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• First five lectures: 

• Basic Algorithms


• Divide and Conquer algorithms


• Searching, Sorting, Majority, Distance between points, Integer Multiplication, 
Median

• This lecture: 

• Graph Algorithms


• Graph Definitions 


• Graph Representations


• Depth-First Search, Breadth-First Search



Graph Definitions
Graph G=(V,E) 
   Set of nodes (or vertices) V, with |V| = n 
   Set of edges E, with |E| = m 
        Undirected: edge e = {v,w} 
        Directed:     edge e = (v,w) 



Graph Definitions
Neighbours of v : Set of nodes connected by an edge with v 
Degree of a node: number of neighbours 
     Directed graphs: in-degree and out-degree 
Path: A sequence of (non-repeating) nodes with consecutive nodes being 
connected by an edge. 
         Length: # nodes - 1 
Distance between u and v : length of the shortest path u and v, 
Graph diameter: The longest distance in the graph



Lines, cycles, trees and 
cliques

Line Cycle

Clique Tree



Graph Representations

• How do we represent a graph G=(V,E)?


• Adjacency Matrix


• Adjacency List



Adjacency Matrix A
• The ith node corresponds to the ith row and the ith column.


• If there is an edge between i and j in the graph, then we have 
A[i,j] = 1, otherwise A[i,j] = 0.


• For undirected graphs, necessarily A[i,j] = A[j,i]. For directed 
graphs, it could be that A[i,j] ≠ A[j,i].
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Adjacency List L
• Nodes are arranged as a list, each node points to the 

neighbours.


• For undirected graphs, the node points only in one direction.


• For directed graphs, the node points in two directions, for     
in-degree and for out-degree
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Adjacency List L
• Nodes are arranged as a list, each node points to the 

neighbours.


• For undirected graphs, the node points only in one direction.


• For directed graphs, the node points in two directions, for     
in-degree and for out-degree.
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Adjacency Matrix vs 
Adjacency List

Adjacency Matrix Adjacency List

Memory: O(n2) Memory: O(m+n)

Checking adjacency of u and v 
Time: O(1)

Finding all adjacent nodes of u  
Time: O(n) 

Checking adjacency of u and v 
Time: O(min(deg(u),deg(b))

Finding all adjacent nodes of u 
Time: O(deg(u)) 
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Adjacency Matrix vs 
Adjacency List

Adjacency Matrix Adjacency List

Memory: O(n2) Memory: O(m+n)

Checking adjacency of u and v 
Time: O(1)

Finding all adjacent nodes of u  
Time: O(n) 

Checking adjacency of u and v 
Time: O(min(deg(u),deg(b))

Finding all adjacent nodes of u 
Time: O(deg(u)) 

Question: What kind of graphs are the ones for which Adjacency List is more appropriate? 
Answer: Sparse graphs (i.e., graphs were n >> m)



Searching a graph



Searching a graph

• Consider the problem of finding a specific node of a 
graph.


• Imagine that nodes have numbers (but you don’t know 
them), and you want to find the node with the number x. 

• Or answer that there is no such node. 

• You need to search all the nodes to be sure.
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Graph Traversal

• We would like to go over all the possible nodes of an 
(undirected) graph.

• There are different ways of doing that. 

• Two systematic ways:

• Depth-First Search

• Breadth-First Search
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In words
• We wander through a labyrinth with a string and a can of red paint.


• We start at a node s and we tie the end of our string to s. We paint node s as visited. 


• We will let u denote our current vertex. We initialise u = s


• We travel along an arbitrary edge (u,v). 


• If the (u,v) leads to a visited vertex, we return to u. 

• Otherwise, we paint v as visited, and we set u = v


• Then, we return to the beginning of the step.


• Once we get to a dead end (all neighbours have been visited), we backtrack to the 
previously visited vertex v. We set u = v and repeat the previous steps.


• When we backtrack back to s, we terminate the process.
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Visualising Depth-First Search

• Orient the edges along the direction in which they are 
visited during the traversal. 

• Some edges are discovery edges, because they lead to 
unvisited vertices.

• Some edges are back edges, because they lead to 
visited vertices.

• The discovery edges form a spanning tree of the 
connected component of the starting vertex s.



Definitions

• A spanning tree of a graph G is a tree containing all the 
nodes of G and the minimum number of edges



Definitions

• A connected component of a graph G is subgraph such 
that any two vertices are connected via some path.



Depth-First Search 
Pseudocode

Algorithm DFS(G,v) 
 
   for all edges e incident to v.  /* all edges that have v as one of their endpoints */ 

                if edge e is unexplored 
             Let u be the other endpoint of e 
             If vertex u is unexplored 
                 Label e as a discovery edge 
                 DFS(G,u) 
             Else 
                 Label e as a back edge 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Implementing DFS
• We need the following properties:


• We can find all incident edges to a vertex v in O(deg(v)) 
time.


• Given one endpoint of an edge e, we can find the other 
endpoint in O(1) time.


