Advanced Algorithmic Techniques (COMP523)
 Graph Algorithms

Recap and plan

Recap and plan

- First five lectures:
- Basic Algorithms
- Divide and Conquer algorithms
- Searching, Sorting, Majority, Distance between points, Integer Multiplication, Median

Recap and plan

- First five lectures:
- Basic Algorithms
- Divide and Conquer algorithms
- Searching, Sorting, Majority, Distance between points, Integer Multiplication, Median
- This lecture:
- Graph Algorithms
- Graph Definitions
- Graph Representations
- Depth-First Search, Breadth-First Search

Graph Definitions

Graph $\mathbf{G}=(\mathrm{V}, \mathrm{E})$
Set of nodes (or vertices) \mathbf{V}, with $|\mathbf{V}|=\mathrm{n}$
Set of edges E, with $|E|=m$
Undirected: edge $e=\{v, w\}$
Directed: \quad edge $e=(v, w)$

Graph Definitions

Neighbours of v : Set of nodes connected by an edge with v Degree of a node: number of neighbours

Directed graphs: in-degree and out-degree
Path: A sequence of (non-repeating) nodes with consecutive nodes being connected by an edge.

Length: \# nodes - 1
Distance between u and v : length of the shortest path u and v, Graph diameter: The longest distance in the graph

Lines, cycles, trees and cliques

Clique

Graph Representations

- How do we represent a graph $\mathbf{G}=(\mathrm{V}, \mathrm{E})$?
- Adjacency Matrix
- Adjacency List

Adjacency Matrix A

- The $i^{\text {th }}$ node corresponds to the $i^{\text {th }}$ row and the $i^{\text {th }}$ column.
- If there is an edge between i and j in the graph, then we have $\mathbf{A}[i, j]=1$, otherwise $\mathbf{A}[i, j=0$.
- For undirected graphs, necessarily $\mathbf{A}[i, \pi]=\mathbf{A}[j$,$] . For directed$ graphs, it could be that $\mathbf{A}[i,] \neq \mathbf{A}[j$,$] .$

0	1	1	0	0
1	0	0	1	1
1	0	0	0	0
0	1	0	0	0
0	1	0	0	0

Adjacency List L

- Nodes are arranged as a list, each node points to the neighbours.
- For undirected graphs, the node points only in one direction.
- For directed graphs, the node points in two directions, for in-degree and for out-degree

Adjacency List L

- Nodes are arranged as a list, each node points to the neighbours.
- For undirected graphs, the node points only in one direction.
- For directed graphs, the node points in two directions, for in-degree and for out-degree.

Adjacency Matrix vs Adjacency List

Adjacency Matrix

Memory: $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Checking adjacency of u and v Time: O(1)

Finding all adjacent nodes of u Time: O(n)

Adjacency List

Memory: $\mathrm{O}(m+n)$

Checking adjacency of u and v
Time: O(min(deg(u), deg(b))

Finding all adjacent nodes of u Time: O(deg(u))

Adjacency Matrix vs Adjacency List

Adjacency Matrix

Memory: $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Checking adjacency of u and v Time: O(1)

Finding all adjacent nodes of u Time: O(n)

Adjacency List

Memory: $\mathrm{O}(m+n)$

Checking adjacency of u and v
Time: $O(\min (\operatorname{deg}(u), \operatorname{deg}(b))$

Finding all adjacent nodes of u Time: O(deg(u))

Question: What kind of graphs are the ones for which Adjacency List is more appropriate?

