
Advanced Algorithmic Techniques
(COMP523)

Recursion and Divide and Conquer Techniques #4

Recap and plan

Recap and plan
• Last lecture:

• Finding the closest pair of points.

• Integer Multiplication.

Recap and plan
• Last lecture:

• Finding the closest pair of points.

• Integer Multiplication.

• This lecture:

• The Selection problem.

• i.e., finding the ith-order statistic in an array.

The selection problem

• Definition: The ith-order statistic of a set of n (distinct)
elements is the ith smallest element.

• i.e., the element which is larger than exactly i-1 other
elements.

The Selection Problem: Selection(A[1,…,n],i) 
Input: A set of n (distinct) numbers (in an array A) and a
number i, with 1 ≤ i ≤ n. 
Output: The ith-order statistic of the set.

An easy solution

An easy solution

• Sort the numbers in O(n log n) time using MergeSort.

An easy solution

• Sort the numbers in O(n log n) time using MergeSort.

• Return the i-th element of the sorted array.

An easy solution

• Sort the numbers in O(n log n) time using MergeSort.

• Return the i-th element of the sorted array.

• Is sorting an overkill?

Divide and conquer

• Split the input into smaller inputs.

• Solve the problem for the smaller inputs recursively.

• Combine the solutions into a solution for the original
problem.

A glance back at the QuickSort algorithm

A glance back at the QuickSort algorithm

A glance back at the QuickSort algorithm

Recall the Partition procedure

Revisiting the Partition procedure
Procedure Partition(A[i,…,j]) 
 
 Choose a pivot element x of A 
 
 k = i-1 
 
 For h = i to j-1 do 
 
 If A[h] ≤ x  
 k = k + 1 
 Swap A[k] with A[h] 
 
 Swap A[k+1] with A[j]

Return k+1 
 

Running time O(n)

Revisiting the Partition procedure
Procedure Partition(A[i,…,j]) 
 
 Choose a pivot element x of A 
 
 k = i-1 
 
 For h = i to j-1 do 
 
 If A[h] ≤ x  
 k = k + 1 
 Swap A[k] with A[h] 
 
 Swap A[k+1] with A[j]

Return k+1 
 

Running time O(n)

Procedure Partition(A[i,…,j],,x) 
 
  
 
 k = i-1 
 
 For h = i to j-1 do 
 
 If A[h] ≤ x  
 k = k + 1 
 Swap A[k] with A[h] 
 
 Swap A[k+1] with A[j]

Return k+1 
 

What does Partition do?

What does Partition do?

• Using the element x, it divides the array A into three parts:
A[1,…x-1], A[x] and A[x+1, … , n].

What does Partition do?

• Using the element x, it divides the array A into three parts:
A[1,…x-1], A[x] and A[x+1, … , n].

• Then, we can reduce the search for the i-th element to
one of the three subarrays.

What does Partition do?

• Using the element x, it divides the array A into three parts:
A[1,…x-1], A[x] and A[x+1, … , n].

• Then, we can reduce the search for the i-th element to
one of the three subarrays.

• How can we choose the element x appropriately, such
that the subarrays A[1,…x-1] and A[x+1, … , n] are of
(approximately) equal size?

What does Partition do?

What does Partition do?
• How can we choose the element x appropriately, such that the

subarrays A[1,…x-1] and A[x+1, … , n] are of (approximately) equal
size?

What does Partition do?
• How can we choose the element x appropriately, such that the

subarrays A[1,…x-1] and A[x+1, … , n] are of (approximately) equal
size?

• We could find the median of the array and use that as the value x.

What does Partition do?
• How can we choose the element x appropriately, such that the

subarrays A[1,…x-1] and A[x+1, … , n] are of (approximately) equal
size?

• We could find the median of the array and use that as the value x.

• The median is the number that is larger than exactly (n+1)/2 - 1
numbers.

What does Partition do?
• How can we choose the element x appropriately, such that the

subarrays A[1,…x-1] and A[x+1, … , n] are of (approximately) equal
size?

• We could find the median of the array and use that as the value x.

• The median is the number that is larger than exactly (n+1)/2 - 1
numbers.

• The median is the [(n+1)/2]th-order statistic.

