\mathrm{S}_{\mathrm{v}} \mathrm{O}(\mathrm{n})$
For each point s in $S_{v} O(n)$
Compute distance between s and the next 15 points of S_{v}. Return the pair of points $\left(s_{1}, s_{2}\right)$ that minimises this distance.

Check all pairwise distances
$\mathrm{O}(\mathrm{n})$ Construct $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{~V}_{1}, \mathrm{~V}_{2}$
$\left(l_{1}, l_{2}\right)=\operatorname{ClosestPairRec}\left(\mathrm{H}_{1}, \mathrm{~V}_{1}\right) \quad \mathrm{O}(\mathrm{n} \log \mathrm{n})$
$\left(r_{1}, r_{2}\right)=\operatorname{ClosestPairRec}\left(\mathrm{H}_{2}, \mathrm{~V}_{2}\right) \quad$ known recurrence
$\delta=\min \left(\mathrm{d}\left(l_{1}, l_{2}\right), \mathrm{d}\left(r_{1}, r_{2}\right)\right)$
$\mathrm{O}(\mathrm{n}) \mathrm{L}=\left\{(x, y): x=x^{*}\right\}$
$S=$ set of points within distance δ of L.

If $\mathrm{d}\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right) \leq \delta$
Return (s_{1}, s_{2})
O(1)
Else if $\mathrm{d}\left(l_{1}, l_{2}\right)<\mathrm{d}\left(r_{1}, r_{2}\right)$
Return $\left(l_{1}, l_{2}\right)$
Else return $\left(r_{1}, r_{2}\right)$

Integer Multiplication

Integer Multiplication

Input: 2 integer numbers, in binary
\mathbf{n} is the number of bits of each number

Integer Multiplication

Input: 2 integer numbers, in binary
\mathbf{n} is the number of bits of each number
1100
x 1101
1100

Integer Multiplication

Input: 2 integer numbers, in binary
\mathbf{n} is the number of bits of each number
1100
x 1101
1100
0000

Integer Multiplication

Input: 2 integer numbers, in binary
\mathbf{n} is the number of bits of each number
1100
x 1101
1100
0000
1100

Integer Multiplication

Input: 2 integer numbers, in binary
\mathbf{n} is the number of bits of each number
1100
x 1101
1100
0000
1100
1100

Integer Multiplication

Input: 2 integer numbers, in binary
\mathbf{n} is the number of bits of each number
1100
x 1101
1100
0000
1100
1100

Integer Multiplication

Input: 2 integer numbers, in binary
\mathbf{n} is the number of bits of each number
1100
x 1101
1100
0000
1100
1100
10011100

Integer Multiplication

Input: 2 integer numbers, in binary
n is the number of bits of each number
1100
x 1101
1100
0000
1100
1100
10011100

Integer Multiplication

Input: 2 integer numbers, in binary
\mathbf{n} is the number of bits of each number

What is the running time of this algorithm?
1100
1100
10011100
1100
x 1101
1100
0000
$\mathrm{O}(\mathrm{n})$ time to compute each partial product n partial products

Time O(n²)

Can we do it faster?

- We will use the Divide-and-Conquer approach.
- We will reduce the problem to solving some instances with $n / 2$ bits.
- Then we will use this approach recursively to get a solution for the original problem.

Faster multiplication

Faster multiplication

$$
\mathbf{x}=x_{1} \cdot 2^{n / 2}+x_{0}
$$

Faster multiplication

$$
\begin{aligned}
& x=x_{1} \cdot 2^{n / 2}+x_{0} \\
& y=y_{1} \cdot 2^{n / 2}+y_{0}
\end{aligned}
$$

Faster multiplication

$$
\begin{aligned}
& \mathbf{x}=x_{1} \cdot 2^{n / 2}+x_{0} \\
& \mathbf{y}=y_{1} \cdot 2^{n / 2}+y_{0} \\
& \mathbf{x} \cdot \mathbf{y}=\left(x_{1} \cdot 2^{n / 2}+x_{0}\right) \cdot\left(y_{1} \cdot 2^{n / 2}+y_{0}\right)
\end{aligned}
$$

