Advanced Algorithmic Techniques (COMP523)

Recursion and Divide and Conquer Techniques \#4

Recap and plan

Recap and plan

- Last lecture:
- Finding the closest pair of points.
- Integer Multiplication.

Recap and plan

- Last lecture:
- Finding the closest pair of points.
- Integer Multiplication.
- This lecture:
- The Selection problem.
- i.e., finding the $i^{\text {th }}$-order statistic in an array.

The selection problem

- Definition: The $i^{\text {th }}$-order statistic of a set of n (distinct) elements is the $j^{\text {th }}$ smallest element.
- i.e., the element which is larger than exactly $i-1$ other elements.

The Selection Problem: \quad Selection $(\mathbf{A}[1, \ldots, n], i)$
Input: A set of n (distinct) numbers (in an array \mathbf{A}) and a number i, with $1 \leq i \leq n$.
Output: The $i^{\text {th }}$-order statistic of the set.

An easy solution

An easy solution

- Sort the numbers in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time using MergeSort.

An easy solution

- Sort the numbers in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time using MergeSort.
- Return the i-th element of the sorted array.

An easy solution

- Sort the numbers in $O(n \log n)$ time using MergeSort.
- Return the i-th element of the sorted array.
- Is sorting an overkill?

Divide and conquer

- Split the input into smaller inputs.
- Solve the problem for the smaller inputs recursively.
- Combine the solutions into a solution for the original problem.

A glance back at the QuickSort algorithm

A glance back at the QuickSort algorithm

The Quicksort algorithm

- Mergesort was based on the Merge procedure for joining the sorted sub-arrays into a sorted array.
- Quicksort first divides the array into two parts, such that the first part is "smaller" than the second part.
- This is done via the Partition procedure.
- Then it calls itself recursively.
- The two parts are joined, but this is trivial.

A glance back at the QuickSort algorithm

The Quicksort algorithm

- Mergesort was based on the Merge procedure for joining the sorted sub-arrays into a sorted array.
- Quicksort first divides the array into two parts, such that the first part is "smaller" than the second part.

Recall the Partition procedure

Revisiting the Partition procedure

Procedure Partition($\mathbf{A}[i, \ldots, j])$

Running time O(n)

Choose a pivot element \mathbf{x} of \mathbf{A}

$$
k=i-1
$$

$$
\text { For } h=i \text { to } j-1 \text { do }
$$

$$
\begin{aligned}
& \text { If } \mathbf{A}[h] \leq \mathbf{x} \\
& \quad k=k+1 \\
& \text { Swap } \mathbf{A}[k] \text { with } \mathbf{A}[h]
\end{aligned}
$$

Swap $\mathbf{A}[k+1]$ with $\mathbf{A}[]]$
Return k+1

Revisiting the Partition procedure

Procedure Partition $(\mathbf{A}[i, \ldots, j]), \mathrm{x})$

Running time $\mathbf{O}(\mathrm{n})$

$$
k=i-1
$$

$$
\text { For } h=i \text { to } j-1 \text { do }
$$

$$
\begin{aligned}
& \text { If } \mathbf{A}[h] \leq \mathbf{x} \\
& \quad k=k+1 \\
& \text { Swap } \mathbf{A}[k] \text { with } \mathbf{A}[h]
\end{aligned}
$$

Swap $\mathbf{A}[k+1]$ with $\mathbf{A}[]]$
Return k+1

What does Partition do?

What does Partition do?

- Using the element x, it divides the array \mathbf{A} into three parts: $\mathbf{A}[1, \ldots x-1], \mathbf{A}[x]$ and $\mathbf{A}[x+1, \ldots, n]$.

What does Partition do?

- Using the element x, it divides the array \mathbf{A} into three parts: $\mathbf{A}[1, \ldots x-1], \mathbf{A}[x]$ and $\mathbf{A}[x+1, \ldots, n]$.
- Then, we can reduce the search for the i-th element to one of the three subarrays.

What does Partition do?

- Using the element \mathbf{x}, it divides the array \mathbf{A} into three parts: $\mathbf{A}[1, \ldots x-1], \mathbf{A}[x]$ and $\mathbf{A}[x+1, \ldots, n]$.
- Then, we can reduce the search for the i-th element to one of the three subarrays.
- How can we choose the element x appropriately, such that the subarrays $\mathbf{A}[1, \ldots x-1]$ and $\mathbf{A}[x+1, \ldots, n]$ are of (approximately) equal size?