Adjacency Matrix vs Adjacency List

Adjacency Matrix

Memory: $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Checking adjacency of u and v Time: O(1)

Finding all adjacent nodes of u Time: O(n)

Adjacency List

Memory: O(m+n)

Checking adjacency of u and v
Time: $O(\min (\operatorname{deg}(u), \operatorname{deg}(b))$

Finding all adjacent nodes of u Time: O(deg(u))

Question: What kind of graphs are the ones for which Adjacency List is more appropriate?
Answer: Sparse graphs (i.e., graphs were $\mathrm{n} \gg \mathrm{m}$)

Searching a graph

Searching a graph

- Consider the problem of finding a specific node of a graph.
- Imagine that nodes have numbers (but you don't know them), and you want to find the node with the number \mathbf{x}.
- Or answer that there is no such node.
- You need to search all the nodes to be sure.

An idea on a tree

Graph Traversal

Graph Traversal

- We would like to go over all the possible nodes of an (undirected) graph.

Graph Traversal

- We would like to go over all the possible nodes of an (undirected) graph.
- There are different ways of doing that.

Graph Traversal

- We would like to go over all the possible nodes of an (undirected) graph.
- There are different ways of doing that.
- Two systematic ways:

Graph Traversal

- We would like to go over all the possible nodes of an (undirected) graph.
- There are different ways of doing that.
- Two systematic ways:
- Depth-First Search

Graph Traversal

- We would like to go over all the possible nodes of an (undirected) graph.
- There are different ways of doing that.
- Two systematic ways:
- Depth-First Search
- Breadth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

In words

- We wander through a labyrinth with a string and a can of red paint.
- We start at a node s and we tie the end of our string to s. We paint node s as visited.
- We will let \mathbf{u} denote our current vertex. We initialise $\mathbf{u}=\mathbf{s}$
- We travel along an arbitrary edge (u,v).
- If the (\mathbf{u}, \mathbf{v}) leads to a visited vertex, we return to \mathbf{u}.
- Otherwise, we paint \mathbf{v} as visited, and we set $\mathbf{u}=\mathbf{v}$
- Then, we return to the beginning of the step.
- Once we get to a dead end (all neighbours have been visited), we backtrack to the previously visited vertex \mathbf{v}. We set $\mathbf{u}=\mathbf{v}$ and repeat the previous steps.
- When we backtrack back to s, we terminate the process.

Visualising Depth-First Search

Visualising Depth-First Search

- Orient the edges along the direction in which they are visited during the traversal.

Visualising Depth-First Search

- Orient the edges along the direction in which they are visited during the traversal.
- Some edges are discovery edges, because they lead to unvisited vertices.

Visualising Depth-First Search

- Orient the edges along the direction in which they are visited during the traversal.
- Some edges are discovery edges, because they lead to unvisited vertices.
- Some edges are back edges, because they lead to visited vertices.

Visualising Depth-First Search

- Orient the edges along the direction in which they are visited during the traversal.
- Some edges are discovery edges, because they lead to unvisited vertices.
- Some edges are back edges, because they lead to visited vertices.
- The discovery edges form a spanning tree of the connected component of the starting vertex s.

Definitions

- A spanning tree of a graph \mathbf{G} is a tree containing all the nodes of G and the minimum number of edges

Definitions

- A connected component of a graph \mathbf{G} is subgraph such that any two vertices are connected via some path.

Depth-First Search Pseudocode

Algorithm DFS(G,v)

for all edges e incident to \mathbf{v}. / all edges that have \mathbf{v} as one of their endpoints */
if edge e is unexplored
Let u be the other endpoint of e
If vertex u is unexplored
Label e as a discovery edge
DFS(G,u)
Else
Label e as a back edge

Depth-First Search

Implementing DFS

- We need the following properties:
- We can find all incident edges to a vertex vin O(deg(v)) time.
- Given one endpoint of an edge e, we can find the other endpoint in $O(1)$ time.
- We have a way of marking nodes or edges as "explored", and to test if a node or edge has been "explored" in O(1) time. In other words, we never examine any edge twice!

Properties of DFS

Properties of DFS

- For simplicity, assume that the graph is connected.

Properties of DFS

- For simplicity, assume that the graph is connected.
- DFS visits all nodes of the graph.

