Advanced Algorithmic Techniques (COMP523)

Recursion and Divide and Conquer Techniques #3

Recap and plan

Recap and plan

Last lecture:

- Sorting with the MergeSort algorithm.
- Sorting with the QuickSort algorithm.
- The limitations of comparison-based sorting.

Recap and plan

Last lecture:

- Sorting with the MergeSort algorithm.
- Sorting with the QuickSort algorithm.
- The limitations of comparison-based sorting.
- This lecture:
 - Finding the closest pair of points.
 - Integer Multiplication.

Quick Recap

• Searching:

- LinearSearch: Time O(n), (Aux.) Memory O(1)
- BinarySearch: Time O(log n), (Aux.) Memory O(log n)
- Sorting:
 - InsertionSort: Time O(n²), (Aux.) Memory O(1)
 - MergeSort: Time O(n) log n, (Aux.) Memory ?
 - QuickSort: Time O(n²), (Aux.) Memory ?
- Majority:
 - General array: Time O(n), (Aux.) Memory ?
 - Sorted array: Time O(log n), (Aux.) Memory ?

• For every point, find the distance to each other point.

- For every point, find the distance to each other point.
- Output two points that have the smallest distance.

- For every point, find the distance to each other point.
- Output two points that have the smallest distance.
- Running time?

- For every point, find the distance to each other point.
- Output two points that have the smallest distance.
- Running time?
 - **Ω(n**²)

- For every point, find the distance to each other point.
- Output two points that have the smallest distance.
- Running time?
 - **Ω(n**²)
- Can we do better?

Points are now x₁, x₂, ..., x_n

Points are now x_1, x_2, \dots, x_n Sort the points x_1, x_2, \dots, x_n

Points are now X1, X2, ..., Xn

Sort the points x_1, x_2, \ldots, x_n

Consider only distances between consecutive points

Points are now X_1, X_2, \ldots, X_n

Sort the points x_1, x_2, \ldots, x_n

Consider only distances between consecutive points

What is the worst-case running time?

Points are now X_1, X_2, \ldots, X_n

Sort the points x_1, x_2, \ldots, x_n

Consider only distances between consecutive points

What is the worst-case running time?

Can be done in O(n log n)

Preprocessing:

Preprocessing:

 Maintain two arrays H and V for the horizontal and vertical coordinates of the points respectively.

Preprocessing:

- Maintain two arrays H and V for the horizontal and vertical coordinates of the points respectively.
- To populate H and V, simply run through the given points p1=(x1,y1), p2=(x2,y2), ..., pn=(xn,yn) and put x1, x2, ..., xn into H and y1, y2, ..., yn into V.

Preprocessing:

- Maintain two arrays H and V for the horizontal and vertical coordinates of the points respectively.
- To populate H and V, simply run through the given points p1=(x1,y1), p2=(x2,y2), ..., pn=(xn,yn) and put x1, x2, ..., xn into H and y1, y2, ..., yn into V.
- Sort the points in H and in V, using some sorting algorithm.

Main algorithm:

Main algorithm:

 Partition array H into two halves H₁ and H₂, according to the sorted order.

Main algorithm:

Partition array H into two halves H₁ and H₂, according to the sorted order.

- Partition array H into two halves H₁ and H₂, according to the sorted order.
- For each element in H_i , put the element in V_i , for i=1,2.

- Partition array H into two halves H₁ and H₂, according to the sorted order.
- For each element in H_i , put the element in V_i , for i=1,2.
- Call the algorithm recursively on the two halves (with access to the sub-arrays H_i and V_i, for *i=1,2*.

- Partition array H into two halves H₁ and H₂, according to the sorted order.
- For each element in H_i , put the element in V_i , for i=1,2.
- Call the algorithm recursively on the two halves (with access to the sub-arrays H_i and V_i, for *i=1,2*.
- Let (I₁,I₂) and (r1,r2) be the set of points returned by the runs of the algorithm on the two halves.

