
Advanced Algorithmic Techniques
(COMP523)

Graph Algorithms

Recap and plan

Recap and plan
• First five lectures:

• Basic Algorithms

• Divide and Conquer algorithms

• Searching, Sorting, Majority, Distance between points, Integer Multiplication,
Median

Recap and plan
• First five lectures:

• Basic Algorithms

• Divide and Conquer algorithms

• Searching, Sorting, Majority, Distance between points, Integer Multiplication,
Median

• This lecture:

• Graph Algorithms

• Graph Definitions

• Graph Representations

• Depth-First Search, Breadth-First Search

Graph Definitions
Graph G=(V,E) 
 Set of nodes (or vertices) V, with |V| = n 
 Set of edges E, with |E| = m 
 Undirected: edge e = {v,w} 
 Directed: edge e = (v,w) 

Graph Definitions
Neighbours of v : Set of nodes connected by an edge with v 
Degree of a node: number of neighbours 
 Directed graphs: in-degree and out-degree 
Path: A sequence of (non-repeating) nodes with consecutive nodes being
connected by an edge. 
 Length: # nodes - 1 
Distance between u and v : length of the shortest path u and v, 
Graph diameter: The longest distance in the graph

Lines, cycles, trees and
cliques

Line Cycle

Clique Tree

Graph Representations

• How do we represent a graph G=(V,E)?

• Adjacency Matrix

• Adjacency List

Adjacency Matrix A
• The ith node corresponds to the ith row and the ith column.

• If there is an edge between i and j in the graph, then we have
A[i,j] = 1, otherwise A[i,j] = 0.

• For undirected graphs, necessarily A[i,j] = A[j,i]. For directed
graphs, it could be that A[i,j] ≠ A[j,i].

1 4

3

5

2

0 1 1 0 0
1 0 0 1 1
1 0 0 0 0
0 1 0 0 0
0 1 0 0 0

Adjacency List L
• Nodes are arranged as a list, each node points to the

neighbours.

• For undirected graphs, the node points only in one direction.

• For directed graphs, the node points in two directions, for
in-degree and for out-degree

1 4

3

5

2

1

2

3

4

5

2 3
4 5

1
2

2

Adjacency List L
• Nodes are arranged as a list, each node points to the

neighbours.

• For undirected graphs, the node points only in one direction.

• For directed graphs, the node points in two directions, for
in-degree and for out-degree.

1 4

3

5

2

1

2

3

4

5

2

4

1
2

2

3

1 5

Adjacency Matrix vs
Adjacency List

Adjacency Matrix Adjacency List

Memory: O(n2) Memory: O(m+n)

Checking adjacency of u and v 
Time: O(1)

Finding all adjacent nodes of u  
Time: O(n)

Checking adjacency of u and v 
Time: O(min(deg(u),deg(b))

Finding all adjacent nodes of u 
Time: O(deg(u))

Adjacency Matrix vs
Adjacency List

Adjacency Matrix Adjacency List

Memory: O(n2) Memory: O(m+n)

Checking adjacency of u and v 
Time: O(1)

Finding all adjacent nodes of u  
Time: O(n)

Checking adjacency of u and v 
Time: O(min(deg(u),deg(b))

Finding all adjacent nodes of u 
Time: O(deg(u))

Question: What kind of graphs are the ones for which Adjacency List is more appropriate?

Adjacency Matrix vs
Adjacency List

Adjacency Matrix Adjacency List

Memory: O(n2) Memory: O(m+n)

Checking adjacency of u and v 
Time: O(1)

Finding all adjacent nodes of u  
Time: O(n)

Checking adjacency of u and v 
Time: O(min(deg(u),deg(b))

Finding all adjacent nodes of u 
Time: O(deg(u))

Question: What kind of graphs are the ones for which Adjacency List is more appropriate?
Answer: Sparse graphs (i.e., graphs were n >> m)

Searching a graph

Searching a graph

• Consider the problem of finding a specific node of a
graph.

• Imagine that nodes have numbers (but you don’t know
them), and you want to find the node with the number x.

• Or answer that there is no such node.