Properties of DFS

- For simplicity, assume that the graph is connected.
- DFS visits all nodes of the graph.
- Quick proof: Assume by contradiction that some node vis unvisited and let w be the first unvisited node on some path from s to v. Since w was the first unvisited node, some neighbour u of w has been visited. But then, the edge (u, w) was explored and w was visited.

Properties of DFS

- For simplicity, assume that the graph is connected.
- DFS visits all nodes of the graph.
- Quick proof: Assume by contradiction that some node v is unvisited and let w be the first unvisited node on some path from s to v. Since w was the first unvisited node, some neighbour u of w has been visited. But then, the edge (u, w) was explored and w was visited.
- The discovery edges form a spanning tree.

Properties of DFS

- For simplicity, assume that the graph is connected.
- DFS visits all nodes of the graph.
- Quick proof: Assume by contradiction that some node v is unvisited and let w be the first unvisited node on some path from s to v. Since w was the first unvisited node, some neighbour u of w has been visited. But then, the edge (u, w) was explored and w was visited.
- The discovery edges form a spanning tree.
- We only mark edges as discovered when we go to unvisited nodes. We can never have a cycle of discovered edges.

Running time of DFS

- DFS is called on each node exactly once.

Depth-First Search Pseudocode

Algorithm DFS(G,v)

for all edges e incident to \mathbf{v}. / all edges that have \mathbf{v} as one of their endpoints */ if edge e is unexplored

Let u be the other endpoint of e
If vertex u is unexplored
Label e as a discovery edge DFS(G,u)
Else
Label e as a back edge

Depth-First Search

Running time of DFS

- DFS is called on each node exactly once.
- Every edge is examined exactly twice.
- Once from each of its endpoint vertices.

Depth-First Search Pseudocode

Algorithm DFS(G,v)

for all edges e incident to \mathbf{v}. /^all edges that have \mathbf{v} as one of their endpoints */ if edge e is unexplored

Let u be the other endpoint of e
If vertex u is unexplored
Label e as a discovery edge
DFS(G,u)
Else
Label e as a back edge

Running time of DFS

- DFS is called on each node exactly once.
- Every edge is examined exactly twice.
- Once from each of its endpoint vertices.
- Therefore, DFS runs in time $\mathbf{O}(\mathrm{n}+\mathrm{m})$.

Implementing DFS

- We need the following properties:
- We can find all incident edges to a vertex vin O(deg(v)) time.
- Given one endpoint of an edge e, we can find the other endpoint in $O(1)$ time.
- We have a way of marking nodes or edges as "explored", and to test if a vertex of edges has been "explored" in O(1) time. In other words, we never examine any edge twice!

Implementing DFS

The first two properties are satisfied by the Adjacency List representation!

- We need the following properties:
- We can find all incident edges to a vertex vin O(deg(v)) time.
- Given one endpoint of an edge e, we can find the other endpoint in $O(1)$ time.
- We have a way of marking nodes or edges as "explored", and to test if a vertex of edges has been "explored" in O(1) time. In other words, we never examine any edge twice!

Marking nodes

- We will need to following data structures
- An Adjacency List for the graph, with a .next pointer, which goes through the neighbours of a vertex in order of appearance. (v.next gives the next neighbour).
- A stack S (data structure where elements are put on top of each other).
- An array explored[1,...n] where we will store the explored elements.

Marking nodes

Marking nodes

Is s.next in explored?

Marking nodes

Is s.next in explored? No

Marking nodes

Is s.next in explored? No u = s.next

Marking nodes

Is s.next in explored? No u = s.next

Marking nodes

Is s.next in explored? No

$$
\mathrm{u}=\mathrm{s} . n e x t
$$

Mark u as explored

Marking nodes

Is s.next in explored? No

$$
\mathbf{u}=\mathrm{s} . n e x t
$$

Mark u as explored

Is u.next in explored?

