Advanced Algorithmic Techniques (COMP523)

Recursion and Divide and Conquer Techniques #4

Recap and plan

Recap and plan

Last lecture:

- Finding the closest pair of points.
- Integer Multiplication.

Recap and plan

Last lecture:

- Finding the closest pair of points.
- Integer Multiplication.
- This lecture:
 - The Selection problem.
 - i.e., finding the *i*th-order statistic in an array.

The selection problem

- Definition: The *i*th-order statistic of a set of n (distinct) elements is the *i*th smallest element.
 - i.e., the element which is larger than exactly *i*-1 other elements.

The Selection Problem:Selection(A[1,...,n],i)Input: A set of n (distinct) numbers (in an array A) and anumber i, with $1 \le i \le n$.Output: The *i*th-order statistic of the set.

Sort the numbers in O(n log n) time using MergeSort.

- Sort the numbers in O(n log n) time using MergeSort.
- Return the *i*-th element of the sorted array.

- Sort the numbers in O(n log n) time using MergeSort.
- Return the *i*-th element of the sorted array.
- Is sorting an overkill?

Divide and conquer

- Split the input into smaller inputs.
- Solve the problem for the smaller inputs recursively.
- Combine the solutions into a solution for the original problem.

A glance back at the QuickSort algorithm

A glance back at the QuickSort algorithm

The Quicksort algorithm

- Mergesort was based on the Merge procedure for joining the sorted sub-arrays into a sorted array.
- <u>Quicksort</u> first divides the array into two parts, such that the first part is "smaller" than the second part.
 - This is done via the Partition procedure.
- · Then it calls itself recursively.
- · The two parts are joined, but this is trivial.

A glance back at the QuickSort algorithm

The Quicksort algorithm

- Mergesort was based on the Merge procedure for joining the sorted sub-arrays into a sorted array.
- <u>Quicksort</u> first divides the array into two parts, such that the first part is "smaller" than the second part.
 - This is done via the Partition procedure.
- · Then it calls itself recursively.
- · The two parts are joined, but this is trivial.

Recall the Partition procedure

Revisiting the Partition procedure

Procedure **Partition**(**A**[*i*,...,*j*])

Choose a pivot element x of A

k = *i*-1

For h = i to j-1 do

If $\mathbf{A}[h] \leq \mathbf{X}$ k = k + 1Swap $\mathbf{A}[k]$ with $\mathbf{A}[h]$

Swap A[k+1] with A[j]

Return *k*+1

Running time O(n)

Revisiting the Partition procedure

Procedure **Partition**(**A**[*i*,...,*j*]),**x**)

Cheese a pivet element x of A

k = *i*-1

For h = i to j-1 do

If $\mathbf{A}[h] \leq \mathbf{X}$ k = k + 1Swap $\mathbf{A}[k]$ with $\mathbf{A}[h]$

Swap A[k+1] with A[j]

Return *k*+1

Running time O(n)

Using the element x, it divides the array A into three parts:
 A[1,...x-1], A[x] and A[x+1, ..., n].

- Using the element x, it divides the array A into three parts:
 A[1,...x-1], A[x] and A[x+1, ..., n].
- Then, we can reduce the search for the *i*-th element to one of the three subarrays.

- Using the element x, it divides the array A into three parts:
 A[1,...x-1], A[x] and A[x+1, ..., n].
- Then, we can reduce the search for the *i*-th element to one of the three subarrays.
- How can we choose the element x appropriately, such that the subarrays A[1,...x-1] and A[x+1, ..., n] are of (approximately) equal size?

How can we choose the element x appropriately, such that the subarrays A[1,...x-1] and A[x+1, ..., n] are of (approximately) equal size?

- How can we choose the element x appropriately, such that the subarrays A[1,...x-1] and A[x+1, ..., n] are of (approximately) equal size?
- We could find the median of the array and use that as the value **x**.

- How can we choose the element x appropriately, such that the subarrays A[1,...x-1] and A[x+1, ..., n] are of (approximately) equal size?
- We could find the median of the array and use that as the value **x**.
 - The median is the number that is larger than exactly (n+1)/2 1 numbers.

