
Advanced Algorithmic Techniques  
(COMP523)

Recursion and Divide and Conquer Techniques #4
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Recap and plan
• Last lecture: 

• Finding the closest pair of points.


• Integer Multiplication. 

• This lecture: 

• The Selection problem.


• i.e., finding the ith-order statistic in an array.



The selection problem

• Definition: The ith-order statistic of a set of n (distinct) 
elements is the ith smallest element.


• i.e., the element which is larger than exactly i-1 other 
elements.


The Selection Problem:            Selection(A[1,…,n],i) 
Input: A set of n (distinct) numbers (in an array A) and a 
number i, with 1 ≤ i ≤ n. 
Output: The ith-order statistic of the set.
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An easy solution

• Sort the numbers in O(n log n) time using MergeSort.

• Return the i-th element of the sorted array.

• Is sorting an overkill?



Divide and conquer

• Split the input into smaller inputs.


• Solve the problem for the smaller inputs recursively.


• Combine the solutions into a solution for the original 
problem.
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Recall the Partition procedure



Revisiting the Partition procedure
Procedure Partition(A[i,…,j]) 
 
    Choose a pivot element x of A 
 
    k = i-1 
 
    For h = i to j-1 do 
 
          If A[h] ≤ x  
                k = k + 1 
                Swap A[k] with A[h] 
 
         Swap A[k+1] with A[j]


Return k+1 
 

Running time O(n)
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Procedure Partition(A[i,…,j],,x) 
 
    
 
    k = i-1 
 
    For h = i to j-1 do 
 
          If A[h] ≤ x  
                k = k + 1 
                Swap A[k] with A[h] 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What does Partition do?
• How can we choose the element x appropriately, such that the 

subarrays A[1,…x-1] and A[x+1, … , n] are of (approximately) equal 
size?

• We could find the median of the array and use that as the value x. 

• The median is the number that is larger than exactly (n+1)/2 - 1 
numbers.

• The median is the [(n+1)/2]th-order statistic.

• What is an algorithm for finding the median?

• Selection(A[1,…,n],(n+1)/2) 
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Algorithm Selection(A[1,…,n],i) 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Are we stuck?

• We need to partition the array into two using a good pivot 
element (something “close” to the median).


• Or otherwise the running time of the recursion will be 
bad!


• But to find the median, we need an algorithm for 
selection!



A good pivot element

• Split the array A into sub-arrays with 5 elements each.


• The last one might have fewer elements.
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• Split the array A into sub-arrays with 5 elements each.


• The last one might have fewer elements.


• For each one of those, find the median.


• Find the median-of-medians.



Median of medians



Median of medians



Median of medians



A good pivot element

• Split the array A into sub-arrays with 5 elements each.


• The last one might have fewer elements.


• For each one of those, find the median.


• Find the median-of-medians.


• How do we do that?



A good pivot element

• Split the array A into sub-arrays with 5 elements each.


• The last one might have fewer elements.


• For each one of those, find the median.


• Find the median-of-medians.


• How do we do that?

Run Selection



This failed…

Algorithm Selection(A[1,…,n],i) 
 
       x = Selection(A[1,…,n],(n+1)/2)  
       y = Partition(A[1,…,n],x)



…but this won’t.

Algorithm Selection(A[1,…,n],i) 
 
      Split the array A into n/5 arrays of size 5 
       For each subarray Ai, find the median 
       Let m1 , m2 , … ,  mn/5 be those medians  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       y = Partition(A[1,…,n],x)  /*Partition the array using x as the pivot */



The Selection algorithm (not 
exactly pseudocode)

Algorithm Selection(A[1,…,n],i) 
 
      Split the array A into n/5 arrays of size 5 
       For each subarray Ai, find the median 
       Let m1 , m2 , … ,  mn/5 be those medians  

 
       x = Selection(A[1,…,n],(n+1)/2)  /*Find the median of medians */ 

       k = Partition(A[1,…,n],x)  /*Partition the array using x as the pivot */ 
 
         k-1 is the number of elements in the lower subarray. 
          
         If i = k, return x 
         If i < k, return Selection(A[1,…,k-1],i) 
       If i > k, return Selection(A[k+1,…,n],i-k)



Zooming in
If i = k, return x 
If i < k, return Selection(A[1,…,k-1],i) 
If i > k, return Selection(A[k+1,…,n],i-k)

• We are looking for the ith-order statistic.


• If i=k, then x is the answer - it is larger than k-1 elements.


• If i ≤ k, the answer cannot be in the second part, as then i would 
be larger than at least k-1 elements.


