Advanced Algorithmic Techniques
(COMP523)

Recursion and Divide and Conquer Techniques #3

Recap and plan

Recap and plan

e Last lecture:

e Sorting with the MergeSort algorithm.
e Sorting with the QuickSort algorithm.

 The limitations of comparison-based sorting.

Recap and plan

e Last lecture:

e Sorting with the MergeSort algorithm.
e Sorting with the QuickSort algorithm.

 The limitations of comparison-based sorting.
 This lecture:
 Finding the closest pair of points.

e Integer Multiplication.

Quick Recap

e Searching:

e LinearSearch: Time O(n), (Aux.) Memory O(1)

e BinarySearch: Time O(log n), (Aux.) Memory O(log n)
e Sorting:

e [nsertionSort: Time O(n2), (Aux.) Memory O(1)

o MergeSort: Time O(n) log n, (Aux.) Memory ?

o QuickSort: Time O(n2), (Aux.) Memory ?
* Majority:

e General array: Time O(n), (Aux.) Memory ?

e Sorted array: Time O(log n), (Aux.) Memory ?

Finding the closest
pair of points

Finding the closest pair of points

| n points on the plane

‘ Points are given as pi = (xi, i) |

| ® Find two points with the smallest distance

|

Finding the closest pair of points

| n points on the plane

‘ Points are given as pi = (xi, Vi)

Find two points with the smallest distance

|

Naive solution

Naive solution

e [For every point, find the distance to each other point.

Naive solution

e [For every point, find the distance to each other point.

e Qutput two points that have the smallest distance.

Naive solution

e [For every point, find the distance to each other point.
e Qutput two points that have the smallest distance.

e Running time?

Naive solution

e [For every point, find the distance to each other point.
e Qutput two points that have the smallest distance.
e Running time?

S Q(n2)

Naive solution

For every point, find the distance to each other point.
Output two points that have the smallest distance.
Running time?

¢ Q(n2)

Can we do better?

Warmup: Point_s on the_ line

Warmup: Points on the line

Warmup: Points on the line

Points are now x1, X2, ... , Xn

Warmup: Points on the line

Points are now x1, X2, ... , Xn

Sort the points x1, X2, ... , Xn

Warmup: Points on the line

Points are now x1, X2, ... , Xn

Sort the points x1, X2, ... , Xn
Consider only distances between consecutive points

Warmup: Points on the line

Points are now x1, X2, ... , Xn

Sort the points x1, X2, ... , Xn
Consider only distances between consecutive points

What is the worst-case running time?

Warmup: Points on the line

Points are now x1, X2, ... , Xn

Sort the points x1, X2, ... , Xn
Consider only distances between consecutive points

What is the worst-case running time?

Can be done in O(n log n)

Finding the closest pair of points

| n points on the plane
\ Find two points with the smallest distance |

|

Finding the closest pair of points

‘5 n points on the plane
- Find two points with the smallest distance |

7)

I ‘
| .
Y

}
1§
\

Finding the closest pair of points

‘5 n points on the plane
- Find two points with the smallest distance |

7)

I ‘
| .
Y

}
1§
\

Finding the closest pair of points

‘5 n points on the plane
- Find two points with the smallest distance |

7)

I ‘
| .
Y

}
1§
\

Finding the closest pair of points

R n points on the plane
g Find two points with the smallest distance |

;
B
\

i

Finding the closest pair of points

Finding the closest pair of points

Preprocessing:

Finding the closest pair of points

Preprocessing:

 Maintain two arrays H and V for the horizontal and vertical
coordinates of the points respectively.

Finding the closest pair of points

Preprocessing:

 Maintain two arrays H and V for the horizontal and vertical
coordinates of the points respectively.

* Jo populate H and V/, simply run through the given points

P1=(X1,Y1), P2=(X2,¥2), --.. , Pr=(Xn,Yn) and put X1, Xz, ..., XnInto
H and Into

Finding the closest pair of points

Preprocessing:

 Maintain two arrays H and V for the horizontal and vertical
coordinates of the points respectively.