What does Partition do?
• How can we choose the element x appropriately, such that the

subarrays A[1,…x-1] and A[x+1, … , n] are of (approximately) equal
size?

• We could find the median of the array and use that as the value x.

• The median is the number that is larger than exactly (n+1)/2 - 1
numbers.

• The median is the [(n+1)/2]th-order statistic.

• What is an algorithm for finding the median?

What does Partition do?
• How can we choose the element x appropriately, such that the

subarrays A[1,…x-1] and A[x+1, … , n] are of (approximately) equal
size?

• We could find the median of the array and use that as the value x.

• The median is the number that is larger than exactly (n+1)/2 - 1
numbers.

• The median is the [(n+1)/2]th-order statistic.

• What is an algorithm for finding the median?

• Selection(A[1,…,n],(n+1)/2)

Let’s try to do that…

Algorithm Selection(A[1,…,n],i) 
 
 x = Selection(A[1,…,n],(n+1)/2)  
 y = Partition(A[1,…,n],x)

Let’s try to do that…

Algorithm Selection(A[1,…,n],i) 
 
 x = Selection(A[1,…,n],(n+1)/2)  
 y = Partition(A[1,…,n],x)

Do you see a problem?

Let’s try to do that…

Algorithm Selection(A[1,…,n],i) 
 
 x = Selection(A[1,…,n],(n+1)/2)  
 y = Partition(A[1,…,n],x)

Do you see a problem?

Before you conquer, you need to divide!

Let’s try to do that…

Algorithm Selection(A[1,…,n],i) 
 
 x = Selection(A[1,…,n],(n+1)/2)  
 y = Partition(A[1,…,n],x)

Do you see a problem?

Before you conquer, you need to divide!

Algorithm Selection(A[1,…,n],i) 
 
 x = Selection(A[1,…,n],(n+1)/2)  
 y = Partition(A[1,…,n],x)

Are we stuck?

• We need to partition the array into two using a good pivot
element (the median).

• Or otherwise the running time of the recursion will be
bad!

• But to find the median, we need an algorithm for
selection!

Are we stuck?

• We need to partition the array into two using a good pivot
element (something “close” to the median).

• Or otherwise the running time of the recursion will be
bad!

• But to find the median, we need an algorithm for
selection!

A good pivot element

• Split the array A into sub-arrays with 5 elements each.

• The last one might have fewer elements.

A good pivot element

A good pivot element

A good pivot element

A good pivot element

A good pivot element

A good pivot element

A good pivot element

• Split the array A into sub-arrays with 5 elements each.

• The last one might have fewer elements.

• For each one of those, find the median.

A good pivot element

A good pivot element

• Split the array A into sub-arrays with 5 elements each.

• The last one might have fewer elements.

• For each one of those, find the median.

• How do we do that?

A good pivot element

• Split the array A into sub-arrays with 5 elements each.

• The last one might have fewer elements.

• For each one of those, find the median.

• How do we do that?

Run InsertionSort

A good pivot element

• Split the array A into sub-arrays with 5 elements each.

• The last one might have fewer elements.

• For each one of those, find the median.

• Find the median-of-medians.

Median of medians

Median of medians

Median of medians

A good pivot element

• Split the array A into sub-arrays with 5 elements each.

• The last one might have fewer elements.

• For each one of those, find the median.

• Find the median-of-medians.

• How do we do that?

A good pivot element

• Split the array A into sub-arrays with 5 elements each.

• The last one might have fewer elements.

• For each one of those, find the median.

• Find the median-of-medians.

• How do we do that?

Run Selection

This failed…

Algorithm Selection(A[1,…,n],i) 
 
 x = Selection(A[1,…,n],(n+1)/2)  
 y = Partition(A[1,…,n],x)

…but this won’t.

Algorithm Selection(A[1,…,n],i) 
 
 Split the array A into n/5 arrays of size 5 
 For each subarray Ai, find the median 
 Let m1 , m2 , … , mn/5 be those medians  

 
 x = Selection(A[1,…,n],(n+1)/2) /*Find the median of medians */ 

 y = Partition(A[1,…,n],x) /*Partition the array using x as the pivot */

The Selection algorithm (not
exactly pseudocode)

Algorithm Selection(A[1,…,n],i) 
 
 Split the array A into n/5 arrays of size 5 
 For each subarray Ai, find the median 
 Let m1 , m2 , … , mn/5 be those medians  

 
 x = Selection(A[1,…,n],(n+1)/2) /*Find the median of medians */ 

 k = Partition(A[1,…,n],x) /*Partition the array using x as the pivot */ 
 
 k-1 is the number of elements in the lower subarray. 
  