- How can we choose the element x appropriately, such that the subarrays A[1,...x-1] and A[x+1, ..., n] are of (approximately) equal size?
- We could find the median of the array and use that as the value **x**.
 - The median is the number that is larger than exactly (n+1)/2 1 numbers.
 - The median is the [(n+1)/2]th-order statistic.

- How can we choose the element x appropriately, such that the subarrays A[1,...x-1] and A[x+1, ..., n] are of (approximately) equal size?
- We could find the median of the array and use that as the value **x**.
 - The median is the number that is larger than exactly (n+1)/2 1 numbers.
 - The median is the [(n+1)/2]th-order statistic.
- What is an algorithm for finding the median?

- How can we choose the element x appropriately, such that the subarrays A[1,...x-1] and A[x+1, ..., n] are of (approximately) equal size?
- We could find the median of the array and use that as the value **x**.
 - The median is the number that is larger than exactly (n+1)/2 1 numbers.
 - The median is the [(n+1)/2]th-order statistic.
- What is an algorithm for finding the median?
 - Selection(A[1,...,n],(n+1)/2)

Algorithm **Selection**(**A**[1,...,n],*i*)

 $\mathbf{x} = \text{Selection}(\mathbf{A}[1, \dots, n], (n+1)/2)$ $\mathbf{y} = \text{Partition}(\mathbf{A}[1, \dots, n], \mathbf{x})$

Algorithm **Selection**(**A**[1,...,n],*i*)

Do you see a problem?

 $\mathbf{x} = \text{Selection}(\mathbf{A}[1, \dots, n], (n+1)/2)$ $\mathbf{y} = \text{Partition}(\mathbf{A}[1, \dots, n], \mathbf{x})$

Algorithm **Selection**(**A**[1,...,n],*i*)

Do you see a problem?

 $\mathbf{x} = \text{Selection}(\mathbf{A}[1, \dots, n], (n+1)/2)$ $\mathbf{y} = \text{Partition}(\mathbf{A}[1, \dots, n], \mathbf{x})$

Before you conquer, you need to divide!

Algorithm Selection(A[1,...,n],i)

Do you see a problem?

 $\mathbf{x} = \text{Selection}(\mathbf{A}[1, \dots, n], (n+1)/2)$ $\mathbf{y} = \text{Partition}(\mathbf{A}[1, \dots, n], \mathbf{x})$

Before you conquer, you need to divide!

Are we stuck?

- We need to partition the array into two using a good pivot element (the median).
 - Or otherwise the running time of the recursion will be bad!
- But to find the median, we need an algorithm for selection!

Are we stuck?

- We need to partition the array into two using a good pivot element (something "close" to the median).
 - Or otherwise the running time of the recursion will be bad!
- But to find the median, we need an algorithm for selection!

- Split the array A into sub-arrays with 5 elements each.
 - The last one might have fewer elements.

	TITI	

- Split the array **A** into sub-arrays with **5** elements each.
 - The last one might have fewer elements.
- For each one of those, find the median.

- Split the array **A** into sub-arrays with **5** elements each.
 - The last one might have fewer elements.
- For each one of those, find the median.
 - How do we do that?

- Split the array **A** into sub-arrays with **5** elements each.
 - The last one might have fewer elements.
- For each one of those, find the median.
 - How do we do that?

Run InsertionSort

- Split the array **A** into sub-arrays with **5** elements each.
 - The last one might have fewer elements.
- For each one of those, find the median.
- Find the median-of-medians.

Median of medians

Manage Manage Manage Manage Manage	Manager Manager Manager Manager	Manage Manage Manage Manage	Manage Manage Manage Manage Manage	
				Z <u>Z</u> Z I
torrest torrest the second torrest torrest				Language and Language

Median of medians

		m	
			-

Median of medians

		\square			\square	Π	Π
TIME TIME	Land Land		manufactures	TION SECTION SE			

- Split the array A into sub-arrays with 5 elements each.
 - The last one might have fewer elements.
- For each one of those, find the median.
- Find the median-of-medians.
 - How do we do that?

