
Advanced Algorithmic Techniques
(COMP523)

Graph Algorithms #2

Recap and plan

Recap and plan
• Last lecture:

• Graph definitions

• Graph representations

• Depth-First Search, Breadth-First Search

Recap and plan
• Last lecture:

• Graph definitions

• Graph representations

• Depth-First Search, Breadth-First Search

• This lecture:

• Testing bipartiteness

• DFS and BFS on directed graphs

• Testing connectivity

Bipartite graphs
• A graph G=(V,E) is bipartite if any only if it can be

partitioned into sets A and B such that each edge has one
endpoint in A and one endpoint in B.

• Often, we write G=(A U B,E).

Alternative definitions

• A graph G=(V,E) is bipartite if any only if its nodes can be
coloured with 2 colours (say red and green), such that
every vertex has one red endpoint and one green
endpoint.

• A graph G=(V,E) is bipartite if any only if it does not
contain any cycles of odd length.

No odd cycles

No odd cycles
• A graph G=(V,E) is bipartite if any only if it does not contain any cycles of

odd length.

No odd cycles
• A graph G=(V,E) is bipartite if any only if it does not contain any cycles of

odd length.

• => Assume that G is bipartite

No odd cycles
• A graph G=(V,E) is bipartite if any only if it does not contain any cycles of

odd length.

• => Assume that G is bipartite

• Suppose that G does contain an odd cycle (proof by contradiction), C
= u1 u2 u3 … un u for some u in A (wlog), or alternatively, for some u
that is red.

No odd cycles
• A graph G=(V,E) is bipartite if any only if it does not contain any cycles of

odd length.

• => Assume that G is bipartite

• Suppose that G does contain an odd cycle (proof by contradiction), C
= u1 u2 u3 … un u for some u in A (wlog), or alternatively, for some u
that is red.

• Because G is bipartite, u2 must be green, and then u3 must be red,
and so on.

No odd cycles
• A graph G=(V,E) is bipartite if any only if it does not contain any cycles of

odd length.

• => Assume that G is bipartite

• Suppose that G does contain an odd cycle (proof by contradiction), C
= u1 u2 u3 … un u for some u in A (wlog), or alternatively, for some u
that is red.

• Because G is bipartite, u2 must be green, and then u3 must be red,
and so on.

• Generally, we observe that for all k in {1,2, … ,n}, uk is red if k is odd
and green if k is even.

No odd cycles
• A graph G=(V,E) is bipartite if any only if it does not contain any cycles of

odd length.

• => Assume that G is bipartite

• Suppose that G does contain an odd cycle (proof by contradiction), C
= u1 u2 u3 … un u for some u in A (wlog), or alternatively, for some u
that is red.

• Because G is bipartite, u2 must be green, and then u3 must be red,
and so on.

• Generally, we observe that for all k in {1,2, … ,n}, uk is red if k is odd
and green if k is even.

• By assumption, n is odd, so it must be red. But then u cannot be red,
because G is bipartite.

Alternative definitions

• A graph G=(V,E) is bipartite if any only if its nodes can be
coloured with 2 colours (say red and green), such that
every vertex has one red endpoint and one green
endpoint.

• A graph G=(V,E) is bipartite if any only if it does not
contain any cycles of odd length.

• Sometimes, these alternatives definitions are also called
“characterisations”.

Testing bipartiteness

Testing bipartiteness

• Given a graph G=(V,E), decide if it is bipartite or not.

Testing bipartiteness

• Given a graph G=(V,E), decide if it is bipartite or not.

• Given a a graph G=(V,E) decide if it is 2-colourable or not.

Testing bipartiteness

• Given a graph G=(V,E), decide if it is bipartite or not.

• Given a a graph G=(V,E) decide if it is 2-colourable or not.

• Given a a graph G=(V,E) decide if it is contains cycles of
odd length or not.

