
Advanced Algorithmic Techniques  
(COMP523)

Recursion and Divide and Conquer Techniques #3



Recap and plan



Recap and plan
• Last lecture: 

• Sorting with the MergeSort algorithm.


• Sorting with the QuickSort algorithm.


• The limitations of comparison-based sorting. 



Recap and plan
• Last lecture: 

• Sorting with the MergeSort algorithm.


• Sorting with the QuickSort algorithm.


• The limitations of comparison-based sorting. 

• This lecture: 

• Finding the closest pair of points.


• Integer Multiplication.



Quick Recap
• Searching: 

• LinearSearch: Time O(n), (Aux.) Memory O(1)


• BinarySearch: Time O(log n), (Aux.) Memory O(log n)


• Sorting: 

• InsertionSort: Time O(n2), (Aux.) Memory O(1)


• MergeSort: Time O(n) log n, (Aux.) Memory ?


• QuickSort: Time O(n2), (Aux.) Memory ?


• Majority: 

• General array: Time O(n), (Aux.) Memory ? 

• Sorted array: Time O(log n), (Aux.) Memory ? 



Finding the closest 
pair of points



Finding the closest pair of points
n points on the plane

Points are given as pi = (xi, yi)
Find two points with the smallest distance



Finding the closest pair of points
n points on the plane

Points are given as pi = (xi, yi)

 d(p1,p2)

Find two points with the smallest distance



Naive solution



Naive solution

• For every point, find the distance to each other point.



Naive solution

• For every point, find the distance to each other point.

• Output two points that have the smallest distance.



Naive solution

• For every point, find the distance to each other point.

• Output two points that have the smallest distance.

• Running time?



Naive solution

• For every point, find the distance to each other point.

• Output two points that have the smallest distance.

• Running time?

• Ω(n2)



Naive solution

• For every point, find the distance to each other point.

• Output two points that have the smallest distance.

• Running time?

• Ω(n2)

• Can we do better?



Warmup: Points on the line



Warmup: Points on the line



Warmup: Points on the line
Points are now x1, x2, … , xn



Warmup: Points on the line
Points are now x1, x2, … , xn

Sort the points x1, x2, … , xn



Warmup: Points on the line
Points are now x1, x2, … , xn

Sort the points x1, x2, … , xn

Consider only distances between consecutive points



Warmup: Points on the line
Points are now x1, x2, … , xn

Sort the points x1, x2, … , xn

Consider only distances between consecutive points

What is the worst-case running time?



Warmup: Points on the line
Points are now x1, x2, … , xn

Sort the points x1, x2, … , xn

Consider only distances between consecutive points

What is the worst-case running time?

Can be done in O(n log n)



Finding the closest pair of points
n points on the plane

Find two points with the smallest distance



Finding the closest pair of points
n points on the plane

Find two points with the smallest distance



Finding the closest pair of points
n points on the plane

Find two points with the smallest distance



Finding the closest pair of points
n points on the plane

Find two points with the smallest distance



Finding the closest pair of points
n points on the plane

Find two points with the smallest distance



Finding the closest pair of points



Finding the closest pair of points

Preprocessing: 



Finding the closest pair of points

Preprocessing: 

• Maintain two arrays H and V for the horizontal and vertical 
coordinates of the points respectively.



Finding the closest pair of points

Preprocessing: 

• Maintain two arrays H and V for the horizontal and vertical 
coordinates of the points respectively.

• To populate H and V, simply run through the given points 
p1=(x1,y1), p2=(x2,y2), … , pn=(xn,yn) and put x1, x2, … , xn into 
H and y1, y2, … , yn into V.



Finding the closest pair of points

Preprocessing: 

• Maintain two arrays H and V for the horizontal and vertical 
coordinates of the points respectively.

• To populate H and V, simply run through the given points 
p1=(x1,y1), p2=(x2,y2), … , pn=(xn,yn) and put x1, x2, … , xn into 
H and y1, y2, … , yn into V.

• Sort the points in H and in V, using some sorting 
algorithm.



Finding the closest pair of points



Finding the closest pair of points

Main algorithm: 



Finding the closest pair of points

Main algorithm: 

• Partition array H into two halves H1 and H2, according to 
the sorted order.



Finding the closest pair of points



Finding the closest pair of points
H1 H2

V1 V2



Finding the closest pair of points



Finding the closest pair of points

Main algorithm: 



Finding the closest pair of points

Main algorithm: 

• Partition array H into two halves H1 and H2, according to the sorted 
order.