• You need to search all the nodes to be sure.

An idea on a tree

An idea on a tree

An idea on a tree

An idea on a tree

An idea on a tree

An idea on a tree

An idea on a tree

An idea on a tree

Graph Traversal

Graph Traversal

• We would like to go over all the possible nodes of an
(undirected) graph.

Graph Traversal

• We would like to go over all the possible nodes of an
(undirected) graph.

• There are different ways of doing that.

Graph Traversal

• We would like to go over all the possible nodes of an
(undirected) graph.

• There are different ways of doing that.

• Two systematic ways:

Graph Traversal

• We would like to go over all the possible nodes of an
(undirected) graph.

• There are different ways of doing that.

• Two systematic ways:

• Depth-First Search

Graph Traversal

• We would like to go over all the possible nodes of an
(undirected) graph.

• There are different ways of doing that.

• Two systematic ways:

• Depth-First Search

• Breadth-First Search

Depth-First Search
A B C D

E F G H

I J K L

M N O P

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

P

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

N

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

dead end!

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

dead end!

backtracking

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

dead end!

backtracking

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

dead end!

backtracking

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

dead end!

backtracking

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

dead end!

backtracking

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

dead end!

backtracking

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

dead end!

backtracking

J

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

dead end!

backtracking

J

G

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

dead end!

backtracking

J

G dead end!

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

dead end!

backtracking

J

G dead end!

backtracking

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

dead end!

backtracking

J

G dead end!

backtracking

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

dead end!

backtracking

J

G dead end!

backtracking

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

dead end!

backtracking

J

G dead end!

backtracking

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

dead end!

backtracking

J

G dead end!

backtracking

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

dead end!

backtracking

J

G dead end!

backtracking

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

dead end!

backtracking

J

G dead end!

backtracking

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

dead end!

backtracking

J

G dead end!

backtracking

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

dead end!

backtracking

J

G dead end!

backtracking

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

dead end!

backtracking

J

G dead end!

backtracking

The end

In words
• We wander through a labyrinth with a string and a can of red paint.

• We start at a node s and we tie the end of our string to s. We paint node s as visited.

• We will let u denote our current vertex. We initialise u = s

• We travel along an arbitrary edge (u,v).

• If the (u,v) leads to a visited vertex, we return to u.

• Otherwise, we paint v as visited, and we set u = v

• Then, we return to the beginning of the step.

• Once we get to a dead end (all neighbours have been visited), we backtrack to the
previously visited vertex v. We set u = v and repeat the previous steps.

• When we backtrack back to s, we terminate the process.

Visualising Depth-First Search

Visualising Depth-First Search

• Orient the edges along the direction in which they are
visited during the traversal.

Visualising Depth-First Search

• Orient the edges along the direction in which they are
visited during the traversal.

• Some edges are discovery edges, because they lead to
unvisited vertices.

Visualising Depth-First Search

• Orient the edges along the direction in which they are
visited during the traversal.

• Some edges are discovery edges, because they lead to
unvisited vertices.

• Some edges are back edges, because they lead to
visited vertices.

Visualising Depth-First Search

• Orient the edges along the direction in which they are
visited during the traversal.

• Some edges are discovery edges, because they lead to
unvisited vertices.

• Some edges are back edges, because they lead to
visited vertices.

• The discovery edges form a spanning tree of the
connected component of the starting vertex s.

Definitions

• A spanning tree of a graph G is a tree containing all the
nodes of G and the minimum number of edges

Definitions

• A connected component of a graph G is subgraph such
that any two vertices are connected via some path.

Depth-First Search
Pseudocode

Algorithm DFS(G,v) 
 
 for all edges e incident to v. /* all edges that have v as one of their endpoints */ 

 if edge e is unexplored 
 Let u be the other endpoint of e 
 If vertex u is unexplored 
 Label e as a discovery edge 
 DFS(G,u) 
 Else 
 Label e as a back edge 

Depth-First Search
A B C D

E F G H

I J K L

M N O P

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

J

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

J

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

J

G

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

J

G

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

J

G

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

J

G

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

J

G

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

J

G

Spanning tree

Implementing DFS
• We need the following properties:

• We can find all incident edges to a vertex v in O(deg(v))
time.