Marking nodes

Is s.next in explored? No
u = s.next
Mark u as explored
Is u.next in explored?
No

Marking nodes

Is s.next in explored? No

$$
\mathrm{u}=\mathrm{s} . n e x t
$$

Mark u as explored

Is u.next in explored? No

$$
\mathrm{v}=\mathrm{u} . n e x t
$$

Marking nodes

Is s.next in explored? No

$$
\mathrm{u}=\mathrm{s} . n e x t
$$

Mark u as explored

Is u.next in explored? No

$$
\mathrm{v}=\mathrm{u} . n e x t
$$

Marking nodes

Is s.next in explored? No
u = s.next
Mark u as explored
Is u.next in explored? No
v = u.next

Mark vas explored

Marking nodes

Is s.next in explored? No

$$
\mathrm{u}=\mathrm{s} . n e x t
$$

Mark u as explored

Is u.next in explored?
No

$$
\mathrm{v}=\mathrm{u} . n e x t
$$

Mark vas explored

Is v.next in explored?

Marking nodes

Is s.next in explored? No

$$
\mathrm{u}=\mathrm{s} . n e x t
$$

Mark u as explored

Is u.next in explored? No

$$
\mathrm{v}=\mathrm{u} . n e x t
$$

Mark vas explored

Is v.next in explored? Yes

Marking nodes

Is s.next in explored? No

$$
\mathrm{u}=\mathrm{s} . n e x t
$$

Mark u as explored

Is u.next in explored? No

$$
\mathrm{v}=\mathrm{u} . n e x t
$$

Mark v as explored

Is v.next in explored? Yes
Apply v.next once more to get the next neighbour

Marking nodes

Is s.next in explored? No

$$
\mathrm{u}=\mathrm{s} . n e x t
$$

Mark u as explored

Is u.next in explored? No

$$
\mathrm{v}=\mathrm{u} . n e x t
$$

Mark v as explored

Is v.next in explored? Yes
Apply v.next once more to get the next neighbour
Is v.next in explored?

Marking nodes

Is s.next in explored? No

$$
\mathrm{u}=\mathrm{s} . n e x t
$$

Mark u as explored

Is u.next in explored? No

$$
\mathrm{v}=\mathrm{u} . n e x t
$$

Mark v as explored

Is v.next in explored? Yes
Apply v.next once more to get the next neighbour
Is v.next in explored? Yes

Marking nodes

Is s.next in explored? No
u = s.next

Mark u as explored

Is u.next in explored? No

$$
\mathrm{v}=\mathrm{u} . n e x t
$$

Mark v as explored

Is v.next in explored? Yes
Apply v.next once more to get the next neighbour
Is v.next in explored? Yes
When the neighbour set is empty

Marking nodes

Is s.next in explored? No
u = s.next

Mark u as explored

Is u.next in explored? No

$$
\mathrm{v}=\mathrm{u} . n e x t
$$

Mark v as explored

Is v.next in explored? Yes
Apply v.next once more to get the next neighbour
Is v.next in explored? Yes
When the neighbour set is empty

Marking nodes

Is s.next in explored?

$$
\mathrm{u}=\mathrm{s} . n e x t
$$

Mark u as explored

Is u.next in explored?
No

$$
\mathrm{v}=\mathrm{u} \cdot \mathrm{next}
$$

Mark v as explored

Is v.next in explored? Yes
Apply v.next once more to get the next neighbour
Is v.next in explored? Yes
When the neighbour set is empty

Marking nodes

Is s.next in explored?

$$
\mathrm{u}=\mathrm{s} . n e x t
$$

Mark u as explored

Is u.next in explored? No
v = u.next

Mark v as explored

Remove v from the stack

$e=(u, v)$ is added to the spanning tree of DFS

Is v.next in explored? Yes
Apply v.next once more to get the next neighbour
Is v.next in explored? Yes
When the neighbour set is empty

Marking nodes

Is s.next in explored?