Finding the closest pair of points

Main algorithm: 

• Partition array H into two halves H1 and H2, according to the sorted 
order.

• For each element in Hi, put the element in Vi , for i=1,2.



Finding the closest pair of points

Main algorithm: 

• Partition array H into two halves H1 and H2, according to the sorted 
order.

• For each element in Hi, put the element in Vi , for i=1,2.

• Call the algorithm recursively on the two halves (with access to the 
sub-arrays Hi and Vi , for i=1,2.



Finding the closest pair of points

Main algorithm: 

• Partition array H into two halves H1 and H2, according to the sorted 
order.

• For each element in Hi, put the element in Vi , for i=1,2.

• Call the algorithm recursively on the two halves (with access to the 
sub-arrays Hi and Vi , for i=1,2.

• Let (l1,l2) and (r1,r2) be the set of points returned by the runs of the 
algorithm on the two halves.



Finding the closest pair of points

Main algorithm: 

• Partition array H into two halves H1 and H2, according to the sorted 
order.

• For each element in Hi, put the element in Vi , for i=1,2.

• Call the algorithm recursively on the two halves (with access to the 
sub-arrays Hi and Vi , for i=1,2.

• Let (l1,l2) and (r1,r2) be the set of points returned by the runs of the 
algorithm on the two halves.

• We haven’t really developed that part yet! 



ClosestPair Pseudocode
Algorithm ClosestPair(p1,…,pn) 
         Construct arrays H and V 
         (p1,p2) = ClosestPairRec(H,V) 

Procedure ClosestPairRec(H,V) 
         If |H| = |V| ≤ 3 
             Check all pairwise distances 
         Construct H1, H2, V1, V2  
         (l1,l2) = ClosestPairRec(H1,V1)  
         (r1,r2) = ClosestPairRec(H2,V2)          



ClosestPair Pseudocode
Algorithm ClosestPair(p1,…,pn) 
         Construct arrays H and V 
         (p1,p2) = ClosestPairRec(H,V) 

Procedure ClosestPairRec(H,V) 
         If |H| = |V| ≤ 3 
             Check all pairwise distances 
         Construct H1, H2, V1, V2  
         (l1,l2) = ClosestPairRec(H1,V1)  
         (r1,r2) = ClosestPairRec(H2,V2)          



Divide and Conquer 



Divide and Conquer 

• We have successfully divided the problem into smaller 
parts.



Divide and Conquer 

• We have successfully divided the problem into smaller 
parts.

• How do we combine these parts to get a solution to the 
original problem?



Divide and Conquer 

• We have successfully divided the problem into smaller 
parts.

• How do we combine these parts to get a solution to the 
original problem?

• What might be the problem here?



Divide and Conquer 

• We have successfully divided the problem into smaller 
parts.

• How do we combine these parts to get a solution to the 
original problem?

• What might be the problem here?

• What if the smallest distance is between points in (H1,V1)   
and (H2,V2)?



Finding the closest pair of points
H1 H2

V1 V2

δ



Finding the closest pair of points
H1 H2

V1 V2

What is these are  
the closest points?

δ



Combining the solutions

• Let δ be the min(d(l1,l2), d(r1,r2)) be the minimum distance 
among the two solutions provided.


• Draw a vertical line L over the rightmost point of the set 
H1.



Finding the closest pair of points
H1 H2

V1 V2

δ



Finding the closest pair of points
H1 H2

V1 V2

δ



Combining the solutions

• Let δ be the min(d(l1,l2), d(r1,r2)) be the minimum distance 
among the two solutions provided.


• Draw a vertical line L over the rightmost point of the set 
H1. 

• This basically means that the separating line is a “tight” 
as possible.


• Let S be the set of points of distance within δ of L.



Finding the closest pair of points
H1 H2

V1 V2

δ



Finding the closest pair of points
H1 H2

V1 V2

δ

≤ δ

≤ δ



Combining the solutions

• Let δ be the min(d(l1,l2), d(r1,r2)) be the minimum distance 
among the two solutions provided.


• Draw a vertical line L over the rightmost point of the set 
H1. 

• This basically means that the separating line is a “tight” 
as possible.


• Let S be the set of points of distance within δ of L.



 Is it safe to only consider 
the points in S? 



 Is it safe to only consider 
the points in S? 