What does Partition do?

What does Partition do?

- How can we choose the element \mathbf{x} appropriately, such that the subarrays $\mathbf{A}[1, \ldots x-1]$ and $\mathbf{A}[x+1, \ldots, n]$ are of (approximately) equal size?

What does Partition do?

- How can we choose the element \mathbf{x} appropriately, such that the subarrays $\mathbf{A}[1, \ldots x-1]$ and $\mathbf{A}[x+1, \ldots, n]$ are of (approximately) equal size?
- We could find the median of the array and use that as the value x .

What does Partition do?

- How can we choose the element \mathbf{x} appropriately, such that the subarrays $\mathbf{A}[1, \ldots x-1]$ and $\mathbf{A}[x+1, \ldots, n]$ are of (approximately) equal size?
- We could find the median of the array and use that as the value x .
- The median is the number that is larger than exactly $(n+1) / 2-1$ numbers.

What does Partition do?

- How can we choose the element \mathbf{x} appropriately, such that the subarrays $\mathbf{A}[1, \ldots x-1]$ and $\mathbf{A}[x+1, \ldots, n]$ are of (approximately) equal size?
- We could find the median of the array and use that as the value x .
- The median is the number that is larger than exactly $(n+1) / 2-1$ numbers.
- The median is the $[(n+1) / 2]^{\text {th }}$-order statistic.

What does Partition do?

- How can we choose the element \mathbf{x} appropriately, such that the subarrays $\mathbf{A}[1, \ldots x-1]$ and $\mathbf{A}[x+1, \ldots, n]$ are of (approximately) equal size?
- We could find the median of the array and use that as the value x .
- The median is the number that is larger than exactly $(n+1) / 2-1$ numbers.
- The median is the $[(n+1) / 2]^{\text {th }}$-order statistic.
- What is an algorithm for finding the median?

What does Partition do?

- How can we choose the element \mathbf{x} appropriately, such that the subarrays $\mathbf{A}[1, \ldots x-1]$ and $\mathbf{A}[x+1, \ldots, n]$ are of (approximately) equal size?
- We could find the median of the array and use that as the value x .
- The median is the number that is larger than exactly $(n+1) / 2-1$ numbers.
- The median is the $[(n+1) / 2]^{\text {th }}$-order statistic.
- What is an algorithm for finding the median?
- Selection(A $[1, \ldots, n],(n+1) / 2)$

Let's try to do that...

Algorithm Selection($\mathbf{A}[1, \ldots, n], i)$

$$
\begin{aligned}
& \mathbf{x}=\operatorname{Selection}(\mathbf{A}[1, \ldots, n],(n+1) / 2) \\
& \mathbf{y}=\operatorname{Partition}(\mathbf{A}[1, \ldots, n], \mathbf{x})
\end{aligned}
$$

Let's try to do that...

Algorithm Selection(A[1,...,n],i)
Do you see a problem?

$$
\begin{aligned}
& \mathbf{x}=\operatorname{Selection}(\mathbf{A}[1, \ldots, n],(n+1) / 2) \\
& \mathbf{y}=\operatorname{Partition}(\mathbf{A}[1, \ldots, n], \mathbf{x})
\end{aligned}
$$

Let's try to do that...

Algorithm Selection(A[1,...,n],/)
Do you see a problem?

$$
\begin{aligned}
& \mathbf{x}=\operatorname{Selection}(\mathbf{A}[1, \ldots, n],(n+1) / 2) \\
& \mathbf{y}=\operatorname{Partition}(\mathbf{A}[1, \ldots, n], \mathbf{x})
\end{aligned}
$$

Before you conquer, you need to divide!

Let's try to do that...

Algorithm Selection(A[1,...,n],)
Do you see a problem?

$$
\begin{aligned}
& x=\operatorname{Selection}(\mathbf{A}[1, \ldots, n],(n+1) / 2) \\
& y=\operatorname{Partition}(\mathbf{A}[1, \ldots, n], x)
\end{aligned}
$$

Before you conquer, you need to divide!

Are we stuck?