- Partition array H into two halves H₁ and H₂, according to the sorted order.
- For each element in H_i , put the element in V_i , for i=1,2.
- Call the algorithm recursively on the two halves (with access to the sub-arrays H_i and V_i, for *i=1,2*.
- Let (I₁,I₂) and (r1,r2) be the set of points returned by the runs of the algorithm on the two halves.
 - We haven't really developed that part yet!

ClosestPair Pseudocode

Algorithm ClosestPair($p_1, ..., p_n$) Construct arrays H and V (p_1, p_2) = ClosestPairRec(H,V)

Procedure ClosestPairRec(H,∨)

Construct H_1 , H_2 , V_1 , V_2 (I_1 , I_2) = ClosestPairRec(H_1 , V_1) (r_1 , r_2) = ClosestPairRec(H_2 , V_2)

ClosestPair Pseudocode

Algorithm ClosestPair($p_1,...,p_n$) Construct arrays **H** and **V** (p_1,p_2) = ClosestPairRec(**H**,**V**)

Procedure ClosestPairRec(H,∨)

If $|\mathbf{H}| = |\mathbf{V}| \le 3$ Check all pairwise distances Construct $\mathbf{H}_1, \mathbf{H}_2, \mathbf{V}_1, \mathbf{V}_2$ $(I_1, I_2) = ClosestPairRec(\mathbf{H}_1, \mathbf{V}_1)$ $(r_1, r_2) = ClosestPairRec(\mathbf{H}_2, \mathbf{V}_2)$

We have successfully divided the problem into smaller parts.

- We have successfully divided the problem into smaller parts.
- How do we combine these parts to get a solution to the original problem?

- We have successfully divided the problem into smaller parts.
- How do we combine these parts to get a solution to the original problem?
- What might be the problem here?

- We have successfully divided the problem into smaller parts.
- How do we combine these parts to get a solution to the original problem?
- What might be the problem here?
- What if the smallest distance is between points in (H₁,V₁) and (H₂,V₂)?

Combining the solutions

- Let δ be the min(d(l₁,l₂), d(r₁,r₂)) be the minimum distance among the two solutions provided.
- Draw a vertical line L over the rightmost point of the set H₁.

Combining the solutions

- Let δ be the min(d(l₁,l₂), d(r₁,r₂)) be the minimum distance among the two solutions provided.
- Draw a vertical line L over the rightmost point of the set H₁.
 - This basically means that the separating line is a "tight" as possible.
- Let **S** be the set of points of distance within δ of **L**.

Combining the solutions

- Let δ be the min(d(l₁,l₂), d(r₁,r₂)) be the minimum distance among the two solutions provided.
- Draw a vertical line L over the rightmost point of the set H₁.
 - This basically means that the separating line is a "tight" as possible.
- Let **S** be the set of points of distance within δ of **L**.

Array V

1	2	4	6	10	14	17	19	21	24

Array V

1	2	4	6	10	14	17	19	21	24

Array V

[1]	2	4	6	10	14	17	19	21	24

Do we get more than a set?

Array V

							China China Para		
1	2	4	6	10	14	17	19	21	24

Do we get more than a set?

We actually get a **sorted list!** (sorted in the y-coordinate) Call this **S**_v.

Zooming in

Partitioning the square

Claims

• Claim 1: In each box, there can only be a single point.

- Claim 1: In each box, there can only be a single point.
- Claim 2: If two points p_1 and p_2 are such that $d(p_1,p_2) < \delta$, then $S_v[p_{1y}] S_v[p_{2y}] \le 15$
 - In other words, the two points are within 15 positions of each other in the sorted array S_v.

• Claim 2: If two points p_1 and p_2 are such that $d(p_1,p_2) < \delta$, then $S_v[p_{1y}] - S_v[p_{2y}] \le 15$

- Claim 2: If two points p_1 and p_2 are such that $d(p_1,p_2) < \delta$, then $S_v[p_{1y}] S_v[p_{2y}] \le 15$
- Assume by contradiction that this is not the case, and p1 and p2 are at least 16 positions apart in Sv.