 Is it safe to only consider 
the points in S? 

hypotenuse



 Is it safe to only consider 
the points in S? 

hypotenuse

at most δ



Constructing the set S

106421 14 17 19 21 24

Array V



Constructing the set S

106421 14 17 19 21 24

Array V



Constructing the set S

106421 14 17 19 21 24

Array V

Do we get more than a set?



Constructing the set S

106421 14 17 19 21 24

Array V

Do we get more than a set?

We actually get a sorted list!  
(sorted in the y-coordinate) 

Call this Sv.



Finding the closest pair of points



Finding the closest pair of points

δ δ



Zooming in

δ δ



Partitioning the square

δ δ
δ/2

δ/2



Claims

• Claim 1: In each box, there can only be a single point.



Partitioning the square

δ δ
δ/2

δ/2



Partitioning the square

δ δ
δ/2

δ/2



Partitioning the square

δ δ
δ/2

δ/2
less than δ



Partitioning the square

δ δ
δ/2

δ/2
less than δ

Contradiction!



Claims

• Claim 1: In each box, there can only be a single point.


• Claim 2: If two points p1 and p2 are such that d(p1,p2) < δ, 
then Sv[p1y] - Sv[p2y] ≤ 15


• In other words, the two points are within 15 positions of 
each other in the sorted array Sv.



Claims



Claims
• Claim 2: If two points p1 and p2 are such that d(p1,p2) < δ, 

then Sv[p1y] - Sv[p2y] ≤ 15



Claims
• Claim 2: If two points p1 and p2 are such that d(p1,p2) < δ, 

then Sv[p1y] - Sv[p2y] ≤ 15

• Assume by contradiction that this is not the case, and p1 
and p2 are at least 16 positions apart in Sv.



Claims
• Claim 2: If two points p1 and p2 are such that d(p1,p2) < δ, 

then Sv[p1y] - Sv[p2y] ≤ 15

• Assume by contradiction that this is not the case, and p1 
and p2 are at least 16 positions apart in Sv.

• By Claim 1, there can be at most one point in each box. 



Claims
• Claim 2: If two points p1 and p2 are such that d(p1,p2) < δ, 

then Sv[p1y] - Sv[p2y] ≤ 15

• Assume by contradiction that this is not the case, and p1 
and p2 are at least 16 positions apart in Sv.

• By Claim 1, there can be at most one point in each box. 

• To be 16 positions apart, there must be at least 3 rows 
of boxes separating the points.



Claims
• Claim 2: If two points p1 and p2 are such that d(p1,p2) < δ, 

then Sv[p1y] - Sv[p2y] ≤ 15

• Assume by contradiction that this is not the case, and p1 
and p2 are at least 16 positions apart in Sv.

• By Claim 1, there can be at most one point in each box. 

• To be 16 positions apart, there must be at least 3 rows 
of boxes separating the points.

• But then the distance is at least 3δ/2, a contradiction.



Partitioning the square

δ δ
δ/2

δ/2



Partitioning the square

δ δ
δ/2

δ/2

 ≥3δ/2



Concluding the algorithm



Concluding the algorithm

• Make pass through Sv, and for each element, find the 
distance to the next 15 elements in the array.



Concluding the algorithm

• Make pass through Sv, and for each element, find the 
distance to the next 15 elements in the array.

• Find the pair of points p1 and p2 for which the minimum of 
all these distances is achieved.



Concluding the algorithm

• Make pass through Sv, and for each element, find the 
distance to the next 15 elements in the array.

• Find the pair of points p1 and p2 for which the minimum of 
all these distances is achieved.

• Compare this to δ and output the pair with the minimum 
distance.



ClosestPair Pseudocode
Algorithm ClosestPair(p1,…,pn)                                 Construct Sv 
         Construct arrays H and V                           For each point s in Sv 
         (p1,p2) = ClosestPairRec(H,V)                                 Compute distance between s  
                                                                                 and the next 15 points of Sv.       
Procedure ClosestPairRec(H,V)                                       Return the pair of points (s1,s2) 
         If |H| = |V| ≤ 3                                                   that minimises this distance. 
             Check all pairwise distances 
         Construct H1, H2, V1, V2  
         (l1,l2) = ClosestPairRec(H1,V1)  
         (r1,r2) = ClosestPairRec(H2,V2)  
           