* Jo populate H and V/, simply run through the given points
P1=(X1,Y1), P2=(X2,¥2), --.. , Pr=(Xn,Yn) and put X1, Xz, ..., XnInto
H and iInto

e Sort the points in H and in V, using some sorting
algorithm.

Finding the closest pair of points

Finding the closest pair of points

Main algorithm:

Finding the closest pair of points

Main algorithm:

e Partition array H into two halves H1 and H2, according to
the sorted order.

Finding the closest pair of points

|
-}
|

| j

Finding the closest pair of points

}
B
\

Finding the closest pair of points

Finding the closest pair of points

Main algorithm:

Finding the closest pair of points

Main algorithm:

* Partition array H into two halves H1 and Hz, according to the sorted
ordet.

Finding the closest pair of points

Main algorithm:

* Partition array H into two halves H1 and Hz, according to the sorted
ordet.

* For each element in Hi, put the element in VV:, for i=7,2.

Finding the closest pair of points

Main algorithm:

* Partition array H into two halves H1 and Hz, according to the sorted
ordet.

* For each element in Hi, put the element in VV:, for i=7,2.

e Call the algorithm recursively on the two halves (with access to the
sub-arrays Hiand V', for /=17,2.

Finding the closest pair of points

Main algorithm:

* Partition array H into two halves H1 and Hz, according to the sorted
ordet.

* For each element in Hi, put the element in VV:, for i=7,2.

e Call the algorithm recursively on the two halves (with access to the
sub-arrays Hiand V', for /=17,2.

e Let (l4,l2) and (r1,r2) be the set of points returned by the runs of the
algorithm on the two halves.

Finding the closest pair of points

Main algorithm:

* Partition array H into two halves H1 and Hz, according to the sorted
ordet.

* For each element in Hi, put the element in VV:, for i=7,2.

e Call the algorithm recursively on the two halves (with access to the
sub-arrays Hiand V', for /=17,2.

e Let (l4,l2) and (r1,r2) be the set of points returned by the runs of the
algorithm on the two halves.

* We haven’t really developed that part yet!

ClosestPair Pseudocode

Algorithm ClosestPair(o7,...,on)

Construct arrays H and
(p1,p2) = ClosestPairRec(H, V)

Procedure ClosestPairRec(H, ")

Construct H1, Hz, V1,
(11,12) = ClosestPairRec(H+1, V)

(r1,r2) = ClosestPairRec(Hz,V2)

ClosestPair Pseudocode

Algorithm ClosestPair(o7,...,on)

Construct arrays H and
(p1,p2) = ClosestPairRec(H, V)

Procedure ClosestPairRec(H, V)

If [H| = |V <3
Check all pairwise distances

Construct H1, Hz, V4,
(I1,l2) = ClosestPairRec(H1,V 1)

(r1,r2) = ClosestPairRec(Hz,V/2)

Divide and Conquer

Divide and Conquer

e We have successfully divided the problem into smaller
parts.

Divide and Conquer

e We have successfully divided the problem into smaller
parts.

e How do we combine these parts to get a solution to the
original problem?

Divide and Conquer

e We have successfully divided the problem into smaller
parts.

e How do we combine these parts to get a solution to the
original problem?

e \What might be the problem here?

Divide and Conquer

We have successfully divided the problem into smaller
parts.

How do we combine these parts to get a solution to the
original problem?

What might be the problem here?

What if the smallest distance is between points in (H1,1)
and (Hz,/2)?

Finding the closest pair of points

}
B
\

{

Finding the closest pair of points

o What is these are |
the closest points? | O

:
1§
\

Combining the solutions

e Let 0 be the min(d(l4,l2), d(r1,r2)) be the minimum distance
among the two solutions provided.

 Draw a vertical line L over the rightmost point of the set
Hi.

Finding the closest pair of points

}
B
\

{

Finding the closest pair of points

}
B
\

|

Combining the solutions

e Let 0 be the min(d(l+,l2), d(r1,r2)) be the minimum distance
among the two solutions provided.

 Draw a vertical line L over the rightmost point of the set
Hi.

e This basically means that the separating line is a “tight”
as possible.

e | et S be the set of points of distance within 6 of L.