• Given one endpoint of an edge e, we can find the other
endpoint in O(1) time.

• We have a way of marking nodes or edges as
“explored”, and to test if a node or edge has been
“explored” in O(1) time. In other words, we never
examine any edge twice!

Properties of DFS

Properties of DFS
• For simplicity, assume that the graph is connected.

Properties of DFS
• For simplicity, assume that the graph is connected.

• DFS visits all nodes of the graph.

Properties of DFS
• For simplicity, assume that the graph is connected.

• DFS visits all nodes of the graph.

• Quick proof: Assume by contradiction that some node v is unvisited and
let w be the first unvisited node on some path from s to v. Since w was
the first unvisited node, some neighbour u of w has been visited. But
then, the edge (u,w) was explored and w was visited.

Properties of DFS
• For simplicity, assume that the graph is connected.

• DFS visits all nodes of the graph.

• Quick proof: Assume by contradiction that some node v is unvisited and
let w be the first unvisited node on some path from s to v. Since w was
the first unvisited node, some neighbour u of w has been visited. But
then, the edge (u,w) was explored and w was visited.

• The discovery edges form a spanning tree.

Properties of DFS
• For simplicity, assume that the graph is connected.

• DFS visits all nodes of the graph.

• Quick proof: Assume by contradiction that some node v is unvisited and
let w be the first unvisited node on some path from s to v. Since w was
the first unvisited node, some neighbour u of w has been visited. But
then, the edge (u,w) was explored and w was visited.

• The discovery edges form a spanning tree.

• We only mark edges as discovered when we go to unvisited
nodes. We can never have a cycle of discovered edges.

Running time of DFS

• DFS is called on each node exactly once.

Depth-First Search
Pseudocode

Algorithm DFS(G,v) 
 
 for all edges e incident to v. /* all edges that have v as one of their endpoints */ 

 if edge e is unexplored 
 Let u be the other endpoint of e 
 If vertex u is unexplored 
 Label e as a discovery edge 
 DFS(G,u) 
 Else 
 Label e as a back edge 

Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B

Running time of DFS

• DFS is called on each node exactly once.

• Every edge is examined exactly twice.

• Once from each of its endpoint vertices.

Depth-First Search
Pseudocode

Algorithm DFS(G,v) 
 
 for all edges e incident to v. /* all edges that have v as one of their endpoints */ 

 if edge e is unexplored 
 Let u be the other endpoint of e 
 If vertex u is unexplored 
 Label e as a discovery edge 
 DFS(G,u) 
 Else 
 Label e as a back edge 

Running time of DFS

• DFS is called on each node exactly once.

• Every edge is examined exactly twice.

• Once from each of its endpoint vertices.

• Therefore, DFS runs in time O(n+m).

Implementing DFS
• We need the following properties:

• We can find all incident edges to a vertex v in O(deg(v))
time.

• Given one endpoint of an edge e, we can find the other
endpoint in O(1) time.

• We have a way of marking nodes or edges as
“explored”, and to test if a vertex of edges has been
“explored” in O(1) time. In other words, we never
examine any edge twice!

Implementing DFS
• We need the following properties:

• We can find all incident edges to a vertex v in O(deg(v))
time.

• Given one endpoint of an edge e, we can find the other
endpoint in O(1) time.

• We have a way of marking nodes or edges as
“explored”, and to test if a vertex of edges has been
“explored” in O(1) time. In other words, we never
examine any edge twice!

The first two properties are satisfied by the Adjacency List representation!

Marking nodes
• We will need to following data structures

• An Adjacency List for the graph, with a .next pointer,
which goes through the neighbours of a vertex in order
of appearance. (v.next gives the next neighbour).

• A stack S (data structure where elements are put on
top of each other).

• An array explored[1,…n] where we will store the
explored elements.

Marking nodes

s

Marking nodes

s

Is s.next in explored?

