Advanced Algorithmic Techniques (COMP523)

Graph Algorithms

Recap and plan

Recap and plan

• First five lectures:

- Basic Algorithms
- Divide and Conquer algorithms
 - Searching, Sorting, Majority, Distance between points, Integer Multiplication, Median

Recap and plan

• First five lectures:

- Basic Algorithms
- Divide and Conquer algorithms
 - Searching, Sorting, Majority, Distance between points, Integer Multiplication, Median
- This lecture:
 - Graph Algorithms
 - Graph Definitions
 - Graph Representations
 - Depth-First Search, Breadth-First Search

Graph Definitions

Graph G=(V,E) Set of nodes (or vertices) V, with |V| = n Set of edges E, with |E| = m Undirected: edge e = {v,w} Directed: edge e = (v,w)

Graph Definitions

Neighbours of v : Set of nodes connected by an edge with v **Degree of a node:** number of neighbours

Directed graphs: in-degree and out-degree

Path: A sequence of (non-repeating) nodes with consecutive nodes being connected by an edge.

Length: # nodes - 1

Distance between u and v : length of the shortest path u and v, **Graph diameter:** The longest distance in the graph

Lines, cycles, trees and cliques

Graph Representations

- How do we represent a graph G=(V,E)?
 - Adjacency Matrix
 - Adjacency List

Adjacency Matrix A

- The *i*th node corresponds to the *i*th row and the *i*th column.
- If there is an edge between *i* and *j* in the graph, then we have A[i,j] = 1, otherwise A[i,j] = 0.
- For undirected graphs, necessarily A[*i*,*j*] = A[*j*,*i*]. For directed graphs, it could be that A[*i*,*j*] ≠ A[*j*,*i*].

0	1	1	0	0
1	0	0	1	1
1	0	0	0	0
0	1	0	0	0
0	1	0	0	0

Adjacency List L

- Nodes are arranged as a list, each node points to the neighbours.
- For undirected graphs, the node points only in one direction.
- For directed graphs, the node points in two directions, for in-degree and for out-degree

Adjacency List L

- Nodes are arranged as a list, each node points to the neighbours.
- For undirected graphs, the node points only in one direction.
- For directed graphs, the node points in two directions, for in-degree and for out-degree.

Adjacency Matrix vs Adjacency List

Adjacency Matrix

Memory: O(n²)

Checking *adjacency* of u and v Time: O(1)

Finding *all adjacent nodes* of u Time: O(n) **Adjacency List**

Memory: O(m+n)

Checking *adjacency* of u and v Time: O(min(deg(u),deg(b))

Finding *all adjacent nodes* of u Time: O(deg(u))

Adjacency Matrix vs Adjacency List

Adjacency Matrix

Memory: O(n²)

Checking *adjacency* of u and v Time: O(1)

Finding *all adjacent nodes* of u Time: O(n) **Adjacency List**

Memory: O(m+n)

Checking *adjacency* of u and v Time: O(min(deg(u),deg(b))

Finding *all adjacent nodes* of u Time: O(deg(u))

Question: What kind of graphs are the ones for which Adjacency List is more appropriate?

Adjacency Matrix vs Adjacency List

Adjacency Matrix

Memory: O(n²)

Checking *adjacency* of u and v Time: O(1)

Finding *all adjacent nodes* of u Time: O(n) **Adjacency List**

Memory: O(m+n)

Checking *adjacency* of u and v Time: O(min(deg(u),deg(b))

Finding *all adjacent nodes* of u Time: O(deg(u))

Question: What kind of graphs are the ones for which Adjacency List is more appropriate? **Answer:** Sparse graphs (i.e., graphs were n >> m)

Searching a graph

Searching a graph

- Consider the problem of finding a specific node of a graph.
- Imagine that nodes have numbers (but you don't know them), and you want to find the node with the number x.
 - Or answer that there is no such node.
- You need to search all the nodes to be sure.

• We would like to go over all the possible nodes of an (undirected) graph.

- We would like to go over all the possible nodes of an (undirected) graph.
- There are different ways of doing that.