• We have a way of marking nodes or edges as 
“explored”, and to test if a node or edge has been 
“explored” in O(1) time. In other words, we never 
examine any edge twice!
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the first unvisited node, some neighbour u of w has been visited. But 
then, the edge (u,w) was explored and w was visited.



Properties of DFS
• For simplicity, assume that the graph is connected.

• DFS visits all nodes of the graph.

• Quick proof: Assume by contradiction that some node v is unvisited and 
let w be the first unvisited node on some path from s to v. Since w was 
the first unvisited node, some neighbour u of w has been visited. But 
then, the edge (u,w) was explored and w was visited.

• The discovery edges form a spanning tree.



Properties of DFS
• For simplicity, assume that the graph is connected.

• DFS visits all nodes of the graph.

• Quick proof: Assume by contradiction that some node v is unvisited and 
let w be the first unvisited node on some path from s to v. Since w was 
the first unvisited node, some neighbour u of w has been visited. But 
then, the edge (u,w) was explored and w was visited.

• The discovery edges form a spanning tree.

• We only mark edges as discovered when we go to unvisited 
nodes. We can never have a cycle of discovered edges. 



Running time of DFS

• DFS is called on each node exactly once.



Depth-First Search 
Pseudocode

Algorithm DFS(G,v) 
 
   for all edges e incident to v.  /* all edges that have v as one of their endpoints */ 

                if edge e is unexplored 
             Let u be the other endpoint of e 
             If vertex u is unexplored 
                 Label e as a discovery edge 
                 DFS(G,u) 
             Else 
                 Label e as a back edge 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• DFS is called on each node exactly once.


• Every edge is examined exactly twice.


• Once from each of its endpoint vertices.



Depth-First Search 
Pseudocode

Algorithm DFS(G,v) 
 
   for all edges e incident to v.  /* all edges that have v as one of their endpoints */ 

                if edge e is unexplored 
             Let u be the other endpoint of e 
             If vertex u is unexplored 
                 Label e as a discovery edge 
                 DFS(G,u) 
             Else 
                 Label e as a back edge 



Running time of DFS

• DFS is called on each node exactly once.


• Every edge is examined exactly twice.


• Once from each of its endpoint vertices.


• Therefore, DFS runs in time O(n+m).
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time.
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Implementing DFS
• We need the following properties:


• We can find all incident edges to a vertex v in O(deg(v)) 
time.


• Given one endpoint of an edge e, we can find the other 
endpoint in O(1) time.


• We have a way of marking nodes or edges as 
“explored”, and to test if a vertex of edges has been 
“explored” in O(1) time. In other words, we never 
examine any edge twice!

The first two properties are satisfied by the Adjacency List representation!



Marking nodes
• We will need to following data structures


• An Adjacency List for the graph, with a .next pointer, 
which goes through the neighbours of a vertex in order 
of appearance. (v.next gives the next neighbour).


• A stack S (data structure where elements are put on 
top of each other).


• An array explored[1,…n] where we will store the 
explored elements.
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Marking nodes

s
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Marking nodes

s

Is s.next in explored? No

u = s.next

u

Mark u as explored

Is u.next in explored? No

v = u.next

v

Mark v as explored

Is v.next in explored? Yes

Apply v.next once more to get the next neighbour  

Is v.next in explored? Yes
When the neighbour set is empty

Remove v 
from the stack

e=(u,v) is added to the  
spanning tree of DFS

Continue with the top 
element of the stack

We are about to consider 
the same neighbour!

We remove the neighbours we have 
already considered.
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Simple idea

• Start from the starting vertex s which is at level 0 and 
consider it explored.


• For any node at level i, put all of its unexplored 
neighbours in level i+1 and consider them explored.


• Terminate at level j, when none of the nodes of the level 
has any neighbours which are unexplored.
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Visualising Breadth-First Search

• Orient the edges along the direction in which they are 
visited during the traversal. 

• Some edges are discovery edges, because they lead to 
unvisited vertices.

• Some edges are cross edges, because they lead to 
visited vertices.

• The discovery edges form a spanning tree of the 
connected component of the starting vertex s.
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Breadth-First Search 
Pseudocode

Algorithm BFS(G,s) 
 
Initialise empty list L0 
Insert s into L0 

Set i=0 
While Li is not empty 
      Initialise empty list Li+1 

         for each node v in Li 

             for all edges e incident to v 
           if edge e is unexplored 
             let w be the other endpoint of e 
             if node w is unexplored 
                label e as discovery edge 
                insert w into Li+1 
             else 
                label e as cross edge 
i = i+1



Properties of BFS
• For simplicity, assume that the graph is connected.


• The traversal visits all vertices of the graph.


• The discovery edges form a spanning tree.


• The path of the spanning tree from s to a node v at level i 
has i edges, and this is the shortest path.


• If e=(u,v) is a cross edge, then the u and v differ by at 
most one level.



Running time of BFS

• In every iteration, we consider nodes on different levels. 


• Therefore nodes are not considered twice.


• Every edge is examined at most twice.


• Therefore, BFS runs in time O(n+m).
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DFS vs BFS

• Which one is better?

• Depends on what we use it for.

• Stay tuned.