Finding the closest pair of points

}
B
\

|

Finding the closest pair of points

=L
1 4
' Hi 44 H>
| |
\ ‘3
1 3

}
1§
\

Combining the solutions

e Let 0 be the min(d(l+,l2), d(r1,r2)) be the minimum distance
among the two solutions provided.

 Draw a vertical line L over the rightmost point of the set
Hi.

e This basically means that the separating line is a “tight”
as possible.

e | et S be the set of points of distance within 6 of L.

Is It safe to only consider
the points in S?

e m— —

Is It safe to only consider
the points in S?

e m— —

Is It safe to only consider
the points in S?

hypotenuse

2 . -l
' 8
.
4 g

Is It safe to only consider

the points in S?

hypotenuse

at most ©

Constructing the set S

Array

Constructing the set S

Array

Constructing the set S

Array

Do we get more than a set?

Constructing the set S

Array

Do we get more than a set?

We actually get a sorted list!
(sorted in the y-coordinate)
Call this S..

Finding the closest pair of points

}
B
\

Finding the closest pair of points

|
-}
|

| j

:
1§
\

Zooming in

S—

Partitioning the square

Claims

e Claim 1: In each box, there can only be a single point.

S—

Partitioning the square

Partitioning the square

L —

—— —

Partitioning the square

P
5 4
B & ’ I
AR - AR
e e A i SO T NP P T A0 K G T R O A Y Ao e " R it i R SR AN D T T T R TPV SEDVDOCIRES o
.
)
‘ .
- ’
\ .

I---fﬁ--,;--- ...

Partitioning the square

Claims

e Claim 1: In each box, there can only be a single point.

e Claim 2: If two points p1 and p2 are such that d(p1,p2) < 6,
then Sv[p1y] - Sv[p2y] <15

* |n other words, the two points are within 15 positions of
each other in the sorted array Sy,

Claims

Claims

e Claim 2: If two points p1 and p2 are such that d(p1,p2) < 6,
then Sv[p‘ly] - Sv[p2y] <15

Claims

e Claim 2: If two points p1 and p2 are such that d(p1,p2) < 6,
then Sv[p‘ly] - Sv[p2y] <15

e Assume by contradiction that this is not the case, and pj
and p2 are at least 16 positions apart in Sy.

Claims

e Claim 2: If two points p1 and p2 are such that d(p1,p2) < 6,
then Sv[p‘ly] - Sv[p2y] <15

e Assume by contradiction that this is not the case, and pj
and p2 are at least 16 positions apart in Sy.

e By Claim 1, there can be at most one point in each box.

Claims

e Claim 2: If two points p1 and p2 are such that d(p1,p2) < 6,
then Sv[p‘ly] - Sv[p2y] <15

e Assume by contradiction that this is not the case, and pj
and p2 are at least 16 positions apart in Sy.

e By Claim 1, there can be at most one point in each box.

* Jo be 16 positions apart, there must be at least 3 rows
of boxes separating the points.

Claims

e Claim 2: If two points p1 and p2 are such that d(p1,p2) < 6,
then Sv[p‘ly] - Sv[p2y] <15

e Assume by contradiction that this is not the case, and pj
and p2 are at least 16 positions apart in Sy.

e By Claim 1, there can be at most one point in each box.

* Jo be 16 positions apart, there must be at least 3 rows
of boxes separating the points.

e But then the distance is at least 36/2, a contradiction.

S—

Partitioning the square

Partitioning the square

| >356/2

Concluding the algorithm

Concluding the algorithm

e Make pass through Sy, and for each element, find the
distance to the next 15 elements in the array.

Concluding the algorithm

e Make pass through Sy, and for each element, find the
distance to the next 15 elements in the array.

e Find the pair of points p1 and p2 for which the minimum of
all these distances is achieved.

Concluding the algorithm

e Make pass through Sy, and for each element, find the
distance to the next 15 elements in the array.

e Find the pair of points p1 and p2 for which the minimum of
all these distances is achieved.

e Compare this to 6 and output the pair with the minimum
distance.