         δ = min(d(l1,l2), d(r1,r2))                                If d(s1,s2) ≤ δ 
         x* = maxi xi    for i=1,…,n                                    Return (s1,s2)  
         L = {(x,y) : x=x*}                                           Else if d(l1,l2) < d(r1,r2) 
         S = set of points within distance δ of L.            Return (l1,l2)  
                                                                              Else return (r1,r2)



Running Time
Algorithm ClosestPair(p1,…,pn)                                 Construct Sv 
         Construct arrays H and V                           For each point s in Sv 
         (p1,p2) = ClosestPairRec(H,V)                                 Compute distance between s  
                                                                                 and the next 15 points of Sv.       
Procedure ClosestPairRec(H,V)                                       Return the pair of points (s1,s2) 
         If |H| = |V| ≤ 3                                                   that minimises this distance. 
             Check all pairwise distances 
         Construct H1, H2, V1, V2  
         (l1,l2) = ClosestPairRec(H1,V1)  
         (r1,r2) = ClosestPairRec(H2,V2)  
           
         δ = min(d(l1,l2), d(r1,r2))                                If d(s1,s2) ≤ δ 
         x* = maxi xi    for i=1,…,n                                    Return (s1,s2)  
         L = {(x,y) : x=x*}                                           Else if d(l1,l2) < d(r1,r2) 
         S = set of points within distance δ of L.            Return (l1,l2)  
                                                                              Else return (r1,r2)



Running Time
Algorithm ClosestPair(p1,…,pn)                                 Construct Sv 
         Construct arrays H and V                           For each point s in Sv 
         (p1,p2) = ClosestPairRec(H,V)                                 Compute distance between s  
                                                                                 and the next 15 points of Sv.       
Procedure ClosestPairRec(H,V)                                       Return the pair of points (s1,s2) 
         If |H| = |V| ≤ 3                                                   that minimises this distance. 
             Check all pairwise distances 
         Construct H1, H2, V1, V2  
         (l1,l2) = ClosestPairRec(H1,V1)  
         (r1,r2) = ClosestPairRec(H2,V2)  
           
         δ = min(d(l1,l2), d(r1,r2))                                If d(s1,s2) ≤ δ 
         x* = maxi xi    for i=1,…,n                                    Return (s1,s2)  
         L = {(x,y) : x=x*}                                           Else if d(l1,l2) < d(r1,r2) 
         S = set of points within distance δ of L.            Return (l1,l2)  
                                                                              Else return (r1,r2)

?



Finding the closest pair of points



Finding the closest pair of points

Preprocessing: 



Finding the closest pair of points

Preprocessing: 

• Maintain two arrays H and V for the horizontal and vertical 
coordinates of the points respectively.



Finding the closest pair of points

Preprocessing: 

• Maintain two arrays H and V for the horizontal and vertical 
coordinates of the points respectively.

• To populate H and V, simply run through the given points 
p1=(x1,y1), p2=(x2,y2), … , pn=(xn,yn) and put x1, x2, … , xn into 
H and y1, y2, … , yn into V.



Finding the closest pair of points

Preprocessing: 

• Maintain two arrays H and V for the horizontal and vertical 
coordinates of the points respectively.

• To populate H and V, simply run through the given points 
p1=(x1,y1), p2=(x2,y2), … , pn=(xn,yn) and put x1, x2, … , xn into 
H and y1, y2, … , yn into V.

• Sort the points in H and in V, using some sorting 
algorithm.



Running Time
Algorithm ClosestPair(p1,…,pn)                                 Construct Sv 
         Construct arrays H and V                           For each point s in Sv 
         (p1,p2) = ClosestPairRec(H,V)                                 Compute distance between s  
                                                                                 and the next 15 points of Sv.       
Procedure ClosestPairRec(H,V)                                       Return the pair of points (s1,s2) 
         If |H| = |V| ≤ 3                                                   that minimises this distance. 
             Check all pairwise distances 
         Construct H1, H2, V1, V2  
         (l1,l2) = ClosestPairRec(H1,V1)  
         (r1,r2) = ClosestPairRec(H2,V2)  
           
         δ = min(d(l1,l2), d(r1,r2))                                If d(s1,s2) ≤ δ 
         x* = maxi xi    for i=1,…,n                                    Return (s1,s2)  
         L = {(x,y) : x=x*}                                           Else if d(l1,l2) < d(r1,r2) 
         S = set of points within distance δ of L.            Return (l1,l2)  
                                                                              Else return (r1,r2)

?