- Claim 2: If two points p_1 and p_2 are such that $d(p_1,p_2) < \delta$, then $S_v[p_{1y}] - S_v[p_{2y}] \le 15$
- Assume by contradiction that this is not the case, and p1 and p2 are at least 16 positions apart in Sv.
- By **Claim 1**, there can be at most one point in each box.

- Claim 2: If two points p_1 and p_2 are such that $d(p_1,p_2) < \delta$, then $S_v[p_{1y}] S_v[p_{2y}] \le 15$
- Assume by contradiction that this is not the case, and p1 and p2 are at least 16 positions apart in Sv.
- By **Claim 1**, there can be at most one point in each box.
 - To be 16 positions apart, there must be at least **3 rows** of boxes separating the points.

- Claim 2: If two points p_1 and p_2 are such that $d(p_1,p_2) < \delta$, then $S_v[p_{1y}] S_v[p_{2y}] \le 15$
- Assume by contradiction that this is not the case, and p1 and p2 are at least 16 positions apart in Sv.
- By Claim 1, there can be at most one point in each box.
 - To be 16 positions apart, there must be at least 3 rows of boxes separating the points.
 - But then the distance is at least $3\delta/2$, a contradiction.

Make pass through S_v, and for each element, find the distance to the next 15 elements in the array.

- Make pass through S_v, and for each element, find the distance to the next 15 elements in the array.
- Find the pair of points p₁ and p₂ for which the minimum of all these distances is achieved.

- Make pass through S_v, and for each element, find the distance to the next 15 elements in the array.
- Find the pair of points p₁ and p₂ for which the minimum of all these distances is achieved.
- Compare this to δ and output the pair with the minimum distance.

ClosestPair Pseudocode

Algorithm ClosestPair($p_1, ..., p_n$) Construct arrays H and V (p_1, p_2) = ClosestPairRec(H,V)

Procedure ClosestPairRec(H,∨)

If $|\mathbf{H}| = |\mathbf{V}| \le 3$ Check all pairwise distances Construct $\mathbf{H}_1, \mathbf{H}_2, \mathbf{V}_1, \mathbf{V}_2$ $(I_1, I_2) = \text{ClosestPairRec}(\mathbf{H}_1, \mathbf{V}_1)$ $(r_1, r_2) = \text{ClosestPairRec}(\mathbf{H}_2, \mathbf{V}_2)$

$$\begin{split} &\delta = \min(d(l_1, l_2), d(r_1, r_2)) \\ &x^* = \max_i x_i \text{ for } i=1, \dots, n \\ &\mathbf{L} = \{(x, y) : x = x^*\} \\ &\mathbf{S} = \text{set of points within distance } \delta \text{ of } \mathbf{L}. \end{split}$$

Construct Sv

For each point s in S_v Compute distance between s and the next 15 points of S_v. Return the pair of points (s₁,s₂) that minimises this distance.

Algorithm ClosestPair($p_1, ..., p_n$) Construct arrays H and V (p_1, p_2) = ClosestPairRec(H,V)

Procedure ClosestPairRec(H,∨)

If $|\mathbf{H}| = |\mathbf{V}| \le 3$ Check all pairwise distances Construct $\mathbf{H}_1, \mathbf{H}_2, \mathbf{V}_1, \mathbf{V}_2$ $(I_1, I_2) = \text{ClosestPairRec}(\mathbf{H}_1, \mathbf{V}_1)$ $(r_1, r_2) = \text{ClosestPairRec}(\mathbf{H}_2, \mathbf{V}_2)$

 $\delta = \min(d(l_1, l_2), d(r_1, r_2))$ $x^* = \max_i x_i \text{ for } i=1,...,n$ $L = \{(x, y) : x = x^*\}$ $S = \text{set of points within distance } \delta \text{ of } L.$ Construct Sv

For each point s in S_v Compute distance between s and the next 15 points of S_v. Return the pair of points (s₁,s₂) that minimises this distance.