 If i = k, return x 
 If i < k, return Selection(A[1,…,k-1],i) 
 If i > k, return Selection(A[k+1,…,n],i-k)

Zooming in
If i = k, return x 
If i < k, return Selection(A[1,…,k-1],i) 
If i > k, return Selection(A[k+1,…,n],i-k)

• We are looking for the ith-order statistic.

• If i=k, then x is the answer - it is larger than k-1 elements.

• If i ≤ k, the answer cannot be in the second part, as then i would
be larger than at least k-1 elements.

• For the same reason, if i ≥ k, the answer cannot be in the first part.

Running time
Algorithm Selection(A[1,…,n],i) 
 
 Split the array A into n/5 arrays of size 5 
 For each subarray Ai, find the median 
 Let m1 , m2 , … , mn/5 be those medians  

 
 x = Selection(A[1,…,n],(n+1)/2) /*Find the median of medians */ 

 k = Partition(A[1,…,n],x) /*Partition the array using x as the pivot */ 
 
 k-1 is the number of elements in the lower subarray. 
  
 If i = k, return x 
 If i < k, return Selection(A[1,…,k-1],i) 
 If i > k, return Selection(A[k+1,…,n],i-k)

Running time
Algorithm Selection(A[1,…,n],i) 
 
 Split the array A into n/5 arrays of size 5 
 For each subarray Ai, find the median 
 Let m1 , m2 , … , mn/5 be those medians  

 
 x = Selection(A[1,…,n],(n+1)/2) /*Find the median of medians */ 

 k = Partition(A[1,…,n],x) /*Partition the array using x as the pivot */ 
 
 k-1 is the number of elements in the lower subarray. 
  
 If i = k, return x 
 If i < k, return Selection(A[1,…,k-1],i) 
 If i > k, return Selection(A[k+1,…,n],i-k)

O(n)

Running time
Algorithm Selection(A[1,…,n],i) 
 
 Split the array A into n/5 arrays of size 5 
 For each subarray Ai, find the median 
 Let m1 , m2 , … , mn/5 be those medians  

 
 x = Selection(A[1,…,n],(n+1)/2) /*Find the median of medians */ 

 k = Partition(A[1,…,n],x) /*Partition the array using x as the pivot */ 
 
 k-1 is the number of elements in the lower subarray. 
  
 If i = k, return x 
 If i < k, return Selection(A[1,…,k-1],i) 
 If i > k, return Selection(A[k+1,…,n],i-k)

O(n)

O(n)

Running time
Algorithm Selection(A[1,…,n],i) 
 
 Split the array A into n/5 arrays of size 5 
 For each subarray Ai, find the median 
 Let m1 , m2 , … , mn/5 be those medians  

 
 x = Selection(A[1,…,n],(n+1)/2) /*Find the median of medians */ 

 k = Partition(A[1,…,n],x) /*Partition the array using x as the pivot */ 
 
 k-1 is the number of elements in the lower subarray. 
  
 If i = k, return x 
 If i < k, return Selection(A[1,…,k-1],i) 
 If i > k, return Selection(A[k+1,…,n],i-k)

O(n)

O(n)

T(n/5)

Running time
Algorithm Selection(A[1,…,n],i) 
 
 Split the array A into n/5 arrays of size 5 
 For each subarray Ai, find the median 
 Let m1 , m2 , … , mn/5 be those medians  

 
 x = Selection(A[1,…,n],(n+1)/2) /*Find the median of medians */ 

 k = Partition(A[1,…,n],x) /*Partition the array using x as the pivot */ 
 
 k-1 is the number of elements in the lower subarray. 
  