Running Time
Algorithm ClosestPair(p1,…,pn)                                 Construct Sv 
         Construct arrays H and V                           For each point s in Sv 
         (p1,p2) = ClosestPairRec(H,V)                                 Compute distance between s  
                                                                                 and the next 15 points of Sv.       
Procedure ClosestPairRec(H,V)                                       Return the pair of points (s1,s2) 
         If |H| = |V| ≤ 3                                                   that minimises this distance. 
             Check all pairwise distances 
         Construct H1, H2, V1, V2  
         (l1,l2) = ClosestPairRec(H1,V1)  
         (r1,r2) = ClosestPairRec(H2,V2)  
           
         δ = min(d(l1,l2), d(r1,r2))                                If d(s1,s2) ≤ δ 
         x* = maxi xi    for i=1,…,n                                    Return (s1,s2)  
         L = {(x,y) : x=x*}                                           Else if d(l1,l2) < d(r1,r2) 
         S = set of points within distance δ of L.            Return (l1,l2)  
                                                                              Else return (r1,r2)

O(n log n)



Running Time
Algorithm ClosestPair(p1,…,pn)                                 Construct Sv 
         Construct arrays H and V                           For each point s in Sv 
         (p1,p2) = ClosestPairRec(H,V)                                 Compute distance between s  
                                                                                 and the next 15 points of Sv.       
Procedure ClosestPairRec(H,V)                                       Return the pair of points (s1,s2) 
         If |H| = |V| ≤ 3                                                   that minimises this distance. 
             Check all pairwise distances 
         Construct H1, H2, V1, V2  
         (l1,l2) = ClosestPairRec(H1,V1)  
         (r1,r2) = ClosestPairRec(H2,V2)  
           
         δ = min(d(l1,l2), d(r1,r2))                                If d(s1,s2) ≤ δ 
         x* = maxi xi    for i=1,…,n                                    Return (s1,s2)  
         L = {(x,y) : x=x*}                                           Else if d(l1,l2) < d(r1,r2) 
         S = set of points within distance δ of L.            Return (l1,l2)  
                                                                              Else return (r1,r2)

O(n log n)

?



Running Time
Algorithm ClosestPair(p1,…,pn)                                 Construct Sv 
         Construct arrays H and V                           For each point s in Sv 
         (p1,p2) = ClosestPairRec(H,V)                                 Compute distance between s  
                                                                                 and the next 15 points of Sv.       
Procedure ClosestPairRec(H,V)                                       Return the pair of points (s1,s2) 
         If |H| = |V| ≤ 3                                                   that minimises this distance. 
             Check all pairwise distances 
         Construct H1, H2, V1, V2  
         (l1,l2) = ClosestPairRec(H1,V1)  
         (r1,r2) = ClosestPairRec(H2,V2)  
           
         δ = min(d(l1,l2), d(r1,r2))                                If d(s1,s2) ≤ δ 
         x* = maxi xi    for i=1,…,n                                    Return (s1,s2)  
         L = {(x,y) : x=x*}                                           Else if d(l1,l2) < d(r1,r2) 
         S = set of points within distance δ of L.            Return (l1,l2)  
                                                                              Else return (r1,r2)

O(n log n)

O(n log n) 
known recurrence



Running Time
Algorithm ClosestPair(p1,…,pn)                                 Construct Sv 
         Construct arrays H and V                           For each point s in Sv 
         (p1,p2) = ClosestPairRec(H,V)                                 Compute distance between s  
                                                                                 and the next 15 points of Sv.       
Procedure ClosestPairRec(H,V)                                       Return the pair of points (s1,s2) 
         If |H| = |V| ≤ 3                                                   that minimises this distance. 
             Check all pairwise distances 
         Construct H1, H2, V1, V2  
         (l1,l2) = ClosestPairRec(H1,V1)  
         (r1,r2) = ClosestPairRec(H2,V2)  
           
         δ = min(d(l1,l2), d(r1,r2))                                If d(s1,s2) ≤ δ 
         x* = maxi xi    for i=1,…,n                                    Return (s1,s2)  
         L = {(x,y) : x=x*}                                           Else if d(l1,l2) < d(r1,r2) 
         S = set of points within distance δ of L.            Return (l1,l2)  
                                                                              Else return (r1,r2)

O(n log n)

O(n log n) 
known recurrence

O(n)

O(n)
O(n)