?

Algorithm ClosestPair($p_1,...,p_n$) Construct arrays H and V (p_1,p_2) = ClosestPairRec(H,V)

Procedure ClosestPairRec(H,∨)

If $|\mathbf{H}| = |\mathbf{V}| \le 3$ Check all pairwise distances Construct $\mathbf{H}_1, \mathbf{H}_2, \mathbf{V}_1, \mathbf{V}_2$ $(I_1, I_2) = \text{ClosestPairRec}(\mathbf{H}_1, \mathbf{V}_1)$ $(r_1, r_2) = \text{ClosestPairRec}(\mathbf{H}_2, \mathbf{V}_2)$

$$\begin{split} &\delta = \min(d(l_1, l_2), d(r_1, r_2)) \\ &x^* = \max_i x_i \text{ for } i=1, \dots, n \\ &\mathbf{L} = \{(x, y) : x = x^*\} \\ &\mathbf{S} = \text{set of points within distance } \delta \text{ of } \mathbf{L}. \end{split}$$

Construct Sv

For each point s in S_v Compute distance between s and the next 15 points of S_v. Return the pair of points (s₁,s₂) that minimises this distance.

Preprocessing:

Preprocessing:

 Maintain two arrays H and V for the horizontal and vertical coordinates of the points respectively.

Preprocessing:

- Maintain two arrays H and V for the horizontal and vertical coordinates of the points respectively.
- To populate H and V, simply run through the given points p1=(x1,y1), p2=(x2,y2), ..., pn=(xn,yn) and put x1, x2, ..., xn into H and y1, y2, ..., yn into V.

Preprocessing:

- Maintain two arrays H and V for the horizontal and vertical coordinates of the points respectively.
- To populate H and V, simply run through the given points p1=(x1,y1), p2=(x2,y2), ..., pn=(xn,yn) and put x1, x2, ..., xn into H and y1, y2, ..., yn into V.
- Sort the points in H and in V, using some sorting algorithm.

?

Algorithm ClosestPair($p_1,...,p_n$) Construct arrays H and V (p_1,p_2) = ClosestPairRec(H,V)

Procedure ClosestPairRec(H,∨)

If $|\mathbf{H}| = |\mathbf{V}| \le 3$ Check all pairwise distances Construct $\mathbf{H}_1, \mathbf{H}_2, \mathbf{V}_1, \mathbf{V}_2$ $(I_1, I_2) = \text{ClosestPairRec}(\mathbf{H}_1, \mathbf{V}_1)$ $(r_1, r_2) = \text{ClosestPairRec}(\mathbf{H}_2, \mathbf{V}_2)$

$$\begin{split} &\delta = \min(d(l_1, l_2), d(r_1, r_2)) \\ &x^* = \max_i x_i \text{ for } i=1, \dots, n \\ &\mathbf{L} = \{(x, y) : x = x^*\} \\ &\mathbf{S} = \text{set of points within distance } \delta \text{ of } \mathbf{L}. \end{split}$$

Construct Sv

For each point s in S_v Compute distance between s and the next 15 points of S_v. Return the pair of points (s₁,s₂) that minimises this distance.

```
Algorithm ClosestPair(p_1,...,p_n)
Construct arrays H and V
(p_1,p_2) = ClosestPairRec(H,V)
```


Procedure ClosestPairRec(H,V)

If $|\mathbf{H}| = |\mathbf{V}| \le 3$ Check all pairwise distances Construct $\mathbf{H}_1, \mathbf{H}_2, \mathbf{V}_1, \mathbf{V}_2$ $(l_1, l_2) = \text{ClosestPairRec}(\mathbf{H}_1, \mathbf{V}_1)$ $(r_1, r_2) = \text{ClosestPairRec}(\mathbf{H}_2, \mathbf{V}_2)$

 $\delta = \min(d(l_1, l_2), d(r_1, r_2))$ $x^* = \max_i x_i \text{ for } i=1,...,n$ $L = \{(x, y) : x = x^*\}$ $S = \text{set of points within distance } \delta \text{ of } L.$

