Advanced Algorithmic Techniques
(COMP523)

Recursion and Divide and Conquer Techniques #3
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Recap and plan

e Last lecture:

e Sorting with the MergeSort algorithm.
e Sorting with the QuickSort algorithm.

 The limitations of comparison-based sorting.
 This lecture:
 Finding the closest pair of points.

e Integer Multiplication.



Quick Recap

e Searching:

e LinearSearch: Time O(n), (Aux.) Memory O(1)

e BinarySearch: Time O(log n), (Aux.) Memory O(log n)
e Sorting:

e [nsertionSort: Time O(n2), (Aux.) Memory O(1)

o MergeSort: Time O(n) log n, (Aux.) Memory ?

o QuickSort: Time O(n2), (Aux.) Memory ?
* Majority:

e General array: Time O(n), (Aux.) Memory ?

e Sorted array: Time O(log n), (Aux.) Memory ?
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Naive solution

For every point, find the distance to each other point.
Output two points that have the smallest distance.
Running time?

¢ Q(n2)

Can we do better?
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Warmup: Points on the line

Points are now x1, X2, ... , Xn

Sort the points x1, X2, ... , Xn
Consider only distances between consecutive points

What is the worst-case running time?

Can be done in O(n log n)
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Finding the closest pair of points

Preprocessing:

 Maintain two arrays H and V for the horizontal and vertical
coordinates of the points respectively.

* Jo populate H and V/, simply run through the given points
P1=(X1,Y1), P2=(X2,¥2), --.. , Pr=(Xn,Yn) and put X1, Xz, ..., XnInto
H and iInto

e Sort the points in H and in V, using some sorting
algorithm.
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Main algorithm:



Finding the closest pair of points

Main algorithm:

e Partition array H into two halves H1 and H2, according to
the sorted order.
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Finding the closest pair of points

Main algorithm:

* Partition array H into two halves H1 and Hz, according to the sorted
ordet.

* For each element in Hi, put the element in VV:, for i=7,2.

e Call the algorithm recursively on the two halves (with access to the
sub-arrays Hiand V', for /=17,2.

e Let (l4,l2) and (r1,r2) be the set of points returned by the runs of the
algorithm on the two halves.

* We haven’t really developed that part yet!



ClosestPair Pseudocode

Algorithm ClosestPair(o7,...,on)

Construct arrays H and
(p1,p2) = ClosestPairRec(H, V)

Procedure ClosestPairRec(H, ")

Construct H1, Hz, V1,
(11,12) = ClosestPairRec(H+1, V)

(r1,r2) = ClosestPairRec(Hz,V2)



ClosestPair Pseudocode

Algorithm ClosestPair(o7,...,on)

Construct arrays H and
(p1,p2) = ClosestPairRec(H, V)

Procedure ClosestPairRec(H, V)

If [H| = |V <3
Check all pairwise distances

Construct H1, Hz, V4,
(I1,l2) = ClosestPairRec(H1,V 1)

(r1,r2) = ClosestPairRec(Hz,V/2)



Divide and Conquer



Divide and Conquer

e We have successfully divided the problem into smaller
parts.



Divide and Conquer

e We have successfully divided the problem into smaller
parts.

e How do we combine these parts to get a solution to the
original problem?



Divide and Conquer

e We have successfully divided the problem into smaller
parts.

e How do we combine these parts to get a solution to the
original problem?

e \What might be the problem here?



Divide and Conquer

We have successfully divided the problem into smaller
parts.

How do we combine these parts to get a solution to the
original problem?

What might be the problem here?

What if the smallest distance is between points in (H1,1)
and (Hz,/2)?
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Combining the solutions

e Let 0 be the min(d(l4,l2), d(r1,r2)) be the minimum distance
among the two solutions provided.

 Draw a vertical line L over the rightmost point of the set
Hi.
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Combining the solutions

e Let 0 be the min(d(l+,l2), d(r1,r2)) be the minimum distance
among the two solutions provided.

 Draw a vertical line L over the rightmost point of the set
Hi.

e This basically means that the separating line is a “tight”
as possible.

e | et S be the set of points of distance within 6 of L.
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Combining the solutions

e Let 0 be the min(d(l+,l2), d(r1,r2)) be the minimum distance
among the two solutions provided.

 Draw a vertical line L over the rightmost point of the set
Hi.

e This basically means that the separating line is a “tight”
as possible.

e | et S be the set of points of distance within 6 of L.
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Is It safe to only consider

the points in S?

hypotenuse

at most ©
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Constructing the set S

Array

Do we get more than a set?