 If i = k, return x 
 If i < k, return Selection(A[1,…,k-1],i) 
 If i > k, return Selection(A[k+1,…,n],i-k)

O(n)

O(n)

T(n/5)

O(n)

Running time
Algorithm Selection(A[1,…,n],i) 
 
 Split the array A into n/5 arrays of size 5 
 For each subarray Ai, find the median 
 Let m1 , m2 , … , mn/5 be those medians  

 
 x = Selection(A[1,…,n],(n+1)/2) /*Find the median of medians */ 

 k = Partition(A[1,…,n],x) /*Partition the array using x as the pivot */ 
 
 k-1 is the number of elements in the lower subarray. 
  
 If i = k, return x 
 If i < k, return Selection(A[1,…,k-1],i) 
 If i > k, return Selection(A[k+1,…,n],i-k)

O(n)

O(n)

T(n/5)

O(n)

O(1)

Running time
Algorithm Selection(A[1,…,n],i) 
 
 Split the array A into n/5 arrays of size 5 
 For each subarray Ai, find the median 
 Let m1 , m2 , … , mn/5 be those medians  

 
 x = Selection(A[1,…,n],(n+1)/2) /*Find the median of medians */ 

 k = Partition(A[1,…,n],x) /*Partition the array using x as the pivot */ 
 
 k-1 is the number of elements in the lower subarray. 
  
 If i = k, return x 
 If i < k, return Selection(A[1,…,k-1],i) 
 If i > k, return Selection(A[k+1,…,n],i-k)

O(n)

O(n)

T(n/5)

O(n)

O(1)

T(|Smax|) |Smax| = max(k-1, n-k)

Running time

Running time

T(n) ≤ T(n/5) + T (|Smax|) + bn

Running time

T(n) ≤ T(n/5) + T (|Smax|) + bn

Before we proceed, we have to bound |Smax|.

Bounding the size of the subarrays

Bounding the size of the subarrays

• x is a median of medians.

Bounding the size of the subarrays

• x is a median of medians.

• At least (…) subarrays have “baby medians” ≥ x.

Bounding the size of the subarrays

• x is a median of medians.

• At least half of the subarrays have “baby medians” ≥ x.

Bounding the size of the subarrays

• x is a median of medians.

• At least half of the subarrays have “baby medians” ≥ x.

• Each one of these groups has at least (…) elements > x.

Bounding the size of the subarrays

• x is a median of medians.

• At least half of the subarrays have “baby medians” ≥ x.

• Each one of these groups has at least 3 elements > x.

Bounding the size of the subarrays

• x is a median of medians.

• At least half of the subarrays have “baby medians” ≥ x.

• Each one of these groups has at least 3 elements > x.

• Because x ≤ their “baby median”.

• Except possibly

Bounding the size of the subarrays

• x is a median of medians.

• At least half of the subarrays have “baby medians” ≥ x.

• Each one of these groups has at least 3 elements > x.

• Because x ≤ their “baby median”.

• Except possibly the group containing x and

Bounding the size of the subarrays

• x is a median of medians.

• At least half of the subarrays have “baby medians” ≥ x.

• Each one of these groups has at least 3 elements > x.

• Because x ≤ their “baby median”.

• Except possibly the group containing x and the group
that has fewer than 5 elements.

Bounding the size of the subarrays

 What is the total number of elements larger than x? 
 
  

 This means that the size of the lower subarray is at most 
 7n/10 + 6

3

✓⇠
1

2
·
ln
5

m⇡
� 2

◆
� 3n

10
� 6

<latexit sha1_base64="KCx6Rrax5qvzB8PJAxz6EoPUzZY=">AAACZnicbZHNS8MwGMbT+jXn19wQD16CQ9CDo938OopePCo4N1jLSNO3W1ia1iQVRuk/6c2zF/8Ms60Hdb6Q8OT55SXJkyDlTGnH+bDsldW19Y3KZnVre2d3r7Zff1FJJil0acIT2Q+IAs4EdDXTHPqpBBIHHHrB5H7Ge28gFUvEs56m4MdkJFjEKNHGGtaKjsch0qfzGXucAuPYiyShuVvk7QJ7NExmYAmLIr80WLLR2BC5IL9W57hdOmfYG8Fr2dgxna5TGHw1rDWdljMvvCzcUjRRWY/D2rsXJjSLQWjKiVID10m1nxOpGeVQVL1MQUrohIxgYKQgMSg/n8dU4BPjhDhKpBlC47n7syMnsVLTODA7Y6LH6i+bmf+xQaajGz9nIs00CLo4KMo41gmeZY5DJoFqPjWCUMnMXTEdE5OFNj9TNSG4f5+8LF7aLbfTaj9dNG/vyjgq6Agdo1Pkomt0ix7QI+oiij6tTatuNawve9c+sA8XW22r7GmgX2Xjb2QjtoA=</latexit>