ClosestPair Pseudocode

Algorithm ClosestPair(o1,...,on)

Construct arrays H and
(p1,p2) = ClosestPairRec(H, V)

Procedure ClosestPairRec(H,)
If [H| = |V <3
Check all pairwise distances

Construct H1, Hz, V4,
(I1,l2) = ClosestPairRec(H1, V1)

(r1,r2) = ClosestPairRec(H2,V)

& = min(d(/1,/2), d(r1,r2))

x*=max;x; fori=7,...,n

L ={(x,y) : x=x7}

S = set of points within distance 6 of L.

Construct Sy

For each point s in Sy
Compute distance between s

and the next 15 points of Sy,
Return the pair of points (s7,s2)

that minimises this distance.

If d(s7,52) <O
Return (s7,S2)
Else if d(/1,/2) < d(r7,r2)
Return (/1,/2)
Else return (r1,r2)

Running Time

Algorithm ClosestPair(o1,...,on)

Construct arrays H and
(p1,p2) = ClosestPairRec(H, V)

Procedure ClosestPairRec(H,)
If [H| = |V <3
Check all pairwise distances

Construct H1, Hz, V4,
(I1,l2) = ClosestPairRec(H1, V1)

(r1,r2) = ClosestPairRec(H2,V)

& = min(d(/1,/2), d(r1,r2))

x*=max;x; fori=7,...,n

L ={(x,y) : x=x7}

S = set of points within distance 6 of L.

Construct Sy

For each point s in Sy
Compute distance between s

and the next 15 points of Sy,
Return the pair of points (s7,S2)

that minimises this distance.

If d(s7,52) <O
Return (s7,S2)
Else if d(/1,/2) < d(r7,r2)
Return (/1,/2)
Else return (r1,r2)

Running Time

Algorithm ClosestPair(p7,...,on)

Construct arrays H and
(p1,p2) = ClosestPairRec(H, V)

Procedure ClosestPairRec(H,)
If [H| = |V <3
Check all pairwise distances

Construct H1, Hz, V4,
(I1,l2) = ClosestPairRec(H1, V1)

(r1,r2) = ClosestPairRec(H2,V)

& = min(d(/1,/2), d(r1,r2))

x*=max;x; fori=7,...,n

L ={(x,y) : x=x7}

S = set of points within distance 6 of L.

Construct Sy

For each point s in Sy
Compute distance between s

and the next 15 points of Sy,
Return the pair of points (s7,S2)

that minimises this distance.

If d(s7,52) <O
Return (s7,S2)
Else if d(/1,/2) < d(r7,r2)
Return (/1,/2)
Else return (r1,r2)

Finding the closest pair of points

Finding the closest pair of points

Preprocessing:

Finding the closest pair of points

Preprocessing:

 Maintain two arrays H and V for the horizontal and vertical
coordinates of the points respectively.

Finding the closest pair of points

Preprocessing:

 Maintain two arrays H and V for the horizontal and vertical
coordinates of the points respectively.

* Jo populate H and V/, simply run through the given points

P1=(X1,Y1), P2=(X2,¥2), --.. , Pr=(Xn,Yn) and put X1, Xz, ..., XnInto
H and Into

Finding the closest pair of points

Preprocessing:

 Maintain two arrays H and V for the horizontal and vertical
coordinates of the points respectively.

* Jo populate H and V/, simply run through the given points
P1=(X1,Y1), P2=(X2,¥2), --.. , Pr=(Xn,Yn) and put X1, Xz, ..., XnInto
H and iInto

e Sort the points in H and in V, using some sorting
algorithm.

Running Time

Algorithm ClosestPair(p7,...,on)

Construct arrays H and
(p1,p2) = ClosestPairRec(H, V)

Procedure ClosestPairRec(H,)
If [H| = |V <3
Check all pairwise distances

Construct H1, Hz, V4,
(I1,l2) = ClosestPairRec(H1, V1)

(r1,r2) = ClosestPairRec(H2,V)

& = min(d(/1,/2), d(r1,r2))

x*=max;x; fori=7,...,n

L ={(x,y) : x=x7}

S = set of points within distance 6 of L.