- We need to partition the array into two using a good pivot element (the median).
- Or otherwise the running time of the recursion will be bad!
- But to find the median, we need an algorithm for selection!

Are we stuck?

- We need to partition the array into two using a good pivot element (something "close" to the median).
- Or otherwise the running time of the recursion will be bad!
- But to find the median, we need an algorithm for selection!

A good pivot element

- Split the array \mathbf{A} into sub-arrays with 5 elements each.
- The last one might have fewer elements.

A good pivot element

A good pivot element

A good pivot element

A good pivot element

A good pivot element

A good pivot element

A good pivot element

- Split the array \mathbf{A} into sub-arrays with 5 elements each.
- The last one might have fewer elements.
- For each one of those, find the median.

A good pivot element

A good pivot element

- Split the array \mathbf{A} into sub-arrays with 5 elements each.
- The last one might have fewer elements.
- For each one of those, find the median.
- How do we do that?

A good pivot element

- Split the array \mathbf{A} into sub-arrays with 5 elements each.
- The last one might have fewer elements.
- For each one of those, find the median.
- How do we do that?

Run InsertionSort

A good pivot element

- Split the array \mathbf{A} into sub-arrays with 5 elements each.
- The last one might have fewer elements.
- For each one of those, find the median.
- Find the median-of-medians.

Median of medians

Median of medians

■

Median of medians

■

A good pivot element

- Split the array \mathbf{A} into sub-arrays with 5 elements each.
- The last one might have fewer elements.
- For each one of those, find the median.
- Find the median-of-medians.
- How do we do that?

A good pivot element

- Split the array \mathbf{A} into sub-arrays with 5 elements each.
- The last one might have fewer elements.
- For each one of those, find the median.
- Find the median-of-medians.
- How do we do that?

Run Selection

This failed...

Algorithm Selection(A[1, .., n],i)

$$
\begin{aligned}
& \mathbf{x}=\operatorname{Selection}(\mathbf{A}[1, \ldots, n],(n+1) / 2) \\
& \mathbf{y}=\operatorname{Partition}(\mathbf{A}[1, \ldots, n], \mathbf{x})
\end{aligned}
$$

...but this won't.

Algorithm Selection(A[1, .., n],i)

Split the array \mathbf{A} into $\mathrm{n} / 5$ arrays of size 5
For each subarray $\mathbf{A}_{\mathbf{i}}$, find the median
Let $m_{1}, m_{2}, \ldots, m_{n / 5}$ be those medians
$\mathbf{x}=$ Selection $(\mathbf{A}[1, \ldots, n],(n+1) / 2) / *$ Find the median of medians */
$\mathbf{y}=\operatorname{Partition}(\mathbf{A}[1, \ldots, n], \mathbf{x}) \quad / * P a r t i t i o n ~ t h e ~ a r r a y ~ u s i n g ~ x a s ~ t h e ~ p i v o t ~ * / ~$

The Selection algorithm (not exactly pseudocode)

Algorithm Selection(A[1, $\ldots, n], i)$

Split the array \mathbf{A} into $\mathrm{n} / 5$ arrays of size 5
For each subarray $\mathbf{A}_{\mathbf{i}}$, find the median
Let $m_{1}, m_{2}, \ldots, m_{n / 5}$ be those medians
$\mathbf{x}=$ Selection $(\mathbf{A}[1, \ldots, n],(n+1) / 2) / *$ Find the median of medians */
$\mathrm{k}=\operatorname{Partition}(\mathbf{A}[1, \ldots, n], \mathrm{x}) \quad / *$ Partition the array using x as the pivot $* /$
$\mathrm{k}-1$ is the number of elements in the lower subarray.
If $i=k$, return x
If $i<k$, return Selection $(\mathbf{A}[1, \ldots, k-1], i)$
If $i>k$, return Selection $(\mathbf{A}[k+1, \ldots, n], i-k)$

Zooming in

```
If i=k, return x
If i<k, return Selection(A[1,\ldots,k-1],i)
If i>k, return Selection(\mathbf{A}[k+1,\ldots,n],i-k)
```

- We are looking for the $i^{\text {th }}$-order statistic.
- If $i=k$, then x is the answer - it is larger than $k-1$ elements.
- If $i \leq k$, the answer cannot be in the second part, as then i would be larger than at least k - 1 elements.
- For the same reason, if $i \geq k$, the answer cannot be in the first part.