groups

groups with “baby medians” > x

elements > x in each 
of those groups # groups who could be exceptions

Bounding the size of the subarrays

Bounding the size of the subarrays

• The size of the lower subarray is at most 7n/10 + 6

Bounding the size of the subarrays

• The size of the lower subarray is at most 7n/10 + 6

• A symmetric argument shows that the size of the upper
subarray is at most 7n/10 + 6

Bounding the size of the subarrays

• The size of the lower subarray is at most 7n/10 + 6

• A symmetric argument shows that the size of the upper
subarray is at most 7n/10 + 6

• Back to the recurrence: 
 
T(n) ≤ T(n/5) + T (|Smax|) + cn = T(n/5) + T (7n/10+6) + bn

Solving the recurrence

Solving the recurrence
• Lets guess that T(n) ≤ cn, for some constant c.

Solving the recurrence
• Lets guess that T(n) ≤ cn, for some constant c.

• We get that 
 
T(n) ≤ c(n/5) + c(7n/10+6) + bn 
 = 9cn/10 +7c+bn 
 = cn + (-cn/10 + 7c + bn)

Solving the recurrence
• Lets guess that T(n) ≤ cn, for some constant c.

• We get that 
 
T(n) ≤ c(n/5) + c(7n/10+6) + bn 
 = 9cn/10 +7c+bn 
 = cn + (-cn/10 + 7c + bn)

• This is at most cn whenever -cn/10 + 7c + bn ≤ 0, or
equivalently, when c ≥ 10bn/(n-70).

Solving the recurrence
• Lets guess that T(n) ≤ cn, for some constant c.

• We get that 
 
T(n) ≤ c(n/5) + c(7n/10+6) + bn 
 = 9cn/10 +7c+bn 
 = cn + (-cn/10 + 7c + bn)

• This is at most cn whenever -cn/10 + 7c + bn ≤ 0, or
equivalently, when c ≥ 10bn/(n-70).

• If n ≥ 140, then n/(n-70) ≤ 2 and then, it suffices to have c ≥ 20b.

Solving the recurrence

Solving the recurrence
• We want to show that there is some constant c > 0, such that

T(n) ≤ cn for all n > 0.

Solving the recurrence
• We want to show that there is some constant c > 0, such that

T(n) ≤ cn for all n > 0.

• Let a = max{ T(n) / n , n ≤ 140} and let c = max{a, 20b}.

Solving the recurrence
• We want to show that there is some constant c > 0, such that

T(n) ≤ cn for all n > 0.

• Let a = max{ T(n) / n , n ≤ 140} and let c = max{a, 20b}.

• We will prove the statement by induction.

Solving the recurrence
• We want to show that there is some constant c > 0, such that

T(n) ≤ cn for all n > 0.

• Let a = max{ T(n) / n , n ≤ 140} and let c = max{a, 20b}.

• We will prove the statement by induction.

• Base case: For every n ≤ 140, T(n) ≤ cn

Solving the recurrence
• We want to show that there is some constant c > 0, such that

T(n) ≤ cn for all n > 0.

• Let a = max{ T(n) / n , n ≤ 140} and let c = max{a, 20b}.

• We will prove the statement by induction.

• Base case: For every n ≤ 140, T(n) ≤ cn

• Inductive Step: Suppose that it holds for all n up to k=140.
Then for n=k+1, we have T(n) ≤ cn + (-cn/10 + 7c + bn)

Solving the recurrence
• We want to show that there is some constant c > 0, such that

T(n) ≤ cn for all n > 0.

• Let a = max{ T(n) / n , n ≤ 140} and let c = max{a, 20b}.

• We will prove the statement by induction.

• Base case: For every n ≤ 140, T(n) ≤ cn

• Inductive Step: Suppose that it holds for all n up to k=140.
Then for n=k+1, we have T(n) ≤ cn + (-cn/10 + 7c + bn)

• This follows from the fact that n > 140 and c ≥ 20b.