Faster multiplication

$$
\begin{aligned}
& x=x_{1} \cdot 2^{n / 2}+x_{0} \\
& \mathbf{y}=y_{1} \cdot 2^{n / 2}+y_{0} \\
& x \cdot y=\left(x_{1} \cdot 2^{n / 2}+x_{0}\right) \cdot\left(y_{1} \cdot 2^{n / 2}+y_{0}\right) \\
& \quad=x_{1} \cdot y_{1} \cdot 2^{n / 2}+\left(x_{1} \cdot y_{0}+x_{0} \cdot y_{1}\right) \cdot 2^{n / 2}+x_{0} \cdot y_{0}
\end{aligned}
$$

Faster multiplication

$$
\begin{aligned}
& x=x_{1} \cdot 2^{n / 2}+x_{0} \\
& y=y_{1} \cdot 2^{n / 2}+y_{0} \\
& x \cdot y=\left(x_{1} \cdot 2^{n / 2}+x_{0}\right) \cdot\left(y_{1} \cdot 2^{n / 2}+y_{0}\right) \\
& \quad=x_{1} \cdot y_{1} \cdot 2^{n / 2}+\left(x_{1} \cdot y_{0}+x_{0} \cdot y_{1}\right) \cdot 2^{n / 2}+x_{0} \cdot y_{0}
\end{aligned}
$$

4 multiplications of $\mathbf{n} / \mathbf{2}$ bit numbers
$\mathrm{T}(n) \leq 4 \mathrm{~T}(n / 2)+\mathrm{c} n$

Faster multiplication

$$
\begin{aligned}
& x=x_{1} \cdot 2^{n / 2}+x_{0} \\
& y=y_{1} \cdot 2^{n / 2}+y_{0} \\
& x \cdot y=\left(x_{1} \cdot 2^{n / 2}+x_{0}\right) \cdot\left(y_{1} \cdot 2^{n / 2}+y_{0}\right) \\
& \quad=x_{1} \cdot y_{1} \cdot 2^{n / 2}+\left(x_{1} \cdot y_{0}+x_{0} \cdot y_{1}\right) \cdot 2^{n / 2}+x_{0} \cdot y_{0}
\end{aligned}
$$

4 multiplications of $\mathbf{n} / \mathbf{2}$ bit numbers
$\mathrm{T}(n) \leq 4 \mathrm{~T}(n / 2)+\mathrm{c} n$
Solving the recurrence gets us to $\mathbf{T}(\mathrm{n})=\mathbf{O}\left(n^{\log 4}\right)=\mathbf{O}\left(n^{\wedge}\right)$

Faster multiplication

$$
\begin{aligned}
& x=x_{1} \cdot 2^{n / 2}+x_{0} \\
& y=y_{1} \cdot 2^{n / 2}+y_{0} \\
& x \cdot y=\left(x_{1} \cdot 2^{n / 2}+x_{0}\right) \cdot\left(y_{1} \cdot 2^{n / 2}+y_{0}\right) \\
& \quad=x_{1} \cdot y_{1} \cdot 2^{n / 2}+\left(x_{1} \cdot y_{0}+x_{0} \cdot y_{1}\right) \cdot 2^{n / 2}+x_{0} \cdot y_{0}
\end{aligned}
$$

4 multiplications of $\mathbf{n} / \mathbf{2}$ bit numbers
$\mathrm{T}(n) \leq 4 \mathrm{~T}(n / 2)+\mathrm{c} n$
Solving the recurrence gets us to $\mathbf{T}(\mathrm{n})=\mathbf{O}\left(n^{\log 4}\right)=\mathbf{O}\left(n^{\wedge}\right)$
Generally, solving the recurrence $\mathbf{T}(n) \leq q T(n / 2)+\mathbf{c}$ gets us to $\mathbf{T}(n)=\mathbf{O}\left(n^{\log q}\right)$

