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Recap and plan
• Last lecture: 

• Sorting with the MergeSort algorithm.


• Sorting with the QuickSort algorithm.


• The limitations of comparison-based sorting. 

• This lecture: 

• Finding the closest pair of points.


• Integer Multiplication.



Quick Recap
• Searching: 

• LinearSearch: Time O(n), (Aux.) Memory O(1)


• BinarySearch: Time O(log n), (Aux.) Memory O(log n)


• Sorting: 

• InsertionSort: Time O(n2), (Aux.) Memory O(1)


• MergeSort: Time O(n) log n, (Aux.) Memory ?


• QuickSort: Time O(n2), (Aux.) Memory ?


• Majority: 

• General array: Time O(n), (Aux.) Memory ? 

• Sorted array: Time O(log n), (Aux.) Memory ? 
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Naive solution

• For every point, find the distance to each other point.

• Output two points that have the smallest distance.

• Running time?

• Ω(n2)

• Can we do better?
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Warmup: Points on the line
Points are now x1, x2, … , xn

Sort the points x1, x2, … , xn

Consider only distances between consecutive points

What is the worst-case running time?

Can be done in O(n log n)
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Finding the closest pair of points

Preprocessing: 

• Maintain two arrays H and V for the horizontal and vertical 
coordinates of the points respectively.

• To populate H and V, simply run through the given points 
p1=(x1,y1), p2=(x2,y2), … , pn=(xn,yn) and put x1, x2, … , xn into 
H and y1, y2, … , yn into V.

• Sort the points in H and in V, using some sorting 
algorithm.
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Finding the closest pair of points

Main algorithm: 

• Partition array H into two halves H1 and H2, according to the sorted 
order.

• For each element in Hi, put the element in Vi , for i=1,2.

• Call the algorithm recursively on the two halves (with access to the 
sub-arrays Hi and Vi , for i=1,2.

• Let (l1,l2) and (r1,r2) be the set of points returned by the runs of the 
algorithm on the two halves.

• We haven’t really developed that part yet! 
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Divide and Conquer 

• We have successfully divided the problem into smaller 
parts.

• How do we combine these parts to get a solution to the 
original problem?

• What might be the problem here?

• What if the smallest distance is between points in (H1,V1)   
and (H2,V2)?
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Finding the closest pair of points
H1 H2

V1 V2

What is these are  
the closest points?

δ



Combining the solutions

• Let δ be the min(d(l1,l2), d(r1,r2)) be the minimum distance 
among the two solutions provided.


• Draw a vertical line L over the rightmost point of the set 
H1.
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• Let δ be the min(d(l1,l2), d(r1,r2)) be the minimum distance 
among the two solutions provided.


• Draw a vertical line L over the rightmost point of the set 
H1. 

• This basically means that the separating line is a “tight” 
as possible.


• Let S be the set of points of distance within δ of L.
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Combining the solutions

• Let δ be the min(d(l1,l2), d(r1,r2)) be the minimum distance 
among the two solutions provided.


• Draw a vertical line L over the rightmost point of the set 
H1. 

• This basically means that the separating line is a “tight” 
as possible.


• Let S be the set of points of distance within δ of L.
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 Is it safe to only consider 
the points in S? 

hypotenuse

at most δ
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Constructing the set S

106421 14 17 19 21 24

Array V

Do we get more than a set?

We actually get a sorted list!  
(sorted in the y-coordinate) 

Call this Sv.
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Zooming in

δ δ



Partitioning the square

δ δ
δ/2

δ/2



Claims

• Claim 1: In each box, there can only be a single point.
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Claims

• Claim 1: In each box, there can only be a single point.


• Claim 2: If two points p1 and p2 are such that d(p1,p2) < δ, 
then Sv[p1y] - Sv[p2y] ≤ 15


• In other words, the two points are within 15 positions of 
each other in the sorted array Sv.
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Claims
• Claim 2: If two points p1 and p2 are such that d(p1,p2) < δ, 

then Sv[p1y] - Sv[p2y] ≤ 15

• Assume by contradiction that this is not the case, and p1 
and p2 are at least 16 positions apart in Sv.

• By Claim 1, there can be at most one point in each box. 

• To be 16 positions apart, there must be at least 3 rows 
of boxes separating the points.

• But then the distance is at least 3δ/2, a contradiction.
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Partitioning the square

δ δ
δ/2

δ/2

 ≥3δ/2
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Concluding the algorithm

• Make pass through Sv, and for each element, find the 
distance to the next 15 elements in the array.

• Find the pair of points p1 and p2 for which the minimum of 
all these distances is achieved.

• Compare this to δ and output the pair with the minimum 
distance.
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coordinates of the points respectively.
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p1=(x1,y1), p2=(x2,y2), … , pn=(xn,yn) and put x1, x2, … , xn into 
H and y1, y2, … , yn into V.

• Sort the points in H and in V, using some sorting 
algorithm.
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O(n)

O(n)
O(n)

O(n)
O(1)
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Integer Multiplication

1100
1101x
1100

0000
1100

1100

10011100

Input: 2 integer numbers, in binary 
                             n is the number of bits of each number

What is the running time of this algorithm?

O(n) time to compute each partial product

n partial products


Time O(n2)



Can we do it faster?

• We will use the Divide-and-Conquer approach.


• We will reduce the problem to solving some instances 
with n/2 bits. 