Construct Sv

For each point s in S_v Compute distance between s and the next 15 points of S_v. Return the pair of points (s₁,s₂) that minimises this distance.

```
Algorithm ClosestPair(p_1,...,p_n)
Construct arrays H and V
(p_1,p_2) = ClosestPairRec(H,V)
```



```
Procedure ClosestPairRec(H,∨)
```

If $|\mathbf{H}| = |\mathbf{V}| \le 3$ Check all pairwise distances Construct $\mathbf{H}_1, \mathbf{H}_2, \mathbf{V}_1, \mathbf{V}_2$ $(l_1, l_2) = \text{ClosestPairRec}(\mathbf{H}_1, \mathbf{V}_1)$? $(r_1, r_2) = \text{ClosestPairRec}(\mathbf{H}_2, \mathbf{V}_2)$

Construct Sv

For each point s in S_v Compute distance between s and the next 15 points of S_v. Return the pair of points (s₁,s₂) that minimises this distance.

```
\delta = \min(d(l_1, l_2), d(r_1, r_2))

x^* = \max_i x_i \text{ for } i=1,...,n

L = \{(x, y) : x = x^*\}

S = \text{set of points within distance } \delta \text{ of } L.
```

Algorithm ClosestPair(p1,,pn)	Construct Sv
Construct arrays H and V (p1,p2) = ClosestPairRec(H,V)	O(n log n)For each point s in SvCompute distance between s
	and the next 15 points of Sv.
Procedure ClosestPairRec(H,V)	Return the pair of points (s1,s2)
If H = ∨ ≤ 3	that minimises this distance.
Check all pairwise dista	nces
Construct H1, H2, V1, V2	
$(I_1, I_2) = \text{ClosestPairRec}(H_1, V_1)$	O(n log n)
$(r_1, r_2) = \text{ClosestPairRec}(H_2, V_2)$	known recurrence
$\delta = \min(d(l_1, l_2), d(r_1, r_2))$	If $d(s_1, s_2) \leq \delta$
$x^* = \max_i x_i$ for $i = 1,, n$	Return (s1,s2)
$L = \{(x, y) : x = x^*\}$	Else if $d(l_1, l_2) < d(r_1, r_2)$
S = set of points within dis	stance δ of L . Return (I_1, I_2)
	Else return (r_1, r_2)

Algorithm ClosestPair(p1,,pn)	Construct Sv O(n)
Construct arrays H and V (p1,p2) = ClosestPairRec(H,V)	O(n log n)For each point s in Sv O(n)Compute distance between s
Procedure ClosestPairRec(H,∨)	and the next 15 points of <mark>Sv.</mark> Return the pair of points (S1,S2)
If $ \mathbf{H} = \mathbf{V} \le 3$ Check all pairwise dista	that minimises this distance.
O(n) Construct H_1 , H_2 , V_1 , V_2 $(I_1 I_2) = ClosestPairRec(H_1, V_1)$	$O(n \log n)$
$(r_1, r_2) = \text{ClosestPairRec}(H_2, V_2)$	known recurrence
$\delta = \min(d(l_1, l_2), d(r_1, r_2))$	If $d(s_1, s_2) \le \delta$
O(n) $X^{*} = \max_{i} x_{i}$ for $i=1,,n$ $L = \{(x,y) : x=x^{*}\}$	$Flse if d(l_1,l_2) < d(r_1,r_2)$
S = set of points within dis	stance δ of L . Return (l_1, l_2) Else return (r_1, r_2)

Input: 2 integer numbers, in *binary* **n** is the number of *bits* of each number

Input: 2 integer numbers, in *binary* **n** is the number of *bits* of each number

Input: 2 integer numbers, in *binary* **n** is the number of *bits* of each number

Input: 2 integer numbers, in *binary* **n** is the number of *bits* of each number

Input: 2 integer numbers, in *binary* **n** is the number of *bits* of each number
Input: 2 integer numbers, in *binary* **n** is the number of *bits* of each number

Input: 2 integer numbers, in *binary* **n** is the number of *bits* of each number

Input: 2 integer numbers, in *binary* **n** is the number of *bits* of each number

What is the running time of this algorithm?