Construct Sy

For each point s in Sy
Compute distance between s

and the next 15 points of Sy,
Return the pair of points (s7,S2)

that minimises this distance.

If d(s7,52) <O
Return (s7,S2)
Else if d(/1,/2) < d(r7,r2)
Return (/1,/2)
Else return (r1,r2)

Running Time

Algorithm ClosestPair(o1,...,on)
Construct arrays H and
(D1,p2) = ClosestPairRec(H,V) RSN
Procedure ClosestPairRec(H,)
If [H| = |V <3
Check all pairwise distances

Construct H1, Hz, V4,
(I1,l2) = ClosestPairRec(H1, V1)

(r1,r2) = ClosestPairRec(H2,V)

& = min(d(/1,/2), d(r1,r2))

x*=max;x; fori=7,...,n

L ={(x,y) : x=x7}

S = set of points within distance 6 of L.

Construct Sy

For each point s in Sy
Compute distance between s

and the next 15 points of Sy,
Return the pair of points (s7,S2)

that minimises this distance.

If d(s7,52) <O
Return (s7,S2)
Else if d(/1,/2) < d(r7,r2)
Return (/1,/2)
Else return (r1,r2)

Running Time

Algorithm ClosestPair(o1,...,on)

Construct arrays H and

(D1,p2) = ClosestPairRec(H,V) RSN
Procedure ClosestPairRec(H,)

If [H| = |V <3
Check all pairwise distances

Construct H1, Hz, V4,
(/1,l2) = ClosestPairRec(H1,V/)

(r1,r2) = ClosestPairRec(H2,V)

& = min(d(/1,/2), d(r1,r2))

x*=max;x; fori=7,...,n

L ={(x,y) : x=x7}

S = set of points within distance 6 of L.

Construct Sy

For each point s in Sy
Compute distance between s

and the next 15 points of Sy,
Return the pair of points (s7,S2)

that minimises this distance.

If d(s7,52) <O
Return (s7,S2)
Else if d(/1,/2) < d(r7,r2)
Return (/1,/2)
Else return (r1,r2)

Running Time

Algorithm ClosestPair(o1,...,0n) Construct Sy
Construct arrays H and For each point s in Sy
(D1,p2) = ClosestPairRec(H,V) RSN Compute distance between s
and the next 15 points of Sy,

Procedure ClosestPairRec(H,) Return the pair of points (s7,S2)

If [H =|V] <3 that minimises this distance.
Check all pairwise distances
Construct Hy, Ho, V1,

(/1,/2) = ClosestPairRec(H1,V1) O(n log n)
(r1,r2) = ClosestPairRec(H2,V>) LSRG

& = min(d(/1,/2), d(r7,r2)) If d(s7,52) <O
x*=max;x; fori=1,...,n Return (s7,s2)

L = {(x,y) : x=x*} Else if d(/7,/2) < d(r1,r2)
S = set of points within distance 6 of L. Return (/1,/2)

Else return (r1,r2)

Running Time

Algorithm ClosestPair(p1,...,on) Construct Sy
Construct arrays H and For each point s in Sy
(p1,p2) = ClosestPairRec(H, V) Compute distance between s
and the next 15 points of Sy,
Procedure ClosestPairRec(H,) Return the pair of points (s7,S2)
If [H| = |V <3 that minimises this distance.

Check all pairwise distances
)} Construct Hq, Hz, V1,

(/1,/2) = ClosestPairRec(H1,V 1) O(n log n)
(r1,r2) = ClosestPairRec(H2,V>) LSRG

& = min(d(/1,/2), d(r7,r2)) If d(s7,52) <O

x*=max;x; fori=7,...,n Return (s7,S2)
L = {(x,y) : x=x"} Else if d(/4,/2) < d(r1,r2)

S = set of points within distance 6 of L. Return (/1,/2)

Else return (r1,r2)