• For the same reason, if i ≥ k, the answer cannot be in the first part.
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T(|Smax|) |Smax| = max(k-1, n-k)
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Running time

T(n) ≤ T(n/5) + T (|Smax|) + bn

Before we proceed, we have to bound |Smax|.
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Bounding the size of the subarrays

• x is a median of medians.


• At least half of the subarrays have “baby medians” ≥ x.


• Each one of these groups has at least 3 elements > x. 

• Because x ≤ their “baby median”.


• Except possibly the group containing x and the group 
that has fewer than 5 elements.



Bounding the size of the subarrays

      What is the total number of elements larger than x? 
 
              

    This means that the size of the lower subarray is at most 
                                      7n/10 + 6
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# groups

# groups with “baby medians” > x

# elements > x in each 
of those groups # groups who could be exceptions
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Bounding the size of the subarrays

• The size of the lower subarray is at most 7n/10 + 6

• A symmetric argument shows that the size of the upper 
subarray is at most 7n/10 + 6

• Back to the recurrence: 
 
T(n) ≤ T(n/5) + T (|Smax|) + cn = T(n/5) + T (7n/10+6) + bn
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Solving the recurrence
• Lets guess that T(n) ≤ cn, for some constant c.

• We get that 
 
T(n) ≤ c(n/5) + c(7n/10+6) + bn 
       = 9cn/10 +7c+bn 
       = cn + (-cn/10 + 7c + bn)

• This is at most cn whenever -cn/10 + 7c + bn ≤ 0, or 
equivalently, when c ≥ 10bn/(n-70).

• If n ≥ 140, then n/(n-70) ≤ 2 and then, it suffices to have c ≥ 20b.
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Solving the recurrence
• We want to show that there is some constant c > 0, such that 

T(n) ≤ cn for all n > 0.

• Let a = max{ T(n) / n , n ≤ 140} and let c = max{a, 20b}.

• We will prove the statement by induction.

• Base case: For every n ≤ 140, T(n) ≤ cn

• Inductive Step: Suppose that it holds for all n up to k=140. 
Then for n=k+1, we have T(n) ≤ cn + (-cn/10 + 7c + bn) 

• This follows from the fact that n > 140 and c ≥ 20b.



Bonus: The Master Theorem 
Suppose T (n)  ↵T (dn/be) +O(nd)

for some constants ↵ > 0, b > 1 and d � 0.

Then, T (n) =

8
><

>:

O(nd), if d > logb ↵

O(nd logb n), if d = logb ↵

O(nlogb ↵), if d < logb ↵
<latexit sha1_base64="EpVanqj8qIzvyJ8BdnQKMJnS+Eg="></latexit>



Bonus: The Master Theorem 
Suppose T (n)  ↵T (dn/be) +O(nd)

for some constants ↵ > 0, b > 1 and d � 0.

Then, T (n) =

8
><

>:

O(nd), if d > logb ↵

O(nd logb n), if d = logb ↵

O(nlogb ↵), if d < logb ↵
<latexit sha1_base64="EpVanqj8qIzvyJ8BdnQKMJnS+Eg=">AAADR3icbVJNb9MwGHYyPkb46uDI5RUVqBNVSQYSHFg1wYUbQ7TbpLpUjuOk1hw72A6iivLvuHDlxl/gwgGEOOK0maDrfHr8vO/zvB9640JwY8Pwm+dvXbp85er2teD6jZu3bnd27hwZVWrKxlQJpU9iYpjgko0tt4KdFJqRPBbsOD591cSPPzJtuJIjuyjYNCeZ5CmnxDpqtuNNH2LLPtnqXVkUyjCoYdSTu4AF+wCYiGJOYOQ+qe1hQRkXIB/HgHUDsebZ3O7CI3jTk+8TJ8JB65YqDUblDKiSxhJpjTNu7YYQ9gEDQAzDCFb5QGTiMhLAmasbDpzTP7PRnMl+jRtN09s+jlnGZUXd2KYOVrX70CYDT5dGQzeCymZxW9W5LRPPWLmp2L9QUa2R9absxboswEwmZ70Fs043HITLB5sgakEXte9w1vmKE0XLnElLBTFmEoWFnVZEW04FqwNcGlYQekoyNnFQkpyZabW8gxoeOCaBZvepkhaW7P+KiuTGLPLYZebEzs35WENeFJuUNn0+rbgsSsskXRVKSwFWQXNUkHDNqBULBwjV3PUKdE40odadXrOE6PzIm+BobxA9Gey9fdo9eNmuYxvdQ/dRD0XoGTpAr9EhGiPqffa+ez+9X/4X/4f/2/+zSvW9VnMXrb0t7y8ftgKp</latexit>

Example: For MergeSort, α=b=2 and d=1, we get O(n log n).