Marking nodes

s

Is s.next in explored? No

Marking nodes

s

Is s.next in explored? No

u = s.next

Marking nodes

s

Is s.next in explored? No

u = s.next

u

Marking nodes

s

Is s.next in explored? No

u = s.next

u

Mark u as explored

Marking nodes

s

Is s.next in explored? No

u = s.next

u

Mark u as explored

Is u.next in explored?

Marking nodes

s

Is s.next in explored? No

u = s.next

u

Mark u as explored

Is u.next in explored? No

Marking nodes

s

Is s.next in explored? No

u = s.next

u

Mark u as explored

Is u.next in explored? No

v = u.next

Marking nodes

s

Is s.next in explored? No

u = s.next

u

Mark u as explored

Is u.next in explored? No

v = u.next

v

Marking nodes

s

Is s.next in explored? No

u = s.next

u

Mark u as explored

Is u.next in explored? No

v = u.next

v

Mark v as explored

Marking nodes

s

Is s.next in explored? No

u = s.next

u

Mark u as explored

Is u.next in explored? No

v = u.next

v

Mark v as explored

Is v.next in explored?

Marking nodes

s

Is s.next in explored? No

u = s.next

u

Mark u as explored

Is u.next in explored? No

v = u.next

v

Mark v as explored

Is v.next in explored? Yes

Marking nodes

s

Is s.next in explored? No

u = s.next

u

Mark u as explored

Is u.next in explored? No

v = u.next

v

Mark v as explored

Is v.next in explored? Yes

Apply v.next once more to get the next neighbour

Marking nodes

s

Is s.next in explored? No

u = s.next

u

Mark u as explored

Is u.next in explored? No

v = u.next

v

Mark v as explored

Is v.next in explored? Yes

Apply v.next once more to get the next neighbour

Is v.next in explored?

Marking nodes

s

Is s.next in explored? No

u = s.next

u

Mark u as explored

Is u.next in explored? No

v = u.next

v

Mark v as explored

Is v.next in explored? Yes

Apply v.next once more to get the next neighbour

Is v.next in explored? Yes

Marking nodes

s

Is s.next in explored? No

u = s.next

u

Mark u as explored

Is u.next in explored? No

v = u.next

v

Mark v as explored

Is v.next in explored? Yes

Apply v.next once more to get the next neighbour

Is v.next in explored? Yes
When the neighbour set is empty

Marking nodes

s

Is s.next in explored? No

u = s.next

u

Mark u as explored

Is u.next in explored? No

v = u.next

v

Mark v as explored

Is v.next in explored? Yes

Apply v.next once more to get the next neighbour

Is v.next in explored? Yes
When the neighbour set is empty

Marking nodes

s

Is s.next in explored? No

u = s.next

u

Mark u as explored

Is u.next in explored? No

v = u.next

v

Mark v as explored

Is v.next in explored? Yes

Apply v.next once more to get the next neighbour

Is v.next in explored? Yes
When the neighbour set is empty

Remove v 
from the stack

Marking nodes

s

Is s.next in explored? No

u = s.next

u

Mark u as explored

Is u.next in explored? No

v = u.next

v

Mark v as explored

Is v.next in explored? Yes

Apply v.next once more to get the next neighbour

Is v.next in explored? Yes
When the neighbour set is empty

Remove v 
from the stack

e=(u,v) is added to the  
spanning tree of DFS

Marking nodes

s

Is s.next in explored? No

u = s.next

u

Mark u as explored

Is u.next in explored? No

v = u.next

v

Mark v as explored

Is v.next in explored? Yes

Apply v.next once more to get the next neighbour

Is v.next in explored? Yes
When the neighbour set is empty

Remove v 
from the stack

e=(u,v) is added to the  
spanning tree of DFS

Continue with the top 
element of the stack

Marking nodes

s

Is s.next in explored? No

u = s.next

u

Mark u as explored

Is u.next in explored? No

v = u.next

v

Mark v as explored

Is v.next in explored? Yes

Apply v.next once more to get the next neighbour

Is v.next in explored? Yes
When the neighbour set is empty

Remove v 
from the stack

e=(u,v) is added to the  
spanning tree of DFS

Continue with the top 
element of the stack

We are about to consider 
the same neighbour!