- We would like to go over all the possible nodes of an (undirected) graph.
- There are different ways of doing that.
- Two systematic ways:

- We would like to go over all the possible nodes of an (undirected) graph.
- There are different ways of doing that.
- Two systematic ways:
 - Depth-First Search

- We would like to go over all the possible nodes of an (undirected) graph.
- There are different ways of doing that.
- Two systematic ways:
 - Depth-First Search
 - Breadth-First Search

In words

- We wander through a labyrinth with a string and a can of red paint.
- We start at a node **s** and we tie the end of our string to **s**. We paint node **s** as visited.
- We will let u denote our current vertex. We initialise u = s
- We travel along an arbitrary edge (**u**,**v**).
 - If the (**u**,**v**) leads to a visited vertex, we return to **u**.
 - Otherwise, we paint v as visited, and we set u = v
 - Then, we return to the beginning of the step.
- Once we get to a dead end (all neighbours have been visited), we backtrack to the previously visited vertex v. We set u = v and repeat the previous steps.
- When we backtrack back to s, we terminate the process.

• Orient the edges along the direction in which they are visited during the traversal.

- Orient the edges along the direction in which they are visited during the traversal.
 - Some edges are *discovery edges*, because they lead to unvisited vertices.

- Orient the edges along the direction in which they are visited during the traversal.
 - Some edges are *discovery edges*, because they lead to unvisited vertices.
 - Some edges are back edges, because they lead to visited vertices.

- Orient the edges along the direction in which they are visited during the traversal.
 - Some edges are *discovery edges*, because they lead to unvisited vertices.
 - Some edges are back edges, because they lead to visited vertices.
- The discovery edges form a spanning tree of the connected component of the starting vertex s.

Definitions

 A spanning tree of a graph G is a tree containing all the nodes of G and the minimum number of edges

Definitions

• A connected component of a graph **G** is subgraph such that any two vertices are connected via some path.

Depth-First Search Pseudocode

Algorithm DFS(G,v)

for all edges e incident to v. /* all edges that have v as one of their endpoints */ if edge e is unexplored Let u be the other endpoint of e If vertex u is unexplored Label e as a discovery edge DFS(G,u) Else Label e as a back edge

Implementing DFS

- We need the following properties:
 - We can find all incident edges to a vertex v in O(deg(v)) time.
 - Given one endpoint of an edge e, we can find the other endpoint in O(1) time.
 - We have a way of marking nodes or edges as "explored", and to test if a node or edge has been "explored" in O(1) time. In other words, we never examine any edge twice!

• For simplicity, assume that the graph is **connected.**

- For simplicity, assume that the graph is **connected.**
- DFS visits all nodes of the graph.

- For simplicity, assume that the graph is **connected.**
- DFS visits all nodes of the graph.
 - Quick proof: Assume by contradiction that some node v is unvisited and let w be the first unvisited node on some path from s to v. Since w was the first unvisited node, some neighbour u of w has been visited. But then, the edge (u,w) was explored and w was visited.

- For simplicity, assume that the graph is **connected.**
- DFS visits all nodes of the graph.
 - Quick proof: Assume by contradiction that some node v is unvisited and let w be the first unvisited node on some path from s to v. Since w was the first unvisited node, some neighbour u of w has been visited. But then, the edge (u,w) was explored and w was visited.
- The discovery edges form a spanning tree.

- For simplicity, assume that the graph is **connected.**
- DFS visits all nodes of the graph.
 - Quick proof: Assume by contradiction that some node v is unvisited and let w be the first unvisited node on some path from s to v. Since w was the first unvisited node, some neighbour u of w has been visited. But then, the edge (u,w) was explored and w was visited.
- The discovery edges form a spanning tree.
 - We only mark edges as discovered when we go to unvisited nodes. We can never have a cycle of discovered edges.

Running time of DFS

• DFS is called on each node exactly once.

Depth-First Search Pseudocode

```
Algorithm DFS(G,v)
```

for all edges e incident to v. /* all edges that have v as one of their endpoints */ if edge e is unexplored Let u be the other endpoint of e If vertex u is unexplored Label e as a discovery edge DFS(G,u) Else

Label e as a back edge

Running time of DFS

- DFS is called on each node exactly once.
- Every edge is examined exactly twice.
 - Once from each of its endpoint vertices.