Bonus: The Master Theorem
Suppose T (n) ↵T (dn/be) +O(nd)

for some constants ↵ > 0, b > 1 and d � 0.

Then, T (n) =

8
><

>:

O(nd), if d > logb ↵

O(nd logb n), if d = logb ↵

O(nlogb ↵), if d < logb ↵
<latexit sha1_base64="EpVanqj8qIzvyJ8BdnQKMJnS+Eg=">AAADR3icbVJNb9MwGHYyPkb46uDI5RUVqBNVSQYSHFg1wYUbQ7TbpLpUjuOk1hw72A6iivLvuHDlxl/gwgGEOOK0maDrfHr8vO/zvB9640JwY8Pwm+dvXbp85er2teD6jZu3bnd27hwZVWrKxlQJpU9iYpjgko0tt4KdFJqRPBbsOD591cSPPzJtuJIjuyjYNCeZ5CmnxDpqtuNNH2LLPtnqXVkUyjCoYdSTu4AF+wCYiGJOYOQ+qe1hQRkXIB/HgHUDsebZ3O7CI3jTk+8TJ8JB65YqDUblDKiSxhJpjTNu7YYQ9gEDQAzDCFb5QGTiMhLAmasbDpzTP7PRnMl+jRtN09s+jlnGZUXd2KYOVrX70CYDT5dGQzeCymZxW9W5LRPPWLmp2L9QUa2R9absxboswEwmZ70Fs043HITLB5sgakEXte9w1vmKE0XLnElLBTFmEoWFnVZEW04FqwNcGlYQekoyNnFQkpyZabW8gxoeOCaBZvepkhaW7P+KiuTGLPLYZebEzs35WENeFJuUNn0+rbgsSsskXRVKSwFWQXNUkHDNqBULBwjV3PUKdE40odadXrOE6PzIm+BobxA9Gey9fdo9eNmuYxvdQ/dRD0XoGTpAr9EhGiPqffa+ez+9X/4X/4f/2/+zSvW9VnMXrb0t7y8ftgKp</latexit>

Bonus: The Master Theorem
Suppose T (n) ↵T (dn/be) +O(nd)

for some constants ↵ > 0, b > 1 and d � 0.

Then, T (n) =

8
><

>:

O(nd), if d > logb ↵

O(nd logb n), if d = logb ↵

O(nlogb ↵), if d < logb ↵
<latexit sha1_base64="EpVanqj8qIzvyJ8BdnQKMJnS+Eg=">AAADR3icbVJNb9MwGHYyPkb46uDI5RUVqBNVSQYSHFg1wYUbQ7TbpLpUjuOk1hw72A6iivLvuHDlxl/gwgGEOOK0maDrfHr8vO/zvB9640JwY8Pwm+dvXbp85er2teD6jZu3bnd27hwZVWrKxlQJpU9iYpjgko0tt4KdFJqRPBbsOD591cSPPzJtuJIjuyjYNCeZ5CmnxDpqtuNNH2LLPtnqXVkUyjCoYdSTu4AF+wCYiGJOYOQ+qe1hQRkXIB/HgHUDsebZ3O7CI3jTk+8TJ8JB65YqDUblDKiSxhJpjTNu7YYQ9gEDQAzDCFb5QGTiMhLAmasbDpzTP7PRnMl+jRtN09s+jlnGZUXd2KYOVrX70CYDT5dGQzeCymZxW9W5LRPPWLmp2L9QUa2R9absxboswEwmZ70Fs043HITLB5sgakEXte9w1vmKE0XLnElLBTFmEoWFnVZEW04FqwNcGlYQekoyNnFQkpyZabW8gxoeOCaBZvepkhaW7P+KiuTGLPLYZebEzs35WENeFJuUNn0+rbgsSsskXRVKSwFWQXNUkHDNqBULBwjV3PUKdE40odadXrOE6PzIm+BobxA9Gey9fdo9eNmuYxvdQ/dRD0XoGTpAr9EhGiPqffa+ez+9X/4X/4f/2/+zSvW9VnMXrb0t7y8ftgKp</latexit>

Example: For MergeSort, α=b=2 and d=1, we get O(n log n).