- Split the array **A** into sub-arrays with **5** elements each.
 - The last one might have fewer elements.
- For each one of those, find the median.
- Find the median-of-medians.
 - How do we do that?

Run Selection

This failed...

Algorithm **Selection**(**A**[1,...,n],*i*)

$$\mathbf{x} = \text{Selection}(\mathbf{A}[1, \dots, n], (n+1)/2)$$
$$\mathbf{y} = \text{Partition}(\mathbf{A}[1, \dots, n], \mathbf{x})$$

...but this won't.

Algorithm **Selection**(**A**[1,...,n],*i*)

Split the array **A** into n/5 arrays of size 5 For each subarray **A**_i, find the median Let $m_1, m_2, ..., m_{n/5}$ be those medians

 $\mathbf{x} = \operatorname{Selection}(\mathbf{A}[1, \dots, n], (n+1)/2) / \operatorname{Find} \operatorname{the} \operatorname{median} \operatorname{of} \operatorname{medians} */$ $\mathbf{y} = \operatorname{Partition}(\mathbf{A}[1, \dots, n], \mathbf{x}) / \operatorname{Partition} \operatorname{the} \operatorname{array} \operatorname{using} \mathbf{x} \operatorname{as} \operatorname{the} \operatorname{pivot} */$

The Selection algorithm (not exactly pseudocode)

Algorithm Selection(A[1,...,n],i)

Split the array **A** into n/5 arrays of size 5 For each subarray **A**_i, find the median Let $m_1, m_2, \ldots, m_{n/5}$ be those medians

 $\mathbf{x} = \frac{\text{Selection}(\mathbf{A}[1,...,n],(n+1)/2)}{\mathbf{k} = \frac{\text{Partition}(\mathbf{A}[1,...,n],\mathbf{x})}{\mathbf{k} = \frac{\text{Partition}(\mathbf{A}[1,...,n],\mathbf{x})}{\mathbf{k} = \frac{1}{2}} \text{ /*Partition the array using } \mathbf{x} \text{ as the pivot }$

k-1 is the number of elements in the lower subarray.

Zooming in

- We are looking for the *i*th-order statistic.
- If *i*=k, then x is the answer it is larger than k-1 elements.
- If *i* ≤ k, the answer cannot be in the second part, as then *i* would be larger than at least k-1 elements.
- For the same reason, if $i \ge k$, the answer cannot be in the first part.

Algorithm Selection(A[1,...,n],i)

Split the array **A** into n/5 arrays of size 5 For each subarray **A**_i, find the median Let $m_1, m_2, \ldots, m_{n/5}$ be those medians

 $\mathbf{x} = \frac{\text{Selection}(\mathbf{A}[1,...,n],(n+1)/2)}{\mathbf{k} = \frac{\text{Partition}(\mathbf{A}[1,...,n],\mathbf{x})}{\mathbf{k} = \frac{\text{Partition}(\mathbf{A}[1,...,n],\mathbf{x})}{\mathbf{k} = \frac{1}{2}} \text{ (since the second second$

k-1 is the number of elements in the lower subarray.

Algorithm Selection(A[1,...,n],i)

- O(n) Split the array **A** into n/5 arrays of size 5 For each subarray **A**_i, find the median Let $m_1, m_2, \ldots, m_{n/5}$ be those medians
 - $\mathbf{x} = \frac{\text{Selection}(\mathbf{A}[1,...,n],(n+1)/2)}{\mathbf{k} = \frac{\text{Partition}(\mathbf{A}[1,...,n],\mathbf{x})}{\mathbf{k} = \frac{\text{Partition}(\mathbf{A}[1,...,n],\mathbf{x})}{\mathbf{k} = \frac{1}{2}} \text{ (since the second second$

k-1 is the number of elements in the lower subarray.

Algorithm Selection(A[1,...,n],i)

O(n) O(n)

Split the array **A** into n/5 arrays of size 5 For each subarray **A**_i, find the median Let $m_1, m_2, \ldots, m_{n/5}$ be those medians

x = Selection(A[1,...,n],(n+1)/2) /*Find the median of medians */ k = Partition(A[1,...,n],**x**) /*Partition the array using **x** as the pivot */

k-1 is the number of elements in the lower subarray.