Faster multiplication

$$
\begin{aligned}
& x=x_{1} \cdot 2^{n / 2}+x_{0} \\
& y=y_{1} \cdot 2^{n / 2}+y_{0} \\
& x \cdot y=\left(x_{1} \cdot 2^{n / 2}+x_{0}\right) \cdot\left(y_{1} \cdot 2^{n / 2}+y_{0}\right) \\
& \quad=x_{1} \cdot y_{1} \cdot 2^{n / 2}+\left(x_{1} \cdot y_{0}+x_{0} \cdot y_{1}\right) \cdot 2^{n / 2}+x_{0} \cdot y_{0}
\end{aligned}
$$

4 multiplications of $\mathbf{n} / \mathbf{2}$ bit numbers

$$
\mathrm{T}(n) \leq 4 \mathrm{~T}(n / 2)+\mathrm{c} n
$$

Solving the recurrence gets us to $\mathbf{T}(\mathrm{n})=\mathbf{O}\left(n^{\log 4}\right)=\mathbf{O}\left(n^{\wedge 2}\right)$
Generally, solving the recurrence $\mathbf{T}(n) \leq q T(n / 2)+\mathbf{c n}$ gets us to $\mathbf{T}(n)=\mathbf{O}\left(n^{\log q}\right)$

$$
\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right)=x_{1} \cdot y_{1}+x_{1} \cdot y_{0}+x_{0} \cdot y_{1}+x_{0} \cdot y_{0}
$$

Faster multiplication

$$
\begin{aligned}
& x=x_{1} \cdot 2^{n / 2}+x_{0} \\
& y=y_{1} \cdot 2^{n / 2}+y_{0} \\
& x \cdot y=\left(x_{1} \cdot 2^{n / 2}+x_{0}\right) \cdot\left(y_{1} \cdot 2^{n / 2}+y_{0}\right) \\
& \quad=x_{1} \cdot y_{1} \cdot 2^{n / 2}+\left(x_{1} \cdot y_{0}+x_{0} \cdot y_{1}\right) \cdot 2^{n / 2}+x_{0} \cdot y_{0}
\end{aligned}
$$

4 multiplications of $\mathbf{n} / \mathbf{2}$ bit numbers

$$
\mathrm{T}(n) \leq 4 \mathrm{~T}(n / 2)+\mathrm{c} n
$$

Solving the recurrence gets us to $\mathbf{T}(\mathrm{n})=\mathbf{O}\left(n^{\log 4}\right)=\mathbf{O}\left(n^{\wedge 2}\right)$
Generally, solving the recurrence $\mathbf{T}(n) \leq q T(n / 2)+\mathbf{c n}$ gets us to $\mathbf{T}(n)=\mathbf{O}\left(n^{\log q}\right)$

$$
\begin{aligned}
\left(\mathrm{x}_{1}+\mathrm{x}_{0}\right)\left(\mathrm{y}_{1}+\mathrm{y}_{0}\right) & =\mathrm{x}_{1} \cdot \mathrm{y}_{1}+\mathrm{x}_{1} \cdot \mathrm{y}_{0}+\mathrm{x}_{0} \cdot \mathrm{y}_{1}+\mathrm{x}_{0} \cdot \mathrm{y}_{0} \\
& =\mathrm{p}
\end{aligned}
$$

Faster multiplication

$$
\begin{aligned}
& x=x_{1} \cdot 2^{n / 2}+x_{0} \\
& y=y_{1} \cdot 2^{n / 2}+y_{0} \\
& x \cdot y=\left(x_{1} \cdot 2^{n / 2}+x_{0}\right) \cdot\left(y_{1} \cdot 2^{n / 2}+y_{0}\right) \\
& \quad=x_{1} \cdot y_{1} \cdot 2^{n / 2}+\left(p-x_{1} \cdot y_{1}-x_{0} \cdot y_{0}\right) \cdot 2^{n / 2}+x_{0} \cdot y_{0}
\end{aligned}
$$