• Then we will use this approach recursively to get a 
solution for the original problem.
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Faster multiplication

y = y1 • 2n/2 + y0

x = x1 • 2n/2 + x0

x • y = (x1 • 2n/2 + x0) • (y1 • 2n/2 + y0) 

= x1 • y1 • 2n/2 + (x1 • y0 + x0 •  y1) • 2n/2 + x0 • y0 

4 multiplications of n/2 bit numbers 
T(n) ≤ 4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(nlog4) = O(n^2)



Faster multiplication

y = y1 • 2n/2 + y0

x = x1 • 2n/2 + x0

x • y = (x1 • 2n/2 + x0) • (y1 • 2n/2 + y0) 

= x1 • y1 • 2n/2 + (x1 • y0 + x0 •  y1) • 2n/2 + x0 • y0 

4 multiplications of n/2 bit numbers 
T(n) ≤ 4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(nlog4) = O(n^2)
Generally, solving the recurrence T(n) ≤ qT(n/2) + cn gets us to T(n) = O(nlogq)



Faster multiplication

y = y1 • 2n/2 + y0

x = x1 • 2n/2 + x0

x • y = (x1 • 2n/2 + x0) • (y1 • 2n/2 + y0) 

= x1 • y1 • 2n/2 + (x1 • y0 + x0 •  y1) • 2n/2 + x0 • y0 

4 multiplications of n/2 bit numbers 
T(n) ≤ 4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(nlog4) = O(n^2)
Generally, solving the recurrence T(n) ≤ qT(n/2) + cn gets us to T(n) = O(nlogq)

(x1 + x0) (y1 + y0)  = x1 • y1 + x1 • y0 + x0 •  y1 + x0 • y0



Faster multiplication

y = y1 • 2n/2 + y0

x = x1 • 2n/2 + x0

x • y = (x1 • 2n/2 + x0) • (y1 • 2n/2 + y0) 

= x1 • y1 • 2n/2 + (x1 • y0 + x0 •  y1) • 2n/2 + x0 • y0 

4 multiplications of n/2 bit numbers 
T(n) ≤ 4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(nlog4) = O(n^2)
Generally, solving the recurrence T(n) ≤ qT(n/2) + cn gets us to T(n) = O(nlogq)

(x1 + x0) (y1 + y0)  = x1 • y1 + x1 • y0 + x0 •  y1 + x0 • y0

= p



Faster multiplication

y = y1 • 2n/2 + y0

x = x1 • 2n/2 + x0

x • y = (x1 • 2n/2 + x0) • (y1 • 2n/2 + y0) 

4 multiplications of n/2 bit numbers 
T(n) ≤ 4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(nlog4) = O(n^2)
Generally, solving the recurrence T(n) ≤ qT(n/2) + cn gets us to T(n) = O(nlogq)

(x1 + x0) (y1 + y0)  = x1 • y1 + x1 • y0 + x0 •  y1 + x0 • y0

= p

= x1 • y1 • 2n/2 + (p - x1 • y1 - x0 • y0) • 2n/2 + x0 • y0 



Faster multiplication

y = y1 • 2n/2 + y0

x = x1 • 2n/2 + x0

x • y = (x1 • 2n/2 + x0) • (y1 • 2n/2 + y0) 

4 multiplications of n/2 bit numbers 
T(n) ≤ 4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(nlog4) = O(n^2)
Generally, solving the recurrence T(n) ≤ qT(n/2) + cn gets us to T(n) = O(nlogq)

(x1 + x0) (y1 + y0)  = x1 • y1 + x1 • y0 + x0 •  y1 + x0 • y0

= p

= x1 • y1 • 2n/2 + (p - x1 • y1 - x0 • y0) • 2n/2 + x0 • y0 

We get the recurrence T(n) ≤ 3T(n/2) + cn



Faster multiplication

y = y1 • 2n/2 + y0

x = x1 • 2n/2 + x0

x • y = (x1 • 2n/2 + x0) • (y1 • 2n/2 + y0) 

4 multiplications of n/2 bit numbers 
T(n) ≤ 4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(nlog4) = O(n^2)
Generally, solving the recurrence T(n) ≤ qT(n/2) + cn gets us to T(n) = O(nlogq)

(x1 + x0) (y1 + y0)  = x1 • y1 + x1 • y0 + x0 •  y1 + x0 • y0

= p

= x1 • y1 • 2n/2 + (p - x1 • y1 - x0 • y0) • 2n/2 + x0 • y0 

We get the recurrence T(n) ≤ 3T(n/2) + cn



Faster multiplication

y = y1 • 2n/2 + y0

x = x1 • 2n/2 + x0

x • y = (x1 • 2n/2 + x0) • (y1 • 2n/2 + y0) 

4 multiplications of n/2 bit numbers 
T(n) ≤ 4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(nlog4) = O(n^2)
Generally, solving the recurrence T(n) ≤ qT(n/2) + cn gets us to T(n) = O(nlogq)

(x1 + x0) (y1 + y0)  = x1 • y1 + x1 • y0 + x0 •  y1 + x0 • y0

= p

= x1 • y1 • 2n/2 + (p - x1 • y1 - x0 • y0) • 2n/2 + x0 • y0 

We get the recurrence T(n) ≤ 3T(n/2) + cn

log23 = 1.59



Faster multiplication

y = y1 • 2n/2 + y0

x = x1 • 2n/2 + x0

x • y = (x1 • 2n/2 + x0) • (y1 • 2n/2 + y0) 

4 multiplications of n/2 bit numbers 
T(n) ≤ 4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(nlog4) = O(n^2)
Generally, solving the recurrence T(n) ≤ qT(n/2) + cn gets us to T(n) = O(nlogq)

(x1 + x0) (y1 + y0)  = x1 • y1 + x1 • y0 + x0 •  y1 + x0 • y0

= p

= x1 • y1 • 2n/2 + (p - x1 • y1 - x0 • y0) • 2n/2 + x0 • y0 

We get the recurrence T(n) ≤ 3T(n/2) + cn

log23 = 1.59
T(n) = O(n1.59)