O(n)
O(1)



Integer Multiplication



Integer Multiplication

1100
1101x

Input: 2 integer numbers, in binary 
                             n is the number of bits of each number



Integer Multiplication

1100
1101x
1100

Input: 2 integer numbers, in binary 
                             n is the number of bits of each number



Integer Multiplication

1100
1101x
1100

0000

Input: 2 integer numbers, in binary 
                             n is the number of bits of each number



Integer Multiplication

1100
1101x
1100

0000
1100

Input: 2 integer numbers, in binary 
                             n is the number of bits of each number



Integer Multiplication

1100
1101x
1100

0000
1100

1100

Input: 2 integer numbers, in binary 
                             n is the number of bits of each number



Integer Multiplication

1100
1101x
1100

0000
1100

1100

Input: 2 integer numbers, in binary 
                             n is the number of bits of each number



Integer Multiplication

1100
1101x
1100

0000
1100

1100

10011100

Input: 2 integer numbers, in binary 
                             n is the number of bits of each number



Integer Multiplication

1100
1101x
1100

0000
1100

1100

10011100

Input: 2 integer numbers, in binary 
                             n is the number of bits of each number

What is the running time of this algorithm?



Integer Multiplication

1100
1101x
1100

0000
1100

1100

10011100

Input: 2 integer numbers, in binary 
                             n is the number of bits of each number

What is the running time of this algorithm?

O(n) time to compute each partial product

n partial products


Time O(n2)



Can we do it faster?

• We will use the Divide-and-Conquer approach.


• We will reduce the problem to solving some instances 
with n/2 bits. 


• Then we will use this approach recursively to get a 
solution for the original problem.



Faster multiplication



Faster multiplication
x = x1 • 2n/2 + x0



Faster multiplication

y = y1 • 2n/2 + y0

x = x1 • 2n/2 + x0



Faster multiplication

y = y1 • 2n/2 + y0

x = x1 • 2n/2 + x0

x • y = (x1 • 2n/2 + x0) • (y1 • 2n/2 + y0) 



Faster multiplication

y = y1 • 2n/2 + y0

x = x1 • 2n/2 + x0

x • y = (x1 • 2n/2 + x0) • (y1 • 2n/2 + y0) 

= x1 • y1 • 2n/2 + (x1 • y0 + x0 •  y1) • 2n/2 + x0 • y0 



Faster multiplication

y = y1 • 2n/2 + y0

x = x1 • 2n/2 + x0

x • y = (x1 • 2n/2 + x0) • (y1 • 2n/2 + y0) 

= x1 • y1 • 2n/2 + (x1 • y0 + x0 •  y1) • 2n/2 + x0 • y0 

4 multiplications of n/2 bit numbers 
T(n) ≤ 4T(n/2) + cn



Faster multiplication

y = y1 • 2n/2 + y0

x = x1 • 2n/2 + x0

x • y = (x1 • 2n/2 + x0) • (y1 • 2n/2 + y0) 

= x1 • y1 • 2n/2 + (x1 • y0 + x0 •  y1) • 2n/2 + x0 • y0 

4 multiplications of n/2 bit numbers 
T(n) ≤ 4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(nlog4) = O(n^2)



Faster multiplication

y = y1 • 2n/2 + y0

x = x1 • 2n/2 + x0

x • y = (x1 • 2n/2 + x0) • (y1 • 2n/2 + y0) 

= x1 • y1 • 2n/2 + (x1 • y0 + x0 •  y1) • 2n/2 + x0 • y0 

4 multiplications of n/2 bit numbers 
T(n) ≤ 4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(nlog4) = O(n^2)
Generally, solving the recurrence T(n) ≤ qT(n/2) + cn gets us to T(n) = O(nlogq)



Faster multiplication

y = y1 • 2n/2 + y0

x = x1 • 2n/2 + x0

x • y = (x1 • 2n/2 + x0) • (y1 • 2n/2 + y0) 

= x1 • y1 • 2n/2 + (x1 • y0 + x0 •  y1) • 2n/2 + x0 • y0 

4 multiplications of n/2 bit numbers 
T(n) ≤ 4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(nlog4) = O(n^2)
Generally, solving the recurrence T(n) ≤ qT(n/2) + cn gets us to T(n) = O(nlogq)