Depth-First Search Pseudocode

Algorithm DFS(G,v)

for all edges e incident to v. /* all edges that have v as one of their endpoints */ if edge e is unexplored Let u be the other endpoint of e If vertex u is unexplored Label e as a discovery edge

DFS(G,u)

Else

Label e as a back edge

Running time of DFS

- DFS is called on each node exactly once.
- Every edge is examined exactly twice.
 - Once from each of its endpoint vertices.
- Therefore, DFS runs in time O(n+m).

Implementing DFS

- We need the following properties:
 - We can find all incident edges to a vertex v in O(deg(v)) time.
 - Given one endpoint of an edge e, we can find the other endpoint in O(1) time.
 - We have a way of marking nodes or edges as "explored", and to test if a vertex of edges has been "explored" in O(1) time. In other words, we never examine any edge twice!

Implementing DFS

The first two properties are satisfied by the Adjacency List representation!

- We need the following properties:
 - We can find all incident edges to a vertex v in O(deg(v)) time.
 - Given one endpoint of an edge e, we can find the other endpoint in O(1) time.
 - We have a way of marking nodes or edges as "explored", and to test if a vertex of edges has been "explored" in O(1) time. In other words, we never examine any edge twice!

- We will need to following data structures
 - An Adjacency List for the graph, with a *.next* pointer, which goes through the neighbours of a vertex in order of appearance. (v.next gives the next neighbour).
 - A stack S (data structure where elements are put on top of each other).
 - An array explored[1,...n] where we will store the explored elements.

Is s.next in explored?

Is s.next in explored? No

Is s.next in explored? No

u = **s**.*next*

Is s.next in explored? No

u = **s**.*next*

Is s.next in explored? No

u = **s**.*next*

Mark u as explored

Is s.next in explored? No

u = **s**.*next*

Mark u as explored

Is u.next in explored?

	-
	Service and
	State of the second sec
	mark same war war war
	A STATE OF A
U	and the second second
S	a to the second

Is s.next in explored? No

u = **s**.*next*

Mark u as explored

Is u.next in explored? No

u

Is s.next in explored? No

u = **s**.*next*

Mark u as explored

Is u.next in explored? No

v = **u**.*next*

u

Is s.next in explored? No

u = **s**.*next*

Mark u as explored

Is u.next in explored? No

v = **u**.*next*

V U S

Is s.next in explored? No

u = **s**.*next*

Mark u as explored

Is u.next in explored? No

v = **u**.*next*

Mark v as explored

- Survey and a state of the second	
- Contraction of the Contraction of the	
V	
u	
-3-7 Third International Action	
S	

Is s.next in explored? No

u = **s**.*next*

Mark u as explored

Is u.next in explored? No

v = **u**.*next*

Mark v as explored

Is v.next in explored?

V	
U	
S	

Is s.next in explored? No

u = **s**.*next*

Mark u as explored

Is u.next in explored? No

v = **u**.*next*

Mark v as explored

Is v.next in explored? Yes

V
U
S

Is s.next in explored? No

u = s.*next*

Mark u as explored

Is u.next in explored? No

v = **u**.*next*

Mark v as explored

Is v.next in explored? Yes

Apply v.next once more to get the next neighbour

	A STORE OF COMPANY	
	and the terms of the	15-20-69
ŝ.		
L.		
C .		
E.		1
÷		3
Sec. 1		
	Alla Brown water a least	and and a
5		
ř.		
		12
2		
Ċ.		
2		
	A Station and the state	
ź		ĝ.
6		1 (A
		9
÷		a a constant
C.		
- Containing	distant and the	0-7.0 - 0 - 1
Ľ.		4
ř.		
	V	1
2	•	
i i		
and the second	No. of Concession, Name	and the second
100-100	Aintine Antonia	over to op
t		e í
	u	34
<i>.</i>	u	
r		
in and the second	and the second second second	-
Contraction of	With Free Auntana Has	
*		
-	S	
1	5	
8	-	3
i		
Lingston	Statistic in the	the second second
A. Y. K.	La is all and	المعسمية

Is s.next in explored? No

u = **s**.*next*

Mark u as explored

Is u.next in explored? No

v = **u**.*next*

Mark v as explored

Is v.next in explored? Yes

Apply v.next once more to get the next neighbour

Is v.next in explored?