Integer Multiplication

Integer Multiplication

Input: 2 integer numbers, in binary

n is the number of bits of each number
1100

x 1101

Integer Multiplication

Input: 2 integer numbers, in binary

n is the number of bits of each number
1100

x 1101

1100

Integer Multiplication

Input: 2 integer numbers, in binary

n is the number of bits of each number
1100

x 1101

1100
0000

Integer Multiplication

Input: 2 integer numbers, in binary

n is the number of bits of each number
1100

x 1101

1100

0000
1100

Integer Multiplication

Input: 2 integer numbers, in binary

n is the number of bits of each number
1100

x 1101

1100

0000
1100

1100

Integer Multiplication

Input: 2 integer numbers, in binary

n is the number of bits of each number
1100

x 1101

1100

0000
1100

1100

Integer Multiplication

Input: 2 integer numbers, in binary

n is the number of bits of each number
1100

x 1101

1100

0000
1100

1100

10011100

Integer Multiplication

Input: 2 integer numbers, in binary

n is the number of bits of each number
1100

x 1101

1100

0000 What is the running time of this algorithm?
1100

1100

10011100

Integer Multiplication

Input: 2 integer numbers, in binary

n is the number of bits of each number
1100

x 1101

1100

0000 What is the running time of this algorithm?
1100

1100

10011100 O(n) time to comp.ute each partial product
n partial products
Time O(n?)

Can we do it faster?

e We will use the Divide-and-Conquer approach.

e We will reduce the problem to solving some instances
with n/2 bits.

e Then we will use this approach recursively to get a
solution for the original problem.

Faster multiplication

Faster multiplication

X =X1°*2"2+ Xo

Faster multiplication

= X1 * 22+ Xo
V = V1 02n/2_|_y0

Faster multiplication

Faster multiplication

X =X1°*2V2+ Xo
V=V o2n/2+y0
X°*y= (x1 . 2n/2_|_x0) . (y1 o 2n/2+y0)

=X1°Y1°2V2+ (X1 * Yo+ Xo * Y1) * 272+ Xo * Yo

Faster multiplication

X =X1°*2V2+ Xo
V=V .2n/2_|_y0
XY= (X1 . 2n/2_|_xO) . (y1 . 2n/2_|_y0)
= X4 .y1.2n/2_|_(X1 *Vo+ Xo ° y1).2n/2_|_xO.y0

4 multiplications of n/2 bit numbers
T(n) <4T(n/2) + cn

Faster multiplication

X =X1°*2V2+ Xo
V=VYi° 2n/2_|_y0
Xy =(X1°2V2+ Xo) * (y1 * 272 + yo)
=X1°Vy1° 2n/2_|_(x1 *Vo+ Xo ° y1) e« 2n/2 4 Xo * Yo
4 multiplications of n/2 bit numbers
T(n) <4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(n'e94) = O(n"2)

Faster multiplication

X =X1°*2V2+ Xo
V=VYi° 2n/2_|_y0
Xy =(X1°2V2+ Xo) * (y1 * 272 + yo)
=X1°Vy1° 2n/2_|_(x1 *Vo+ Xo ° y1) e« 2n/2 4 Xo * Yo
4 multiplications of n/2 bit numbers
T(n) <4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(n'eg4) = O(n"2)
Generally, solving the recurrence T(n) < gqT(n/2) + cn gets us to T(n) = O(n'°99)

Faster multiplication

X =X1°*2V2+ Xo
V=VYi° 2n/2_|_y0
Xy =(X1°2V2+ Xo) * (y1 * 272 + yo)
=X1°Vy1° 2n/2_|_(X1 *Vo+ Xo ° y1) e« 2n/2 4 Xo * Yo
4 multiplications of n/2 bit numbers
T(n) <4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(n'eg4) = O(n"2)
Generally, solving the recurrence T(n) < gqT(n/2) + cn gets us to T(n) = O(n'°99)