Colouring the nodes
A B C D

E F G H

I J K L

M N O P

Colouring the nodes
A B C D

E F G H

I J K L

M N O P

A

Colouring the nodes
A B C D

E F G H

I J K L

M N O P

A B

E

Colouring the nodes
A B C D

E F G H

I J K L

M N O P

A B

FE

C

I

Colouring the nodes
A B C D

E F G H

I J K L

M N O P

A B

FE

C

I

D

G

J

M

Colouring the nodes
A B C D

E F G H

I J K L

M N O P

A B

FE

C

I

D

G

J

M N

K

H

Colouring the nodes
A B C D

E F G H

I J K L

M N O P

A B

FE

C

I

D

G

J

M N

K

H

L

O

Colouring the nodes
A B C D

E F G H

I J K L

M N O P

A B

FE

C

I

D

G

J

M N

K

H

L

O P

Colouring the nodes
A B C D

E F G H

I J K L

M N O P

Colouring the nodes
A B C D

E F G H

I J K L

M N O P

A

Colouring the nodes
A B C D

E F G H

I J K L

M N O P

A B

FE

Colouring the nodes
A B C D

E F G H

I J K L

M N O P

A B

FE

C

I

Colouring the nodes
A B C D

E F G H

I J K L

M N O P

A B

FE

C

I

D

G

J

M N

Colouring the nodes
A B C D

E F G H

I J K L

M N O P

A B

FE

C

I

D

G

J

M N

K

H

L

Colouring the nodes
A B C D

E F G H

I J K L

M N O P

A B

FE

C

I

D

G

J

M N

K

H

L

O P

Colouring the nodes
A B C D

E F G H

I J K L

M N O P

A B

FE

C

I

D

G

J

M N

K

H

L

O P

Colouring the nodes
• Does this remind you of something?

• It is essentially BFS!

• We label the nodes of level 1 red, the nodes of level 2
green, and so on.

• Implementation:

• Add a check for odd/even and assign a colour accordingly.

• In the end, check all edges to see if they have endpoints of
the same colour.

Breadth-First Search
Pseudocode

Algorithm BFS(G,s) 
 
Initialise empty list L0 
Initialise colour list C 
Insert s into L0 
Set C[s] = red

Set i=0 
While Li is not empty 
 Initialise empty list Li+1 
 for each node v in Li 
 for all edges e incident to v 
 if edge e is unexplored 
 let w be the other endpoint of e 
 if node w is unexplored 
 label e as discovery edge 
 insert w into Li+1 
 If i+1 is odd, set C[w] = red, else set C[w] = green 
 else 
 label e as cross edge 
i = i+1 
 
For all edges e=(u,v) in G 
 if C[u] = C[v] return “not bipartite” 
Return “bipartite”

Running time

Running time
• What did we add?

Running time
• What did we add?

• A colour assignment for the starting node.

Running time
• What did we add?

• A colour assignment for the starting node.

• An odd/even check and a colour assignment for each node in the
loop.

Running time
• What did we add?

• A colour assignment for the starting node.

• An odd/even check and a colour assignment for each node in the
loop.

• An extra loop for checking the edges of their graph for the colours of
their endpoints.

Running time
• What did we add?

• A colour assignment for the starting node.

• An odd/even check and a colour assignment for each node in the
loop.

• An extra loop for checking the edges of their graph for the colours of
their endpoints.

• How much more do we “pay” (asymptotically)?

Running time
• What did we add?

• A colour assignment for the starting node.

• An odd/even check and a colour assignment for each node in the
loop.

• An extra loop for checking the edges of their graph for the colours of
their endpoints.

• How much more do we “pay” (asymptotically)?

• Nothing!

Running time
• What did we add?

• A colour assignment for the starting node.

• An odd/even check and a colour assignment for each node in the
loop.

• An extra loop for checking the edges of their graph for the colours of
their endpoints.

• How much more do we “pay” (asymptotically)?

• Nothing!

• Running time O(m+n).

Correctness

• We started at an arbitrary node s.

• Maybe we were lucky / unlucky?

Properties of BFS
• For simplicity, assume that the graph is connected.

• The traversal visits all vertices of the graph.

• The discovery edges form a spanning tree.

• The path of the spanning tree from s to a node v at level i
has i edges, and this is the shortest path.

• If e=(u,v) is a cross edge, then the u and v differ by at
most one level.

Properties of BFS

• If e=(u,v) is a cross edge, then the u and v differ by at
most one level.

• If e=(u,v) is a discovery edge, then the u and v differ by at
most one level.

Correctness

Correctness
• Suppose that G is bipartite. Then, all cycles must be of even

length.

Correctness
• Suppose that G is bipartite. Then, all cycles must be of even

length.

• Suppose to the contrary that the algorithm returns “not bipartite”.

Correctness
• Suppose that G is bipartite. Then, all cycles must be of even

length.

• Suppose to the contrary that the algorithm returns “not bipartite”.

• This means that it has found an edge e=(x,y) with endpoints of
the same colour.

Correctness
• Suppose that G is bipartite. Then, all cycles must be of even

length.

• Suppose to the contrary that the algorithm returns “not bipartite”.

• This means that it has found an edge e=(x,y) with endpoints of
the same colour.

• Since the endpoints of any edge can not differ by more than
one layer and layers have alternating colours, x and y must be
in the same layer.

Correctness
• Consider the lowest common

ancestor z of x and y in the
BFS tree.

X Y

Z

Correctness
• Consider the lowest common

ancestor z of x and y in the
BFS tree.