(x1 + x0) (y1 + y0)  = x1 • y1 + x1 • y0 + x0 •  y1 + x0 • y0



Faster multiplication

y = y1 • 2n/2 + y0

x = x1 • 2n/2 + x0

x • y = (x1 • 2n/2 + x0) • (y1 • 2n/2 + y0) 

= x1 • y1 • 2n/2 + (x1 • y0 + x0 •  y1) • 2n/2 + x0 • y0 

4 multiplications of n/2 bit numbers 
T(n) ≤ 4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(nlog4) = O(n^2)
Generally, solving the recurrence T(n) ≤ qT(n/2) + cn gets us to T(n) = O(nlogq)

(x1 + x0) (y1 + y0)  = x1 • y1 + x1 • y0 + x0 •  y1 + x0 • y0

= p



Faster multiplication

y = y1 • 2n/2 + y0

x = x1 • 2n/2 + x0

x • y = (x1 • 2n/2 + x0) • (y1 • 2n/2 + y0) 

4 multiplications of n/2 bit numbers 
T(n) ≤ 4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(nlog4) = O(n^2)
Generally, solving the recurrence T(n) ≤ qT(n/2) + cn gets us to T(n) = O(nlogq)

(x1 + x0) (y1 + y0)  = x1 • y1 + x1 • y0 + x0 •  y1 + x0 • y0

= p

= x1 • y1 • 2n/2 + (p - x1 • y1 - x0 • y0) • 2n/2 + x0 • y0 



Faster multiplication

y = y1 • 2n/2 + y0

x = x1 • 2n/2 + x0

x • y = (x1 • 2n/2 + x0) • (y1 • 2n/2 + y0) 

4 multiplications of n/2 bit numbers 
T(n) ≤ 4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(nlog4) = O(n^2)
Generally, solving the recurrence T(n) ≤ qT(n/2) + cn gets us to T(n) = O(nlogq)

(x1 + x0) (y1 + y0)  = x1 • y1 + x1 • y0 + x0 •  y1 + x0 • y0

= p

= x1 • y1 • 2n/2 + (p - x1 • y1 - x0 • y0) • 2n/2 + x0 • y0 

We get the recurrence T(n) ≤ 3T(n/2) + cn



Faster multiplication

y = y1 • 2n/2 + y0

x = x1 • 2n/2 + x0

x • y = (x1 • 2n/2 + x0) • (y1 • 2n/2 + y0) 

4 multiplications of n/2 bit numbers 
T(n) ≤ 4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(nlog4) = O(n^2)
Generally, solving the recurrence T(n) ≤ qT(n/2) + cn gets us to T(n) = O(nlogq)

(x1 + x0) (y1 + y0)  = x1 • y1 + x1 • y0 + x0 •  y1 + x0 • y0

= p

= x1 • y1 • 2n/2 + (p - x1 • y1 - x0 • y0) • 2n/2 + x0 • y0 

We get the recurrence T(n) ≤ 3T(n/2) + cn



Faster multiplication

y = y1 • 2n/2 + y0

x = x1 • 2n/2 + x0

x • y = (x1 • 2n/2 + x0) • (y1 • 2n/2 + y0) 

4 multiplications of n/2 bit numbers 
T(n) ≤ 4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(nlog4) = O(n^2)
Generally, solving the recurrence T(n) ≤ qT(n/2) + cn gets us to T(n) = O(nlogq)

(x1 + x0) (y1 + y0)  = x1 • y1 + x1 • y0 + x0 •  y1 + x0 • y0

= p

= x1 • y1 • 2n/2 + (p - x1 • y1 - x0 • y0) • 2n/2 + x0 • y0 

We get the recurrence T(n) ≤ 3T(n/2) + cn

log23 = 1.59



Faster multiplication

y = y1 • 2n/2 + y0

x = x1 • 2n/2 + x0

x • y = (x1 • 2n/2 + x0) • (y1 • 2n/2 + y0) 

4 multiplications of n/2 bit numbers 
T(n) ≤ 4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(nlog4) = O(n^2)
Generally, solving the recurrence T(n) ≤ qT(n/2) + cn gets us to T(n) = O(nlogq)

(x1 + x0) (y1 + y0)  = x1 • y1 + x1 • y0 + x0 •  y1 + x0 • y0

= p

= x1 • y1 • 2n/2 + (p - x1 • y1 - x0 • y0) • 2n/2 + x0 • y0 

We get the recurrence T(n) ≤ 3T(n/2) + cn

log23 = 1.59
T(n) = O(n1.59)