10011100

Input: 2 integer numbers, in *binary* **n** is the number of *bits* of each number

What is the running time of this algorithm?

O(n) time to compute each partial product n partial products Time O(n²)

Can we do it faster?

- We will use the Divide-and-Conquer approach.
- We will reduce the problem to solving some instances with n/2 bits.
- Then we will use this approach recursively to get a solution for the original problem.

 $x = x_1 \cdot 2^{n/2} + x_0$

 $x = x_1 \cdot 2^{n/2} + x_0$ $y = y_1 \cdot 2^{n/2} + y_0$

- $x = x_1 \cdot 2^{n/2} + x_0$
- $y = y_1 \cdot 2^{n/2} + y_0$
- $\mathbf{x} \cdot \mathbf{y} = (\mathbf{x_1} \cdot 2^{n/2} + \mathbf{x_0}) \cdot (\mathbf{y_1} \cdot 2^{n/2} + \mathbf{y_0})$

 $x = x_1 \cdot 2^{n/2} + x_0$

 $y = y_1 \cdot 2^{n/2} + y_0$

 $\mathbf{x} \cdot \mathbf{y} = (\mathbf{x_1} \cdot 2^{n/2} + \mathbf{x_0}) \cdot (\mathbf{y_1} \cdot 2^{n/2} + \mathbf{y_0})$

 $= x_1 \cdot y_1 \cdot 2^{n/2} + (x_1 \cdot y_0 + x_0 \cdot y_1) \cdot 2^{n/2} + x_0 \cdot y_0$

 $x = x_1 \cdot 2^{n/2} + x_0$

 $y = y_1 \cdot 2^{n/2} + y_0$

 $\mathbf{x} \cdot \mathbf{y} = (\mathbf{x_1} \cdot 2^{n/2} + \mathbf{x_0}) \cdot (\mathbf{y_1} \cdot 2^{n/2} + \mathbf{y_0})$

 $= x_1 \cdot y_1 \cdot 2^{n/2} + (x_1 \cdot y_0 + x_0 \cdot y_1) \cdot 2^{n/2} + x_0 \cdot y_0$

4 multiplications of n/2 bit numbers T(n) \leq 4T(n/2) + cn

 $x = x_1 \cdot 2^{n/2} + x_0$

 $y = y_1 \cdot 2^{n/2} + y_0$

 $\mathbf{x} \cdot \mathbf{y} = (\mathbf{x_1} \cdot 2^{n/2} + \mathbf{x_0}) \cdot (\mathbf{y_1} \cdot 2^{n/2} + \mathbf{y_0})$

 $= x_1 \cdot y_1 \cdot 2^{n/2} + (x_1 \cdot y_0 + x_0 \cdot y_1) \cdot 2^{n/2} + x_0 \cdot y_0$

4 multiplications of n/2 bit numbers $T(n) \le 4T(n/2) + cn$

Solving the recurrence gets us to $T(n) = O(n^{\log 4}) = O(n^{2})$

 $x = x_1 \cdot 2^{n/2} + x_0$

 $y = y_1 \cdot 2^{n/2} + y_0$

 $\mathbf{x} \cdot \mathbf{y} = (\mathbf{x_1} \cdot 2^{n/2} + \mathbf{x_0}) \cdot (\mathbf{y_1} \cdot 2^{n/2} + \mathbf{y_0})$

 $= x_1 \cdot y_1 \cdot 2^{n/2} + (x_1 \cdot y_0 + x_0 \cdot y_1) \cdot 2^{n/2} + x_0 \cdot y_0$

4 multiplications of n/2 bit numbers $T(n) \le 4T(n/2) + cn$

Solving the recurrence gets us to $T(n) = O(n^{\log 4}) = O(n^{2})$ Generally, solving the recurrence $T(n) \le qT(n/2) + cn$ gets us to $T(n) = O(n^{\log q})$