• Let Li be the level of z and let Lj
be the level of x and y

X Y

Z

Correctness
• Consider the lowest common

ancestor z of x and y in the
BFS tree.

• Let Li be the level of z and let Lj
be the level of x and y

• Consider the cycle (z … x),
(x,y), (y … z).

X Y

Z

Correctness
• Consider the lowest common

ancestor z of x and y in the
BFS tree.

• Let Li be the level of z and let Lj
be the level of x and y

• Consider the cycle (z … x),
(x,y), (y … z).

• Length: (j-i) + 1 + (j-i) (odd)

X Y

Z

Correctness
• Consider the lowest common

ancestor z of x and y in the
BFS tree.

• Let Li be the level of z and let Lj
be the level of x and y

• Consider the cycle (z … x),
(x,y), (y … z).

• Length: (j-i) + 1 + (j-i) (odd)

• Contradiction!

X Y

Z

Correctness

Correctness
• Suppose that G is not bipartite. Then, it must contain a cycle of odd length.

Correctness
• Suppose that G is not bipartite. Then, it must contain a cycle of odd length.

• Suppose to the contrary that the algorithm returns “bipartite”.

Correctness
• Suppose that G is not bipartite. Then, it must contain a cycle of odd length.

• Suppose to the contrary that the algorithm returns “bipartite”.

• This means that it has not found any edge e=(x,y) with endpoints of the same
colour.

Correctness
• Suppose that G is not bipartite. Then, it must contain a cycle of odd length.

• Suppose to the contrary that the algorithm returns “bipartite”.

• This means that it has not found any edge e=(x,y) with endpoints of the same
colour.

• This also obviously means that there is no edge with endpoints in the same
layer.

Correctness
• Suppose that G is not bipartite. Then, it must contain a cycle of odd length.

• Suppose to the contrary that the algorithm returns “bipartite”.

• This means that it has not found any edge e=(x,y) with endpoints of the same
colour.

• This also obviously means that there is no edge with endpoints in the same
layer.

• By the earlier discussion, all edges must have endpoints that lie in consecutive
layers.

Correctness
• Suppose that G is not bipartite. Then, it must contain a cycle of odd length.

• Suppose to the contrary that the algorithm returns “bipartite”.

• This means that it has not found any edge e=(x,y) with endpoints of the same
colour.

• This also obviously means that there is no edge with endpoints in the same
layer.

• By the earlier discussion, all edges must have endpoints that lie in consecutive
layers.

• Take any cycle (z, … , z). Since for every edge in this cycle there is a change of
layer (from j to j+1 or from j+1 to j), the cycle must have even length.

Correctness
• Suppose that G is not bipartite. Then, it must contain a cycle of odd length.

• Suppose to the contrary that the algorithm returns “bipartite”.

• This means that it has not found any edge e=(x,y) with endpoints of the same
colour.

• This also obviously means that there is no edge with endpoints in the same
layer.

• By the earlier discussion, all edges must have endpoints that lie in consecutive
layers.

• Take any cycle (z, … , z). Since for every edge in this cycle there is a change of
layer (from j to j+1 or from j+1 to j), the cycle must have even length.

• Contradiction!

Directed graphs
• Nodes are arranged as a list, each node points to the

neighbours.

• For directed graphs, the node points in two directions,
for in-degree and for out-degree.

1 4

3

5

2

1

2

3

4

5

2

4

1
2

2

3

1 5

DFS and BFS on directed graphs

• Very similar to their version on undirected graphs.

• When we are at a node and we examine its neighbours, a
neighbour is now only a node that we can reach with a
directed edge.

• The running time is still O(n+m).

Breadth-First Search
A B C D

E F G H

I J K L

M N O P

Breadth-First Search
A B C D

E F G H

I J K L

M N O P

A

Breadth-First Search
A B C D

E F G H

I J K L

M N O P

A

E F

Breadth-First Search
A B C D

E F G H

I J K L

M N O P

A

E F

I

B

Breadth-First Search
A B C D

E F G H

I J K L

M N O P

A

E F

I

B

J

C

Breadth-First Search
A B C D

E F G H

I J K L

M N O P

A

E F

I

B

J

C

G

K

Breadth-First Search
A B C D

E F G H

I J K L

M N O P

A

E F

I

B

J

C

G

K

O

L

D

Breadth-First Search
A B C D

E F G H

I J K L

M N O P

A

E F

I

B

J

C

G

K

O

L

D

P

H

Breadth-First Search
A B C D

E F G H

I J K L

M N O P

A

E F

I

B

J

C

G

K

O

L

D

P

H

N

Breadth-First Search
A B C D

E F G H

I J K L

M N O P

A

E F

I

B

J

C

G

K

O

L

D

P

H

M N

Connectivity
• What BFS is computing is the set of nodes t such that there is

a path from s to t.