4 multiplications of $\mathbf{n} / \mathbf{2}$ bit numbers

$$
\mathrm{T}(n) \leq 4 \mathrm{~T}(n / 2)+\mathrm{c} n
$$

Solving the recurrence gets us to $\mathbf{T}(\mathrm{n})=\mathbf{O}\left(n^{\log 4}\right)=\mathbf{O}\left(n^{\wedge 2}\right)$
Generally, solving the recurrence $\mathbf{T}(n) \leq q T(n / 2)+\mathbf{c n}$ gets us to $\mathbf{T}(n)=\mathbf{O}\left(n^{\log q}\right)$

$$
\begin{aligned}
\left(\mathrm{x}_{1}+\mathrm{x}_{0}\right)\left(\mathrm{y}_{1}+\mathrm{y}_{0}\right) & =\mathrm{x}_{1} \cdot \mathrm{y}_{1}+\mathrm{x}_{1} \cdot \mathrm{y}_{0}+\mathrm{x}_{0} \cdot \mathrm{y}_{1}+\mathrm{x}_{0} \cdot \mathrm{y}_{0} \\
& =\mathrm{p}
\end{aligned}
$$

Faster multiplication

$$
\begin{aligned}
& x=x_{1} \cdot 2^{n / 2}+x_{0} \\
& y=y_{1} \cdot 2^{n / 2}+y_{0} \\
& x \cdot y=\left(x_{1} \cdot 2^{n / 2}+x_{0}\right) \cdot\left(y_{1} \cdot 2^{n / 2}+y_{0}\right) \\
& \quad=x_{1} \cdot y_{1} \cdot 2^{n / 2}+\left(p-x_{1} \cdot y_{1}-x_{0} \cdot y_{0}\right) \cdot 2^{n / 2}+x_{0} \cdot y_{0}
\end{aligned}
$$

4 multiplications of $\mathbf{n} / \mathbf{2}$ bit numbers

$$
\mathrm{T}(n) \leq 4 \mathrm{~T}(n / 2)+\mathrm{c} n
$$

Solving the recurrence gets us to $\mathbf{T}(\mathrm{n})=\mathbf{O}\left(n^{\log 4}\right)=\mathbf{O}\left(n^{\wedge 2}\right)$
Generally, solving the recurrence $\mathbf{T}(n) \leq q T(n / 2)+c n$ gets us to $T(n)=\mathbf{O}\left(n^{\log q}\right)$

$$
\begin{aligned}
\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right) & =x_{1} \cdot y_{1}+x_{1} \cdot y_{0}+x_{0} \cdot y_{1}+x_{0} \cdot y_{0} \\
& =p
\end{aligned}
$$

We get the recurrence $\mathbf{T}(n) \leq 3 T(n / 2)+c n$

Faster multiplication

$$
\begin{aligned}
& x=x_{1} \cdot 2^{n / 2}+x_{0} \\
& y=y_{1} \cdot 2^{n / 2}+y_{0} \\
& x \cdot y=\left(x_{1} \cdot 2^{n / 2}+x_{0}\right) \cdot\left(y_{1} \cdot 2^{n / 2}+y_{0}\right) \\
& \quad=x_{1} \cdot y_{1} \cdot 2^{n / 2}+\left(p-x_{1} \cdot y_{1}-x_{0} \cdot y_{0}\right) \cdot 2^{n / 2}+x_{0} \cdot y_{0}
\end{aligned}
$$

4 multiplications of $\mathbf{n} / \mathbf{2}$ bit numbers

$$
\mathrm{T}(n) \leq 4 \mathrm{~T}(n / 2)+\mathrm{c} n
$$

Solving the recurrence gets us to $\mathbf{T}(\mathrm{n})=\mathbf{O}\left(n^{\log 4}\right)=\mathbf{O}\left(n^{\wedge 2}\right)$
Generally, solving the recurrence $\mathbf{T}(n) \leq q T(n / 2)+\mathbf{c}$ gets us to $\mathbf{T}(n)=\mathbf{O}\left(n^{\log q}\right)$

$$
\begin{aligned}
\left(\mathrm{x}_{1}+\mathrm{x}_{0}\right)\left(\mathrm{y}_{1}+\mathrm{y}_{0}\right) & =\mathrm{x}_{1} \cdot \mathrm{y}_{1}+\mathrm{x}_{1} \cdot \mathrm{y}_{0}+\mathrm{x}_{0} \cdot \mathrm{y}_{1}+\mathrm{x}_{0} \cdot \mathrm{y}_{0} \\
& =\mathrm{p}
\end{aligned}
$$