 $x = x_1 \cdot 2^{n/2} + x_0$

 $y = y_1 \cdot 2^{n/2} + y_0$

 $\mathbf{x} \cdot \mathbf{y} = (\mathbf{x_1} \cdot 2^{n/2} + \mathbf{x_0}) \cdot (\mathbf{y_1} \cdot 2^{n/2} + \mathbf{y_0})$

 $= x_1 \cdot y_1 \cdot 2^{n/2} + (x_1 \cdot y_0 + x_0 \cdot y_1) \cdot 2^{n/2} + x_0 \cdot y_0$

4 multiplications of n/2 bit numbers $T(n) \le 4T(n/2) + cn$

Solving the recurrence gets us to $T(n) = O(n^{\log 4}) = O(n^{2})$ Generally, solving the recurrence $T(n) \le qT(n/2) + cn$ gets us to $T(n) = O(n^{\log q})$

 $(X_1 + X_0)(y_1 + y_0) = X_1 \cdot y_1 + X_1 \cdot y_0 + X_0 \cdot y_1 + X_0 \cdot y_0$

 $x = x_1 \cdot 2^{n/2} + x_0$

 $y = y_1 \cdot 2^{n/2} + y_0$

 $\mathbf{x} \cdot \mathbf{y} = (\mathbf{x_1} \cdot 2^{n/2} + \mathbf{x_0}) \cdot (\mathbf{y_1} \cdot 2^{n/2} + \mathbf{y_0})$

 $= x_1 \cdot y_1 \cdot 2^{n/2} + (x_1 \cdot y_0 + x_0 \cdot y_1) \cdot 2^{n/2} + x_0 \cdot y_0$

4 multiplications of n/2 bit numbers $T(n) \le 4T(n/2) + cn$

Solving the recurrence gets us to $T(n) = O(n^{\log 4}) = O(n^{2})$ Generally, solving the recurrence $T(n) \le qT(n/2) + cn$ gets us to $T(n) = O(n^{\log q})$

 $(X_1 + X_0)(y_1 + y_0) = X_1 \cdot y_1 + X_1 \cdot y_0 + X_0 \cdot y_1 + X_0 \cdot y_0$

= **p**

 $x = x_1 \cdot 2^{n/2} + x_0$

 $y = y_1 \cdot 2^{n/2} + y_0$

 $\mathbf{x} \cdot \mathbf{y} = (\mathbf{x_1} \cdot 2^{n/2} + \mathbf{x_0}) \cdot (\mathbf{y_1} \cdot 2^{n/2} + \mathbf{y_0})$

 $= x_1 \cdot y_1 \cdot 2^{n/2} + (p - x_1 \cdot y_1 - x_0 \cdot y_0) \cdot 2^{n/2} + x_0 \cdot y_0$

4 multiplications of n/2 bit numbers $T(n) \le 4T(n/2) + cn$

Solving the recurrence gets us to $T(n) = O(n^{\log 4}) = O(n^{2})$ Generally, solving the recurrence $T(n) \le qT(n/2) + cn$ gets us to $T(n) = O(n^{\log q})$

 $(X_1 + X_0) (y_1 + y_0) = X_1 \cdot y_1 + X_1 \cdot y_0 + X_0 \cdot y_1 + X_0 \cdot y_0$

= **p**

 $x = x_1 \cdot 2^{n/2} + x_0$

 $y = y_1 \cdot 2^{n/2} + y_0$

 $\mathbf{x} \cdot \mathbf{y} = (\mathbf{x_1} \cdot 2^{n/2} + \mathbf{x_0}) \cdot (\mathbf{y_1} \cdot 2^{n/2} + \mathbf{y_0})$

 $= x_1 \cdot y_1 \cdot 2^{n/2} + (p - x_1 \cdot y_1 - x_0 \cdot y_0) \cdot 2^{n/2} + x_0 \cdot y_0$