Running time

Algorithm Selection(A[1,..,n],i)

Split the array \mathbf{A} into $\mathrm{n} / 5$ arrays of size 5
For each subarray $\mathbf{A}_{\mathbf{i}}$, find the median
Let $m_{1}, m_{2}, \ldots, m_{n / 5}$ be those medians
$\mathbf{x}=$ Selection $(\mathbf{A}[1, \ldots, n],(n+1) / 2) / *$ Find the median of medians */
$\mathrm{k}=\operatorname{Partition}(\mathbf{A}[1, \ldots, n], \mathrm{x}) \quad / *$ Partition the array using x as the pivot */
$\mathrm{k}-1$ is the number of elements in the lower subarray.
If $i=k$, return \mathbf{x}
If $i<k$, return Selection $(\mathbf{A}[1, \ldots, k-1], i)$
If $i>k$, return Selection $(\mathbf{A}[k+1, \ldots, n], i-k)$

Running time

Algorithm Selection(A[1,..,n],i)

O(n) Split the array \mathbf{A} into $n / 5$ arrays of size 5 For each subarray $\mathbf{A}_{\mathbf{i}}$, find the median
Let $m_{1}, m_{2}, \ldots, m_{n / 5}$ be those medians
$\mathbf{x}=\operatorname{Selection}(\mathbf{A}[1, \ldots, n],(n+1) / 2) / *$ Find the median of medians */
$\mathrm{K}=\operatorname{Partition}(\mathbf{A}[1, \ldots, n], \mathbf{x}) \quad / *$ Partition the array using x as the pivot */
$\mathrm{k}-1$ is the number of elements in the lower subarray.
If $i=k$, return \mathbf{x}
If $i<k$, return Selection $(\mathbf{A}[1, \ldots, k-1], i)$
If $i>k$, return Selection $(\mathbf{A}[k+1, \ldots, n], i-k)$

Running time

Algorithm Selection(A[1,..,n],i)

O(n) Split the array \mathbf{A} into $n / 5$ arrays of size 5 For each subarray $\mathbf{A}_{\mathbf{i}}$, find the median
Let $m_{1}, m_{2}, \ldots, m_{n / 5}$ be those medians
$\mathbf{x}=\operatorname{Selection}(\mathbf{A}[1, \ldots, n],(n+1) / 2) / *$ Find the median of medians */
$\mathrm{k}=\operatorname{Partition}(\mathbf{A}[1, \ldots, n], \mathbf{x}) \quad / *$ Partition the array using x as the pivot */
$\mathrm{k}-1$ is the number of elements in the lower subarray.
If $i=k$, return \boldsymbol{x}
If $i<k$, return Selection $(\mathbf{A}[1, \ldots, k-1], i)$
If $i>k$, return Selection $(\mathbf{A}[k+1, \ldots, n], i-k)$

Running time

Algorithm Selection(A[1,..,n],i)

O(n) Split the array \mathbf{A} into $n / 5$ arrays of size 5
O(n) For each subarray $\mathbf{A}_{\mathbf{i}}$, find the median
Let $m_{1}, m_{2}, \ldots, m_{n / 5}$ be those medians
$T(n / 5) \quad \mathbf{x}=\operatorname{Selection}(\mathbf{A}[1, \ldots, n],(n+1) / 2) / *$ Find the median of medians */ $\mathrm{k}=\operatorname{Partition}(\mathbf{A}[1, \ldots, n], \mathbf{x}) \quad / \times$ Partition the array using x as the pivot */
$\mathrm{k}-1$ is the number of elements in the lower subarray.
If $i=k$, return \boldsymbol{x}
If $i<k$, return Selection $(\mathbf{A}[1, \ldots, k-1], i)$
If $i>k$, return Selection $(\mathbf{A}[k+1, \ldots, n], i-k)$

Running time

Algorithm Selection(A[1,..,n],i)