We get the recurrence $T(n) \leq 3 T(n / 2)+c n$

Faster multiplication

$$
\begin{aligned}
& x=x_{1} \cdot 2^{n / 2}+x_{0} \\
& y=y_{1} \cdot 2^{n / 2}+y_{0} \\
& x \cdot y=\left(x_{1} \cdot 2^{n / 2}+x_{0}\right) \cdot\left(y_{1} \cdot 2^{n / 2}+y_{0}\right) \\
& \quad=x_{1} \cdot y_{1} \cdot 2^{n / 2}+\left(p-x_{1} \cdot y_{1}-x_{0} \cdot y_{0}\right) \cdot 2^{n / 2}+x_{0} \cdot y_{0}
\end{aligned}
$$

4 multiplications of $\mathbf{n} / \mathbf{2}$ bit numbers

$$
\mathrm{T}(n) \leq 4 \mathrm{~T}(n / 2)+\mathrm{c} n
$$

Solving the recurrence gets us to $\mathbf{T}(\mathrm{n})=\mathbf{O}\left(n^{\log 4}\right)=\mathbf{O}\left(n^{\wedge 2}\right)$
Generally, solving the recurrence $\mathbf{T}(n) \leq q T(n / 2)+\mathbf{c}$ gets us to $\mathbf{T}(n)=\mathbf{O}\left(n^{\log q}\right)$

$$
\begin{aligned}
\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right) & =x_{1} \cdot y_{1}+x_{1} \cdot y_{0}+x_{0} \cdot y_{1}+x_{0} \cdot y_{0} \\
& =p
\end{aligned}
$$

We get the recurrence $T(n) \leq 3 T(n / 2)+c n$

Faster multiplication

$$
\begin{aligned}
& x=x_{1} \cdot 2^{n / 2}+x_{0} \\
& y=y_{1} \cdot 2^{n / 2}+y_{0} \\
& x \cdot y=\left(x_{1} \cdot 2^{n / 2}+x_{0}\right) \cdot\left(y_{1} \cdot 2^{n / 2}+y_{0}\right) \\
& \quad=x_{1} \cdot y_{1} \cdot 2^{n / 2}+\left(p-x_{1} \cdot y_{1}-x_{0} \cdot y_{0}\right) \cdot 2^{n / 2}+x_{0} \cdot y_{0}
\end{aligned}
$$

4 multiplications of $\mathbf{n} / \mathbf{2}$ bit numbers

$$
\mathrm{T}(n) \leq 4 \mathrm{~T}(n / 2)+\mathrm{c} n
$$

Solving the recurrence gets us to $\mathbf{T}(\mathrm{n})=\mathbf{O}\left(n^{\log 4}\right)=\mathbf{O}\left(n^{\wedge 2}\right)$
Generally, solving the recurrence $\mathbf{T}(n) \leq q T(n / 2)+\mathbf{c}$ gets us to $\mathbf{T}(n)=\mathbf{O}\left(n^{\log q}\right)$

$$
\begin{aligned}
\left(\mathrm{x}_{1}+\mathrm{x}_{0}\right)\left(\mathrm{y}_{1}+\mathrm{y}_{0}\right) & =\mathrm{x}_{1} \cdot \mathrm{y}_{1}+\mathrm{x}_{1} \cdot \mathrm{y}_{0}+\mathrm{x}_{0} \cdot \mathrm{y}_{1}+\mathrm{x}_{0} \cdot \mathrm{y}_{0} \\
& =\mathrm{p}
\end{aligned}
$$

We get the recurrence $T(n) \leq 3 T(n / 2)+c n$