Constructing the set S

Array

Do we get more than a set?

We actually get a sorted list!
(sorted in the y-coordinate)
Call this S..
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Zooming in
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Partitioning the square




Claims

e Claim 1: In each box, there can only be a single point.
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Claims

e Claim 1: In each box, there can only be a single point.

e Claim 2: If two points p1 and p2 are such that d(p1,p2) < 6,
then Sv[p1y] - Sv[p2y] <15

* |n other words, the two points are within 15 positions of
each other in the sorted array Sy,
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Claims

e Claim 2: If two points p1 and p2 are such that d(p1,p2) < 6,
then Sv[p‘ly] - Sv[p2y] <15

e Assume by contradiction that this is not the case, and pj
and p2 are at least 16 positions apart in Sy.

e By Claim 1, there can be at most one point in each box.

* Jo be 16 positions apart, there must be at least 3 rows
of boxes separating the points.

e But then the distance is at least 36/2, a contradiction.
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Concluding the algorithm

e Make pass through Sy, and for each element, find the
distance to the next 15 elements in the array.

e Find the pair of points p1 and p2 for which the minimum of
all these distances is achieved.

e Compare this to 6 and output the pair with the minimum
distance.



ClosestPair Pseudocode

Algorithm ClosestPair(o1,...,on)

Construct arrays H and
(p1,p2) = ClosestPairRec(H, V)

Procedure ClosestPairRec(H, )
If [H| = |V <3
Check all pairwise distances

Construct H1, Hz, V4,
(I1,l2) = ClosestPairRec(H1, V1)

(r1,r2) = ClosestPairRec(H2,V )

& = min(d(/1,/2), d(r1,r2))

x*=max;x; fori=7,...,n

L ={(x,y) : x=x7}

S = set of points within distance 6 of L.

Construct Sy

For each point s in Sy
Compute distance between s

and the next 15 points of Sy,
Return the pair of points (s7,s2)

that minimises this distance.

If d(s7,52) <O
Return (s7,S2)
Else if d(/1,/2) < d(r7,r2)
Return (/1,/2)
Else return (r1,r2)
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Finding the closest pair of points

Preprocessing:

 Maintain two arrays H and V for the horizontal and vertical
coordinates of the points respectively.

* Jo populate H and V/, simply run through the given points
P1=(X1,Y1), P2=(X2,¥2), --.. , Pr=(Xn,Yn) and put X1, Xz, ..., XnInto
H and iInto

e Sort the points in H and in V, using some sorting
algorithm.
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Algorithm ClosestPair(o1,...,on)

Construct arrays H and
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Running Time

Algorithm ClosestPair(o1,...,0n) Construct Sy
Construct arrays H and For each point s in Sy
(D1,p2) = ClosestPairRec(H,V) RSN Compute distance between s
and the next 15 points of Sy,

Procedure ClosestPairRec(H, ) Return the pair of points (s7,S2)

If [H =|V] <3 that minimises this distance.
Check all pairwise distances
Construct Hy, Ho, V1,

(/1,/2) = ClosestPairRec(H1,V1) O(n log n)
(r1,r2) = ClosestPairRec(H2,V>) LSRG

& = min(d(/1,/2), d(r7,r2)) If d(s7,52) <O
x*=max;x; fori=1,...,n Return (s7,s2)

L = {(x,y) : x=x*} Else if d(/7,/2) < d(r1,r2)
S = set of points within distance 6 of L. Return (/1,/2)

Else return (r1,r2)



Running Time

Algorithm ClosestPair(p1,...,on) Construct Sy
Construct arrays H and For each point s in Sy
(p1,p2) = ClosestPairRec(H, V) Compute distance between s
and the next 15 points of Sy,
Procedure ClosestPairRec(H, ) Return the pair of points (s7,S2)
If [H| = |V <3 that minimises this distance.

Check all pairwise distances
)} Construct Hq, Hz, V1,

(/1,/2) = ClosestPairRec(H1,V 1) O(n log n)
(r1,r2) = ClosestPairRec(H2,V>) LSRG

& = min(d(/1,/2), d(r7,r2)) If d(s7,52) <O

x*=max;x; fori=7,...,n Return (s7,S2)
L = {(x,y) : x=x"} Else if d(/4,/2) < d(r1,r2)

S = set of points within distance 6 of L. Return (/1,/2)

Else return (r1,r2)
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Integer Multiplication
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Integer Multiplication

Input: 2 integer numbers, in binary

n is the number of bits of each number
1100

x 1101

1100

0000 What is the running time of this algorithm?
1100

1100

10011100 O(n) time to comp.ute each partial product
n partial products
Time O(n?)



Can we do it faster?