O(n) Split the array \mathbf{A} into $n / 5$ arrays of size 5 For each subarray $\mathbf{A}_{\mathbf{i}}$, find the median
Let $m_{1}, m_{2}, \ldots, m_{n / 5}$ be those medians
$T(n / 5) \quad \mathbf{x}=\operatorname{Selection}(\mathbf{A}[1, \ldots, n],(n+1) / 2) / *$ Find the median of medians */
$\mathrm{O}(\mathrm{n}) \quad \mathrm{K}=\operatorname{Partition}(\mathbf{A}[1, \ldots, n], \mathrm{x}) / *$ Partition the array using x as the pivot $* /$
$\mathrm{k}-1$ is the number of elements in the lower subarray.
If $i=k$, return \boldsymbol{x}
If $i<k$, return Selection $(\mathbf{A}[1, \ldots, k-1], i)$
If $i>k$, return Selection $(\mathbf{A}[k+1, \ldots, n], i-k)$

Running time

Algorithm Selection(A[1,..,n],i)

O(n) Split the array \mathbf{A} into $n / 5$ arrays of size 5
O(n) For each subarray $\mathbf{A}_{\mathbf{i}}$, find the median
Let $m_{1}, m_{2}, \ldots, m_{n / 5}$ be those medians
$T(n / 5) \quad \mathbf{x}=\operatorname{Selection}(\mathbf{A}[1, \ldots, n],(n+1) / 2) / *$ Find the median of medians */
$\mathrm{O}(\mathrm{n}) \quad \mathrm{K}=\operatorname{Partition}(\mathbf{A}[1, \ldots, n], \mathrm{x}) / *$ Partition the array using x as the pivot $* /$
$\mathrm{k}-1$ is the number of elements in the lower subarray.
O(1) If $i=k$, return \mathbf{x}
If $i<k$, return Selection $(\mathbf{A}[1, \ldots, k-1], i)$
If $i>k$, return Selection $(\mathbf{A}[k+1, \ldots, n], i-k)$

Running time

Algorithm Selection(A[1,..,n],i)

O(n) Split the array \mathbf{A} into $n / 5$ arrays of size 5
O(n) For each subarray $\mathbf{A}_{\mathbf{i}}$, find the median
Let $m_{1}, m_{2}, \ldots, m_{n / 5}$ be those medians
$T(n / 5) \quad \mathbf{x}=\operatorname{Selection}(\mathbf{A}[1, \ldots, n],(n+1) / 2) / *$ Find the median of medians */
$\mathrm{O}(\mathrm{n}) \quad \mathrm{K}=\operatorname{Partition}(\mathbf{A}[1, \ldots, n], \mathrm{x}) / *$ Partition the array using x as the pivot $* /$
$\mathrm{k}-1$ is the number of elements in the lower subarray.
O(1) If $i=k$, return \mathbf{x} If $i<k$, return Selection $(\mathbf{A}[1, \ldots, k-1], i) \quad\left|\mathbf{S}_{\max }\right|=\max (k-1, n-k)$ If $i>k$, return Selection $(\mathbf{A}[k+1, \ldots, n], i-k)$

Running time

Running time

$$
T(n) \leq T(n / 5)+T\left(\left|S_{\text {max }}\right|\right)+b n
$$

Running time

$\mathrm{T}(n) \leq \mathrm{T}(n / 5)+\mathrm{T}\left(\mid S_{\text {max }}\right)+\mathrm{b} n$
Before we proceed, we have to bound $\left|S_{\max }\right|$.

Bounding the size of the subarrays

Bounding the size of the subarrays

- x is a median of medians.

Bounding the size of the subarrays

- x is a median of medians.
- At least (...) subarrays have "baby medians" $\geq \mathrm{x}$.

Bounding the size of the subarrays

- x is a median of medians.
- At least half of the subarrays have "baby medians" $\geq \mathrm{x}$.

Bounding the size of the subarrays

- x is a median of medians.
- At least half of the subarrays have "baby medians" $\geq \mathrm{x}$.
- Each one of these groups has at least (...) elements $>\mathrm{x}$.

Bounding the size of the subarrays

- x is a median of medians.
- At least half of the subarrays have "baby medians" $\geq \mathrm{x}$.
- Each one of these groups has at least 3 elements $>\mathrm{x}$.