• A path from s to t does not mean that there is path from t to s.

• (Weak) connectivity: If we ignored the directions for all edges,
there would a path from any node to any node.

• Strong connectivity: For every two nodes u and v, there is a
path from u to v and a path from v to u.

• Question: Given a graph G=(V,E), is it strongly connected?

Mutual reachability

• Two nodes u and v are mutually reachable, if there is path
from u to v and a path from v to u in G.

• Strong connectivity: For every pair of nodes u and v,
these nodes are mutually reachable.

• Transitivity: If u and v are mutually reachable and v and w
are mutually reachable, then u and w are mutually
reachable.

Testing strong connectivity

Testing strong connectivity
• Define the reverse graph Grev, in which the nodes are the same and the

edges are the same with reversed directions.

Testing strong connectivity
• Define the reverse graph Grev, in which the nodes are the same and the

edges are the same with reversed directions.

• Pick any node s in V and run BFS(G,s) and BFS(Grev,s).

Testing strong connectivity
• Define the reverse graph Grev, in which the nodes are the same and the

edges are the same with reversed directions.

• Pick any node s in V and run BFS(G,s) and BFS(Grev,s).

• If one of the two searches does not reach every node, then the graph is
definitely not strongly connected.

Testing strong connectivity
• Define the reverse graph Grev, in which the nodes are the same and the

edges are the same with reversed directions.

• Pick any node s in V and run BFS(G,s) and BFS(Grev,s).

• If one of the two searches does not reach every node, then the graph is
definitely not strongly connected.

• Assume that both searches reach every node. This means that there is a
path from s to any node u and a path from any node u to s.

Testing strong connectivity
• Define the reverse graph Grev, in which the nodes are the same and the

edges are the same with reversed directions.

• Pick any node s in V and run BFS(G,s) and BFS(Grev,s).

• If one of the two searches does not reach every node, then the graph is
definitely not strongly connected.

• Assume that both searches reach every node. This means that there is a
path from s to any node u and a path from any node u to s.

• For any node u, s and u are mutually reachable.

Testing strong connectivity
• Define the reverse graph Grev, in which the nodes are the same and the

edges are the same with reversed directions.

• Pick any node s in V and run BFS(G,s) and BFS(Grev,s).

• If one of the two searches does not reach every node, then the graph is
definitely not strongly connected.

• Assume that both searches reach every node. This means that there is a
path from s to any node u and a path from any node u to s.

• For any node u, s and u are mutually reachable.

• Pick any other node v. Since s and v are also mutually reachable, by
transitivity, v and u are mutually reachable and the graph is strongly
connected.

Connected component
• A connected component of an undirected graph G is

subgraph such that any two nodes are connected via
some path.

Connected component
• A connected component of an undirected graph G is

subgraph such that any two nodes are connected via
some path.

• A strongly connected component of a directed graph G
is subgraph such that any two nodes are mutually
reachable.

Strongly connected
components

• How do we find all strongly connected components of a
graph G?

• We can run the “forward” and “backward” BFS for a node s
and find the set of nodes that are mutually reachable from s.

• This is the strongly connected component of s.

• But BFS might produce different connected components,
depending on how we visit the nodes.

• We need a consistent way of visiting them in the “forward”
and in the “backward” pass.

Kosajaru’s algorithm

Kosajaru’s algorithm
• Perform a DFS on G, starting from an arbitrary nodes s.

• Add the nodes that the DFS tree reaches to a stack.

• A node is added to the stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting the nodes in the order that
they are popped from the stack.

• Output the DFS trees of the second DFS as the strongly
connected components.

Kosajaru’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

Kosajaru’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

0

Kosajaru’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

0

2

Kosajaru’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

0

2

1

Kosajaru’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

0

2

1

1

Kosajaru’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

0

2

1

1

2

Kosajaru’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

0

2

1

1

2

3

Kosajaru’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

0

2

1

1

2

3

4

Kosajaru’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

0

2

1

1

2

3

4

4

Kosajaru’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

0

2

1

1

2

3

4

4

3

Kosajaru’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

0

2

1

1

2

3

4

4

3

0

Kosajaru’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

1

2

4

3

0

Kosajaru’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

1

2

4

3

0

0

Kosajaru’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

1

2

4

3

0

0

1

Kosajaru’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

1

2

4

3

0

0

1

2

Kosajaru’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

1

2

4

3

0

0

1

2

3

Kosajaru’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

1

2

4

3

0

0

1

2

3

4

Kosajaru’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

1

2

4

3

0

0

1

2

3

4

Running time

Running time

• We perform DFS twice.

• The running time is O(m+n).

Correctness

• Next lecture.