e We will use the Divide-and-Conquer approach.

e We will reduce the problem to solving some instances
with n/2 bits.

e Then we will use this approach recursively to get a
solution for the original problem.
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Faster multiplication

X =X1°*2V2+ Xo
V=VYi° 2n/2_|_y0
Xy =(X1°2V2+ Xo) * (y1 * 272 + yo)
=X1°Vy1° 2n/2_|_(X1 *Vo+ Xo ° y1) e« 2n/2 4 Xo * Yo
4 multiplications of n/2 bit numbers
T(n) <4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(n'eg4) = O(n"2)
Generally, solving the recurrence T(n) < gqT(n/2) + cn gets us to T(n) = O(n'°99)

(X1 + Xo) (Y1+ Yo) =X1°Y1+X1°*Yo+ Xo* Y1+ Xo°*Yo
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Faster multiplication

X =X1°*2V2+ Xo
V=V1° 2n/2_|_y0
Xy =(X1°2V2+ Xo) * (y1 * 272 + yo)
=X1°Y1°2V2+(P - X1 *Y1-Xo*Yo) * 22+ Xo * Yo
4 multiplications of n/2 bit numbers
T(n) <4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(n'eg4) = O(n"2)
Generally, solving the recurrence T(n) < gqT(n/2) + cn gets us to T(n) = O(n'°99)

(X1 + Xo) (Y1+ Yo) =X1°Y1+X1°*Yo+ Xo* Y1+ Xo°*Yo

=p



Faster multiplication

X =X1°*2"2+ Xo
V = V1 02n/2_|_y0
X°*y= (x1 . 2n/2_|_x0) . (y1 o 2n/2+y0)

=X1°Y1°2V2+(P - X1 *Y1-Xo*Yo) * 22+ Xo * Yo

4 multiplications of n/2 bit numbers
T(n) <4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(n'eg4) = O(n"2)
Generally, solving the recurrence T(n) < gqT(n/2) + cn gets us to T(n) = O(n'°99)

(X1 + Xo) (Y1+ Yo) =X1°Y1+X1°*Yo+ Xo* Y1+ Xo°*Yo
=p

We get the recurrence T(n) < 3T(n/2) + cn



Faster multiplication

X =X1°*2"2+ Xo
V = V1 02n/2_|_y0
X°*y= (x1 . 2n/2_|_x0) . (y1 o 2n/2+y0)

=X1°Y1°2V2+(P - X1 *Y1-Xo*Yo) * 22+ Xo * Yo

4 multiplications of n/2 bit numbers
T(n) <4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(n'eg4) = O(n"2)
Generally, solving the recurrence T(n) < gT(n/2) + cn gets us to T(n) = O(n'e99)

(X1 + Xo) (Y1+ Yo) =X1°Y1+X1°*Yo+ Xo* Y1+ Xo°*Yo
=p

We get the recurrence T(n) < 3T(n/2) + cn



Faster multiplication

X =X1°*2V2+ Xo
V=V1° 2n/2_|_y0
Xy =(X1°2V2+ Xo) * (y1 * 272 + yo)
=X1°Y1°2V2+(P - X1 *Y1-Xo*Yo) * 22+ Xo * Yo
4 multiplications of n/2 bit numbers
T(n) <4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(n'eg4) = O(n"2)
Generally, solving the recurrence T(n) < gT(n/2) + cn gets us to T(n) = O(n'e99)

log23 = 1.59

(X1 + Xo) (Y1+ Yo) =X1°Y1+X1°*Yo+ Xo* Y1+ Xo°*Yo
=p

We get the recurrence T(n) < 3T(n/2) + cn



Faster multiplication

X =X1°*2V2+ Xo
V=V1° 2n/2_|_y0
Xy =(X1°2V2+ Xo) * (y1 * 272 + yo)
=X1°Y1°2V2+(P - X1 *Y1-Xo*Yo) * 22+ Xo * Yo
4 multiplications of n/2 bit numbers
T(n) <4T(n/2) + cn

Solving the recurrence gets us to T(n) = O(n'e94) = O(n"2)

Generally, solving the recurrence T(n) < gT(n/2) + cn gets us to T(n) = O(n'e99)
log23 = 1.59

(X1+ Xo) (Y1+ Yo) = X1 * Y1 +X1 * Yo+ Xo* Y1+ Xo°* Yo T(n) = O(n™*9)

=P

We get the recurrence T(n) < 3T(n/2) + cn