Bounding the size of the subarrays

- x is a median of medians.
- At least half of the subarrays have "baby medians" $\geq \mathbf{x}$.
- Each one of these groups has at least 3 elements $>\mathbf{x}$.
- Because $x \leq$ their "baby median".
- Except possibly

Bounding the size of the subarrays

- x is a median of medians.
- At least half of the subarrays have "baby medians" $\geq \mathbf{x}$.
- Each one of these groups has at least 3 elements $>\mathbf{x}$.
- Because $x \leq$ their "baby median".
- Except possibly the group containing x and

Bounding the size of the subarrays

- x is a median of medians.
- At least half of the subarrays have "baby medians" $\geq \mathbf{x}$.
- Each one of these groups has at least 3 elements $>\mathbf{x}$.
- Because $x \leq$ their "baby median".
- Except possibly the group containing x and the group that has fewer than 5 elements.

Bounding the size of the subarrays

What is the total number of elements larger than x ?

This means that the size of the lower subarray is at most $7 n / 10+6$

Bounding the size of the subarrays

Bounding the size of the subarrays

- The size of the lower subarray is at most $7 n / 10+6$

Bounding the size of the subarrays

- The size of the lower subarray is at most $7 n / 10+6$
- A symmetric argument shows that the size of the upper subarray is at most $7 \mathrm{n} / 10+6$

Bounding the size of the subarrays

- The size of the lower subarray is at most $7 n / 10+6$
- A symmetric argument shows that the size of the upper subarray is at most $7 \mathrm{n} / 10+6$
- Back to the recurrence:

$$
\mathrm{T}(n) \leq \mathrm{T}(n / 5)+\mathrm{T}\left(\left|\mathrm{~S}_{\max }\right|\right)+\mathrm{c} n=\mathrm{T}(n / 5)+\mathrm{T}(7 n / 10+6)+\mathrm{b} n
$$

Solving the recurrence

Solving the recurrence

- Lets guess that $T(n) \leq c n$, for some constant c.

Solving the recurrence

- Lets guess that $\mathrm{T}(n) \leq \mathrm{c} n$, for some constant c .
- We get that

$$
\begin{aligned}
\mathrm{T}(n) & \leq \mathrm{c}(n / 5)+\mathrm{c}(7 n / 10+6)+\mathrm{b} n \\
& =9 \mathrm{c} n / 10+7 \mathrm{c}+\mathrm{b} n \\
& =\mathrm{c} n+(-\mathrm{c} n / 10+7 \mathrm{c}+\mathrm{b} n)
\end{aligned}
$$

Solving the recurrence

- Lets guess that $T(n) \leq c n$, for some constant c.
- We get that

$$
\begin{aligned}
\mathrm{T}(n) & \leq \mathrm{c}(n / 5)+\mathrm{c}(7 n / 10+6)+\mathrm{b} n \\
& =9 \mathrm{c} n / 10+7 \mathrm{c}+\mathrm{b} n \\
& =\mathrm{c} n+(-\mathrm{c} n / 10+7 \mathrm{c}+\mathrm{b} n)
\end{aligned}
$$

- This is at most $\mathrm{c} n$ whenever $-\mathrm{c} n / 10+7 \mathrm{c}+\mathrm{b} n \leq 0$, or equivalently, when $c \geq 10 \mathrm{~b} n /(n-70)$.

Solving the recurrence

- Lets guess that $T(n) \leq c n$, for some constant c.
- We get that

$$
\begin{aligned}
\mathrm{T}(n) & \leq \mathrm{c}(n / 5)+\mathrm{c}(7 n / 10+6)+\mathrm{b} n \\
& =9 \mathrm{c} n / 10+7 \mathrm{c}+\mathrm{b} n \\
& =\mathrm{c} n+(-\mathrm{c} n / 10+7 \mathrm{c}+\mathrm{b} n)
\end{aligned}
$$

- This is at most $\mathrm{c} n$ whenever $-\mathrm{c} n / 10+7 \mathrm{c}+\mathrm{b} n \leq 0$, or equivalently, when $c \geq 10 \mathrm{~b} n /(n-70)$.
- If $n \geq 140$, then $n /(n-70) \leq 2$ and then, it suffices to have $\mathrm{c} \geq 20 \mathrm{~b}$.

Solving the recurrence

Solving the recurrence

- We want to show that there is some constant $\mathrm{c}>0$, such that $\mathrm{T}(n) \leq \mathrm{c}$ for all $\mathrm{n}>0$.