Algorithm Selection(A[1,...,n],i)

- O(n)Split the array A into n/5 arrays of size 5O(n)For each subarray A_i, find the medianLet $m_1, m_2, \ldots, m_{n/5}$ be those medians
- T(n/5) $\mathbf{X} = \text{Selection}(\mathbf{A}[1,...,n],(n+1)/2)$ /*Find the median of medians */ $\mathbf{k} = \text{Partition}(\mathbf{A}[1,...,n],\mathbf{X})$ /*Partition the array using **x** as the pivot */

k-1 is the number of elements in the lower subarray.

Algorithm Selection(A[1,...,n],i)

- O(n)Split the array A into n/5 arrays of size 5O(n)For each subarray A_i , find the medianLet $m_1, m_2, \ldots, m_{n/5}$ be those medians
- T(n/5) X =Selection(A[1,...,n],(n+1)/2) /*Find the median of medians */
- **O(n)** k = Partition(A[1,...,n],x) /*Partition the array using x as the pivot */

k-1 is the number of elements in the lower subarray.

Algorithm Selection(A[1,...,n],i)

- O(n)Split the array A into n/5 arrays of size 5O(n)For each subarray A_i, find the medianLet $m_1, m_2, \ldots, m_{n/5}$ be those medians
- T(n/5) X =Selection(A[1,...,n],(n+1)/2) /*Find the median of medians */
- **O(n)** k = Partition(A[1,...,n],x) /*Partition the array using x as the pivot */

k-1 is the number of elements in the lower subarray.

Algorithm Selection(A[1,...,n],i)

- O(n)Split the array A into n/5 arrays of size 5O(n)For each subarray A_i, find the medianLet $m_1, m_2, \ldots, m_{n/5}$ be those medians
- T(n/5) X =Selection(A[1,...,n],(n+1)/2) /*Find the median of medians */
- **O(n)** k = Partition(A[1,...,n],x) /*Partition the array using x as the pivot */

k-1 is the number of elements in the lower subarray.

- O(1)
- If *i* = k, return **x**

If i < k, return Selection(A[1,...,k-1],i) If i > k, return Selection(A[k+1,...,n],i-k)

 $|\mathbf{S}_{\max}| = \max(k-1, n-k)$

 $T(n) \le T(n/5) + T(|S_{max}|) + bn$

 $T(n) \le T(n/5) + T(|S_{max}|) + bn$

Before we proceed, we have to bound Smax.

• x is a median of medians.

- x is a median of medians.
- At least (...) subarrays have "baby medians" $\geq x$.

- x is a median of medians.
- At least half of the subarrays have "baby medians" $\geq x$.

- x is a median of medians.
- At least half of the subarrays have "baby medians" $\geq x$.
- Each one of these groups has at least (...) elements > X.

- x is a median of medians.
- At least half of the subarrays have "baby medians" $\geq x$.
- Each one of these groups has at least 3 elements > X.

- **x** is a median of medians.
- At least half of the subarrays have "baby medians" $\geq x$.
- Each one of these groups has at least 3 elements > X.
 - Because $X \leq$ their "baby median".
 - Except possibly

- x is a median of medians.
- At least half of the subarrays have "baby medians" $\geq x$.
- Each one of these groups has at least 3 elements > X.
 - Because $X \leq$ their "baby median".
 - Except possibly the group containing x and

- x is a median of medians.
- At least half of the subarrays have "baby medians" $\geq x$.
- Each one of these groups has at least 3 elements > x.
 - Because $X \leq$ their "baby median".
 - Except possibly the group containing x and the group that has fewer than 5 elements.

What is the total number of elements larger than x?

This means that the size of the lower subarray is at most 7n/10 + 6

The size of the lower subarray is at most 7n/10 + 6

- The size of the lower subarray is at most 7n/10 + 6
- A symmetric argument shows that the size of the upper subarray is at most 7n/10 + 6

- The size of the lower subarray is at most 7n/10 + 6
- A symmetric argument shows that the size of the upper subarray is at most 7n/10 + 6
- Back to the recurrence:

 $T(n) \le T(n/5) + T(|S_{max}|) + cn = T(n/5) + T(7n/10+6) + bn$

• Lets guess that $T(n) \le cn$, for some constant c.