$$
\mathrm{u}=\mathrm{s} . n e x t
$$

Mark u as explored

Is u.next in explored? No

$$
\mathrm{v}=\mathrm{u} . n e x t
$$

Mark vas explored

Remove v from the stack

$e=(u, v)$ is added to the spanning tree of DFS

Continue with the top element of the stack

Apply v.next once more to get the next neighbour Is v.next in explored? Yes

When the neighbour set is empty

Marking nodes

Is s.next in explored? No
Remove v from the stack

$$
\mathrm{u}=\mathrm{s} . n e x t
$$

Mark u as explored

Is u.next in explored? No

$$
\mathrm{v}=\mathrm{u} . n e x t
$$

$e=(u, v)$ is added to the

Mark v as explored spanning tree of DFS

Continue with the top element of the stack

Apply v.next once more to get the next neighbour Is v.next in explored? Yes

When the neighbour set is empty

Marking nodes

Is s.next in explored? No
Remove v from the stack
u = s.next

Mark u as explored

Is u.next in explored? No
v = u.next
$e=(u, v)$ is added to the

Mark v as explored spanning tree of DFS
We are about to consider the same neighbour!

Is v.next in explored? Yes
Continue with the top element of the stack

Apply v.next once more to get the next neighbour

Is v.next in explored? Yes
When the neighbour set is empty

We remove the neighbours we have already considered.

Breadth-First Search

Simple idea

- Start from the starting vertex s which is at level 0 and consider it explored.
- For any node at level i, put all of its unexplored neighbours in level $i+1$ and consider them explored.
- Terminate at level j, when none of the nodes of the level has any neighbours which are unexplored.

Visualising Breadth-First Search

Visualising Breadth-First Search

- Orient the edges along the direction in which they are visited during the traversal.

Visualising Breadth-First Search

- Orient the edges along the direction in which they are visited during the traversal.
- Some edges are discovery edges, because they lead to unvisited vertices.

Visualising Breadth-First Search

- Orient the edges along the direction in which they are visited during the traversal.
- Some edges are discovery edges, because they lead to unvisited vertices.
- Some edges are cross edges, because they lead to visited vertices.

Visualising Breadth-First Search

- Orient the edges along the direction in which they are visited during the traversal.
- Some edges are discovery edges, because they lead to unvisited vertices.
- Some edges are cross edges, because they lead to visited vertices.
- The discovery edges form a spanning tree of the connected component of the starting vertex s.

Breadth-First Search

Breadth-First Search Pseudocode

Algorithm BFS(G,s)
Initialise empty list L_{0}
Insert s into L_{0}
Set $i=0$
While L_{i} is not empty
Initialise empty list $\mathrm{L}_{\mathrm{i}+1}$
for each node v in L_{i} for all edges eincident to \mathbf{v}
if edge \mathbf{e} is unexplored
let w be the other endpoint of \mathbf{e}
if node w is unexplored
label e as discovery edge insert w into $\mathrm{L}_{\mathrm{i}+1}$
else
label e as cross edge
$i=i+1$

Properties of BFS

- For simplicity, assume that the graph is connected.
- The traversal visits all vertices of the graph.
- The discovery edges form a spanning tree.
- The path of the spanning tree from s to a node \mathbf{v} at level i has i edges, and this is the shortest path.
- If $\mathbf{e}=(\mathbf{u}, \mathbf{v})$ is a cross edge, then the \mathbf{u} and \mathbf{v} differ by at most one level.

Running time of BFS

- In every iteration, we consider nodes on different levels.
- Therefore nodes are not considered twice.
- Every edge is examined at most twice.
- Therefore, BFS runs in time $\mathbf{O}(\mathrm{n}+\mathrm{m})$.

DFS vs BFS

DFS vs BFS

- Which one is better?

DFS vs BFS

- Which one is better?
- Depends on what we use it for.

DFS vs BFS

- Which one is better?
- Depends on what we use it for.
- Stay tuned.