Solving the recurrence

- We want to show that there is some constant $\mathrm{c}>0$, such that $\mathrm{T}(n) \leq \mathrm{c}$ for all $\mathrm{n}>0$.
- Let $\mathrm{a}=\max \{\mathrm{T}(n) / n, \mathrm{n} \leq 140\}$ and let $\mathrm{c}=\max \{\mathrm{a}, 20 \mathrm{~b}\}$.

Solving the recurrence

- We want to show that there is some constant $c>0$, such that $\mathrm{T}(\mathrm{n}) \leq \mathrm{c}$ for all $\mathrm{n}>0$.
- Let $\mathrm{a}=\max \{\mathrm{T}(n) / n, \mathrm{n} \leq 140\}$ and let $\mathrm{c}=\max \{\mathrm{a}, 20 \mathrm{~b}\}$.
- We will prove the statement by induction.

Solving the recurrence

- We want to show that there is some constant $c>0$, such that $\mathrm{T}(n) \leq \mathrm{c}$ for all $\mathrm{n}>0$.
- Let $\mathrm{a}=\max \{\mathrm{T}(n) / n, \mathrm{n} \leq 140\}$ and let $\mathrm{c}=\max \{\mathrm{a}, 20 \mathrm{~b}\}$.
- We will prove the statement by induction.
- Base case: For every $n \leq 140, T(n) \leq c n$

Solving the recurrence

- We want to show that there is some constant $c>0$, such that $\mathrm{T}(\mathrm{n}) \leq \mathrm{c}$ for all $\mathrm{n}>0$.
- Let $\mathrm{a}=\max \{\mathrm{T}(n) / n, \mathrm{n} \leq 140\}$ and let $\mathrm{c}=\max \{\mathrm{a}, 20 \mathrm{~b}\}$.
- We will prove the statement by induction.
- Base case: For every $n \leq 140, T(n) \leq c n$
- Inductive Step: Suppose that it holds for all n up to $\mathrm{k}=140$. Then for $n=k+1$, we have $T(n) \leq \mathrm{c} n+(-\mathrm{c} n / 10+7 \mathrm{c}+\mathrm{b} n)$

Solving the recurrence

- We want to show that there is some constant $c>0$, such that $\mathrm{T}(\mathrm{n}) \leq \mathrm{c}$ for all $\mathrm{n}>0$.
- Let $\mathrm{a}=\max \{\mathrm{T}(n) / n, \mathrm{n} \leq 140\}$ and let $\mathrm{c}=\max \{\mathrm{a}, 20 \mathrm{~b}\}$.
- We will prove the statement by induction.
- Base case: For every $n \leq 140, T(n) \leq c n$
- Inductive Step: Suppose that it holds for all n up to $\mathrm{k}=140$. Then for $n=k+1$, we have $T(n) \leq \mathrm{c} n+(-\mathrm{c} n / 10+7 \mathrm{c}+\mathrm{b} n)$
- This follows from the fact that $n>140$ and $c \geq 20$ b.

Bonus: The Master Theorem

Suppose $T(n) \leq \alpha T(\lceil n / b\rceil)+O\left(n^{d}\right)$
for some constants $\alpha>0, b>1$ and $d \geq 0$.

Then, $T(n)= \begin{cases}O\left(n^{d}\right), & \text { if } d>\log _{b} \alpha \\ O\left(n^{d} \log _{b} n\right), & \text { if } d=\log _{b} \alpha \\ O\left(n^{\log _{b} \alpha}\right), & \text { if } d<\log _{b} \alpha\end{cases}$

Bonus: The Master Theorem

Suppose $T(n) \leq \alpha T(\lceil n / b\rceil)+O\left(n^{d}\right)$ for some constants $\alpha>0, b>1$ and $d \geq 0$.

Then, $T(n)= \begin{cases}O\left(n^{d}\right), & \text { if } d>\log _{b} \alpha \\ O\left(n^{d} \log _{b} n\right), & \text { if } d=\log _{b} \alpha \\ O\left(n^{\log _{b} \alpha}\right), & \text { if } d<\log _{b} \alpha\end{cases}$

Example: For MergeSort, $a=b=2$ and $d=1$, we get $O(n \log n)$.