	-
V	
u	
S	
	- mark

Is s.next in explored? No

u = **s**.*next*

Mark u as explored

Is u.next in explored? No

v = **u**.*next*

Mark v as explored

Is v.next in explored? Yes

Apply v.next once more to get the next neighbour

Is v.next in explored? Yes

in I interior diant me	
V	
u	
S	
	ii e

Is s.next in explored? No

u = **s**.*next*

Mark u as explored

Is u.next in explored? No

v = **u**.*next*

Mark v as explored

Is v.next in explored? Yes

Apply v.next once more to get the next neighbour

Is v.next in explored? Yes

When the neighbour set is empty

a mana diata a	
V	
	a na ana an an Ang
u	
S	

Is s.next in explored? No

u = **s**.*next*

Mark u as explored

Is u.next in explored? No

v = **u**.*next*

Mark v as explored

Is v.next in explored? Yes

Apply v.next once more to get the next neighbour

Is v.next in explored? Yes

When the neighbour set is empty

V

Is s.next in explored? No

Remove v from the stack

u = <u>s.next</u>

Mark u as explored

Is u.next in explored? No

v = **u**.*next*

Mark v as explored

Is v.next in explored? Yes

Apply v.next once more to get the next neighbour

Is v.next in explored? Yes

When the neighbour set is empty

V

			Ł	
Is s.next in explored?	Νο	Remove v from the stack		
u = <u>s.next</u>				
Mark u as explored				
Is u. <i>next</i> in explored?	Νο			U
v = u. <i>next</i>		e=(u,v) is added to the spanning tree of DFS		S
Mark v as explored				
Is v.next in explored?	Yes			
Apply v.next once more	to get the	e next neighbour		
Is v <i>.next</i> in explored? When the neighbour set	Yes t is empty			

V

Breadth-First Search

Breadth-First Search

Simple idea

- Start from the starting vertex s which is at level 0 and consider it explored.
- For any node at *level i*, put all of its unexplored neighbours in *level i*+1 and consider them explored.
- Terminate at *level j*, when none of the nodes of the level has any neighbours which are unexplored.

• Orient the edges along the direction in which they are visited during the traversal.

- Orient the edges along the direction in which they are visited during the traversal.
 - Some edges are *discovery edges*, because they lead to unvisited vertices.

- Orient the edges along the direction in which they are visited during the traversal.
 - Some edges are *discovery edges*, because they lead to unvisited vertices.
 - Some edges are cross edges, because they lead to visited vertices.

- Orient the edges along the direction in which they are visited during the traversal.
 - Some edges are *discovery edges*, because they lead to unvisited vertices.
 - Some edges are cross edges, because they lead to visited vertices.
- The discovery edges form a spanning tree of the connected component of the starting vertex s.

Breadth-First Search

Breadth-First Search Pseudocode

Algorithm BFS(G,s)

Initialise empty list L₀ Insert **s** into L₀

Set *i*=0 While L_i is not empty Initialise empty list L_{i+1} for each node v in L_i for all edges e incident to vif edge e is unexplored let w be the other endpoint of eif node w is unexplored label e as *discovery* edge insert w into L_{i+1} else label e as *cross* edge i = i+1

Properties of BFS

- For simplicity, assume that the graph is connected.
- The traversal visits all vertices of the graph.
- The *discovery edges* form a spanning tree.
- The path of the spanning tree from s to a node v at level i has i edges, and this is the shortest path.
- If e=(u,v) is a cross edge, then the u and v differ by at most one level.

Running time of BFS

- In every iteration, we consider nodes on different levels.
 - Therefore nodes are not considered twice.
- Every edge is examined at most twice.
- Therefore, BFS runs in time O(n+m).

• Which one is better?

- Which one is better?
- Depends on what we use it for.

- Which one is better?
- Depends on what we use it for.
- Stay tuned.