- Lets guess that $T(n) \le cn$, for some constant c.
- We get that

 $T(n) \le c(n/5) + c(7n/10+6) + bn$ = 9cn/10 +7c+bn = cn + (-cn/10 + 7c + bn)

- Lets guess that $T(n) \le cn$, for some constant c.
- We get that

 $T(n) \le c(n/5) + c(7n/10+6) + bn$ = 9cn/10 +7c+bn = cn + (-cn/10 + 7c + bn)

• This is at most cn whenever $-cn/10 + 7c + bn \le 0$, or equivalently, when $c \ge 10bn/(n-70)$.

- Lets guess that $T(n) \le cn$, for some constant c.
- We get that

 $T(n) \le c(n/5) + c(7n/10+6) + bn$ = 9cn/10 +7c+bn = cn + (-cn/10 + 7c + bn)

- This is at most cn whenever $-cn/10 + 7c + bn \le 0$, or equivalently, when $c \ge 10bn/(n-70)$.
- If $n \ge 140$, then $n/(n-70) \le 2$ and then, it suffices to have $c \ge 20b$.

• We want to show that there is some constant c > 0, such that $T(n) \le cn$ for all n > 0.

- We want to show that there is some constant c > 0, such that $T(n) \le cn$ for all n > 0.
- Let $a = max\{T(n) / n, n \le 140\}$ and let $c = max\{a, 20b\}$.

- We want to show that there is some constant c > 0, such that $T(n) \le cn$ for all n > 0.
- Let $a = \max\{T(n) / n, n \le 140\}$ and let $c = \max\{a, 20b\}$.
- We will prove the statement by induction.

- We want to show that there is some constant c > 0, such that $T(n) \le cn$ for all n > 0.
- Let $a = \max\{T(n) / n, n \le 140\}$ and let $c = \max\{a, 20b\}$.
- We will prove the statement by induction.
 - **Base case:** For every $n \le 140$, $T(n) \le cn$

- We want to show that there is some constant c > 0, such that $T(n) \le cn$ for all n > 0.
- Let $a = \max\{T(n) / n, n \le 140\}$ and let $c = \max\{a, 20b\}$.
- We will prove the statement by induction.
 - **Base case:** For every $n \le 140$, $T(n) \le cn$
 - Inductive Step: Suppose that it holds for all n up to k=140. Then for n=k+1, we have T(n) $\leq cn + (-cn/10 + 7c + bn)$

- We want to show that there is some constant c > 0, such that $T(n) \le cn$ for all n > 0.
- Let $a = \max\{T(n) / n, n \le 140\}$ and let $c = \max\{a, 20b\}$.
- We will prove the statement by induction.
 - **Base case:** For every $n \le 140$, $T(n) \le cn$
 - Inductive Step: Suppose that it holds for all n up to k=140. Then for n=k+1, we have T(n) $\leq cn + (-cn/10 + 7c + bn)$
 - This follows from the fact that n > 140 and $c \ge 20b$.

Bonus: The Master Theorem

Suppose $T(n) \leq \alpha T(\lceil n/b \rceil) + O(n^d)$ for some constants $\alpha > 0$, b > 1 and $d \ge 0$.

Then,
$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b \alpha \\ O(n^d \log_b n), & \text{if } d = \log_b \alpha \\ O(n^{\log_b \alpha}), & \text{if } d < \log_b \alpha \end{cases}$$

Bonus: The Master Theorem

Suppose $T(n) \leq \alpha T(\lceil n/b \rceil) + O(n^d)$ for some constants $\alpha > 0$, b > 1 and $d \ge 0$.

Then,
$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b \alpha \\ O(n^d \log_b n), & \text{if } d = \log_b \alpha \\ O(n^{\log_b \alpha}), & \text{if } d < \log_b \alpha \end{cases}$$

Example: For MergeSort, $\alpha = b = 2$ and d = 1, we get O(n log n).