Marking nodes

s

Is s.next in explored? No

u = s.next

u

Mark u as explored

Is u.next in explored? No

v = u.next

v

Mark v as explored

Is v.next in explored? Yes

Apply v.next once more to get the next neighbour

Is v.next in explored? Yes
When the neighbour set is empty

Remove v 
from the stack

e=(u,v) is added to the  
spanning tree of DFS

Continue with the top 
element of the stack

We are about to consider 
the same neighbour!

We remove the neighbours we have 
already considered.

Breadth-First Search
A B C D

E F G H

I J K L

M N O P

Breadth-First Search
A B C D

E F G H

I J K L

M N O P

level 0

Breadth-First Search
A B C D

E F G H

I J K L

M N O P

A
level 0

Breadth-First Search
A B C D

E F G H

I J K L

M N O P

A
level 0 level 1

Breadth-First Search
A B C D

E F G H

I J K L

M N O P

A
level 0 level 1

B

E F

Breadth-First Search
A B C D

E F G H

I J K L

M N O P

A
level 0 level 1

B

E F

C

I

Breadth-First Search
A B C D

E F G H

I J K L

M N O P

A
level 0 level 1

B

E F

C

I

M

J

G

D

N

Breadth-First Search
A B C D

E F G H

I J K L

M N O P

A
level 0 level 1

B

E F

C

I

M

J

G

D

N

K

H

L

Breadth-First Search
A B C D

E F G H

I J K L

M N O P

A
level 0 level 1

B

E F

C

I

M

J

G

D

N

K

H

L

O P

Simple idea

• Start from the starting vertex s which is at level 0 and
consider it explored.

• For any node at level i, put all of its unexplored
neighbours in level i+1 and consider them explored.

• Terminate at level j, when none of the nodes of the level
has any neighbours which are unexplored.

Visualising Breadth-First Search

Visualising Breadth-First Search

• Orient the edges along the direction in which they are
visited during the traversal.

Visualising Breadth-First Search

• Orient the edges along the direction in which they are
visited during the traversal.

• Some edges are discovery edges, because they lead to
unvisited vertices.

Visualising Breadth-First Search

• Orient the edges along the direction in which they are
visited during the traversal.

• Some edges are discovery edges, because they lead to
unvisited vertices.

• Some edges are cross edges, because they lead to
visited vertices.

Visualising Breadth-First Search

• Orient the edges along the direction in which they are
visited during the traversal.

• Some edges are discovery edges, because they lead to
unvisited vertices.

• Some edges are cross edges, because they lead to
visited vertices.

• The discovery edges form a spanning tree of the
connected component of the starting vertex s.

Breadth-First Search
A B C D

E F G H

I J K L

M N O P

A B

E F

C

I

M

J

G

D

N

K

H

L

O P

Breadth-First Search
Pseudocode

Algorithm BFS(G,s) 
 
Initialise empty list L0 
Insert s into L0

Set i=0 
While Li is not empty 
 Initialise empty list Li+1 

 for each node v in Li 

 for all edges e incident to v 
 if edge e is unexplored 
 let w be the other endpoint of e 
 if node w is unexplored 
 label e as discovery edge 
 insert w into Li+1 
 else 
 label e as cross edge 
i = i+1

Properties of BFS
• For simplicity, assume that the graph is connected.

• The traversal visits all vertices of the graph.

• The discovery edges form a spanning tree.

• The path of the spanning tree from s to a node v at level i
has i edges, and this is the shortest path.

• If e=(u,v) is a cross edge, then the u and v differ by at
most one level.

Running time of BFS

• In every iteration, we consider nodes on different levels.

• Therefore nodes are not considered twice.

• Every edge is examined at most twice.

• Therefore, BFS runs in time O(n+m).

DFS vs BFS

DFS vs BFS

• Which one is better?

DFS vs BFS

• Which one is better?

• Depends on what we use it for.

DFS vs BFS

• Which one is better?

• Depends on what we use it for.

• Stay tuned.