4 multiplications of n/2 bit numbers $T(n) \le 4T(n/2) + cn$

Solving the recurrence gets us to $T(n) = O(n^{\log 4}) = O(n^{2})$ Generally, solving the recurrence $T(n) \le qT(n/2) + cn$ gets us to $T(n) = O(n^{\log q})$

$$(x_1 + x_0) (y_1 + y_0) = x_1 \cdot y_1 + x_1 \cdot y_0 + x_0 \cdot y_1 + x_0 \cdot y_0$$
$$= p$$

 $x = x_1 \cdot 2^{n/2} + x_0$

 $y = y_1 \cdot 2^{n/2} + y_0$

 $\mathbf{x} \cdot \mathbf{y} = (\mathbf{x_1} \cdot 2^{n/2} + \mathbf{x_0}) \cdot (\mathbf{y_1} \cdot 2^{n/2} + \mathbf{y_0})$

 $= x_1 \cdot y_1 \cdot 2^{n/2} + (p - x_1 \cdot y_1 - x_0 \cdot y_0) \cdot 2^{n/2} + x_0 \cdot y_0$

4 multiplications of n/2 bit numbers $T(n) \le 4T(n/2) + cn$

Solving the recurrence gets us to $T(n) = O(n^{\log 4}) = O(n^{2})$ Generally, solving the recurrence $T(n) \le qT(n/2) + cn$ gets us to $T(n) = O(n^{\log q})$

$$(X_1 + X_0)(y_1 + y_0) = X_1 \cdot y_1 + X_1 \cdot y_0 + X_0 \cdot y_1 + X_0 \cdot y_0$$

= **p**

 $x = x_1 \cdot 2^{n/2} + x_0$

 $y = y_1 \cdot 2^{n/2} + y_0$

 $\mathbf{x} \cdot \mathbf{y} = (\mathbf{x_1} \cdot 2^{n/2} + \mathbf{x_0}) \cdot (\mathbf{y_1} \cdot 2^{n/2} + \mathbf{y_0})$

 $= x_1 \cdot y_1 \cdot 2^{n/2} + (p - x_1 \cdot y_1 - x_0 \cdot y_0) \cdot 2^{n/2} + x_0 \cdot y_0$

4 multiplications of n/2 bit numbers $T(n) \le 4T(n/2) + cn$

Solving the recurrence gets us to $T(n) = O(n^{\log 4}) = O(n^{2})$ Generally, solving the recurrence $T(n) \le qT(n/2) + cn$ gets us to $T(n) = O(n^{\log q})$

 $\log_2 3 = 1.59$

$$(X_1 + X_0) (y_1 + y_0) = X_1 \cdot y_1 + X_1 \cdot y_0 + X_0 \cdot y_1 + X_0 \cdot y_0$$

= **p**

 $x = x_1 \cdot 2^{n/2} + x_0$

 $y = y_1 \cdot 2^{n/2} + y_0$

 $\mathbf{x} \cdot \mathbf{y} = (\mathbf{x_1} \cdot 2^{n/2} + \mathbf{x_0}) \cdot (\mathbf{y_1} \cdot 2^{n/2} + \mathbf{y_0})$

 $= x_1 \cdot y_1 \cdot 2^{n/2} + (p - x_1 \cdot y_1 - x_0 \cdot y_0) \cdot 2^{n/2} + x_0 \cdot y_0$

4 multiplications of n/2 bit numbers $T(n) \le 4T(n/2) + cn$

Solving the recurrence gets us to $T(n) = O(n^{\log 4}) = O(n^{2})$ Generally, solving the recurrence $T(n) \le qT(n/2) + cn$ gets us to $T(n) = O(n^{\log q})$

> $log_2 3 = 1.59$ T(n) = O(n^{1.59})

$$(X_1 + X_0)(y_1 + y_0) = X_1 \cdot y_1 + X_1 \cdot y_0 + X_0 \cdot y_1 + X_0 \cdot y_0$$

= **p**