(X1 + Xo) (Y1+ Yo) =X1°Y1+X1°*Yo+ Xo* Y1+ Xo°*Yo

Faster multiplication

X =X1°*2V2+ Xo
V=VYi° 2n/2_|_y0
Xy =(X1°2V2+ Xo) * (y1 * 272 + yo)
=X1°Vy1° 2n/2_|_(X1 *Vo+ Xo ° y1) e« 2n/2 4 Xo * Yo
4 multiplications of n/2 bit numbers
T(n) <4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(n'eg4) = O(n"2)
Generally, solving the recurrence T(n) < gqT(n/2) + cn gets us to T(n) = O(n'°99)

(X1 + Xo) (Y1+ Yo) =X1°Y1+X1°*Yo+ Xo* Y1+ Xo°*Yo

=p

Faster multiplication

X =X1°*2V2+ Xo
V=V1° 2n/2_|_y0
Xy =(X1°2V2+ Xo) * (y1 * 272 + yo)
=X1°Y1°2V2+(P - X1 *Y1-Xo*Yo) * 22+ Xo * Yo
4 multiplications of n/2 bit numbers
T(n) <4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(n'eg4) = O(n"2)
Generally, solving the recurrence T(n) < gqT(n/2) + cn gets us to T(n) = O(n'°99)

(X1 + Xo) (Y1+ Yo) =X1°Y1+X1°*Yo+ Xo* Y1+ Xo°*Yo

=p

Faster multiplication

X =X1°*2"2+ Xo
V = V1 02n/2_|_y0
X°*y= (x1 . 2n/2_|_x0) . (y1 o 2n/2+y0)

=X1°Y1°2V2+(P - X1 *Y1-Xo*Yo) * 22+ Xo * Yo

4 multiplications of n/2 bit numbers
T(n) <4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(n'eg4) = O(n"2)
Generally, solving the recurrence T(n) < gqT(n/2) + cn gets us to T(n) = O(n'°99)

(X1 + Xo) (Y1+ Yo) =X1°Y1+X1°*Yo+ Xo* Y1+ Xo°*Yo
=p

We get the recurrence T(n) < 3T(n/2) + cn

Faster multiplication

X =X1°*2"2+ Xo
V = V1 02n/2_|_y0
X°*y= (x1 . 2n/2_|_x0) . (y1 o 2n/2+y0)

=X1°Y1°2V2+(P - X1 *Y1-Xo*Yo) * 22+ Xo * Yo

4 multiplications of n/2 bit numbers
T(n) <4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(n'eg4) = O(n"2)
Generally, solving the recurrence T(n) < gT(n/2) + cn gets us to T(n) = O(n'e99)

(X1 + Xo) (Y1+ Yo) =X1°Y1+X1°*Yo+ Xo* Y1+ Xo°*Yo
=p

We get the recurrence T(n) < 3T(n/2) + cn

Faster multiplication

X =X1°*2V2+ Xo
V=V1° 2n/2_|_y0
Xy =(X1°2V2+ Xo) * (y1 * 272 + yo)
=X1°Y1°2V2+(P - X1 *Y1-Xo*Yo) * 22+ Xo * Yo
4 multiplications of n/2 bit numbers
T(n) <4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(n'eg4) = O(n"2)
Generally, solving the recurrence T(n) < gT(n/2) + cn gets us to T(n) = O(n'e99)

log23 = 1.59

(X1 + Xo) (Y1+ Yo) =X1°Y1+X1°*Yo+ Xo* Y1+ Xo°*Yo
=p

We get the recurrence T(n) < 3T(n/2) + cn

Faster multiplication

X =X1°*2V2+ Xo
V=V1° 2n/2_|_y0
Xy =(X1°2V2+ Xo) * (y1 * 272 + yo)
=X1°Y1°2V2+(P - X1 *Y1-Xo*Yo) * 22+ Xo * Yo
4 multiplications of n/2 bit numbers
T(n) <4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(n'e94) = O(n"2)

Generally, solving the recurrence T(n) < gT(n/2) + cn gets us to T(n) = O(n'e99)
log23 = 1.59

(X1+ Xo) (Y1+ Yo) = X1 * Y1 +X1 * Yo+ Xo* Y1+ Xo°* Yo T(n) = O(n™*9)

=P

We get the recurrence T(n) < 3T(n/2) + cn

