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Recap and plan
• Last lecture: 

• Graph definitions


• Graph representations


• Depth-First Search, Breadth-First Search

• This lecture: 

• Testing bipartiteness


• DFS and BFS on directed graphs


• Testing connectivity



Bipartite graphs
• A graph G=(V,E) is bipartite if any only if it can be 

partitioned into sets A and B such that each edge has one 
endpoint in A and one endpoint in B.


• Often, we write G=(A U B,E).



Alternative definitions

• A graph G=(V,E) is bipartite if any only if its nodes can be 
coloured with 2 colours (say red and green), such that 
every vertex has one red endpoint and one green 
endpoint.


• A graph G=(V,E) is bipartite if any only if it does not 
contain any cycles of odd length.
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No odd cycles
• A graph G=(V,E) is bipartite if any only if it does not contain any cycles of 

odd length.

• => Assume that G is bipartite

• Suppose that G does contain an odd cycle (proof by contradiction), C 
= u1 u2 u3 … un u for some u in A (wlog), or alternatively, for some u 
that is red.

• Because G is bipartite, u2 must be green, and then u3 must be red, 
and so on.

• Generally, we observe that for all k in {1,2, … ,n}, uk is red if k is odd 
and green if k is even.

• By assumption, n is odd, so it must be red. But then u cannot be red, 
because G is bipartite.



Alternative definitions

• A graph G=(V,E) is bipartite if any only if its nodes can be 
coloured with 2 colours (say red and green), such that 
every vertex has one red endpoint and one green 
endpoint.


• A graph G=(V,E) is bipartite if any only if it does not 
contain any cycles of odd length.


• Sometimes, these alternatives definitions are also called 
“characterisations”.
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Testing bipartiteness

• Given a graph G=(V,E), decide if it is bipartite or not.

• Given a a graph G=(V,E) decide if it is 2-colourable or not.

• Given a a graph G=(V,E) decide if it is contains cycles of 
odd length or not.
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Colouring the nodes
• Does this remind you of something?


• It is essentially BFS!


• We label the nodes of level 1 red, the nodes of level 2 
green, and so on.


• Implementation:


• Add a check for odd/even and assign a colour accordingly.


• In the end, check all edges to see if they have endpoints of 
the same colour.



Breadth-First Search 
Pseudocode

Algorithm BFS(G,s) 
 
Initialise empty list L0 
Initialise colour list C 
Insert s into L0 
Set C[s] = red


Set i=0 
While Li is not empty 
      Initialise empty list Li+1 
         for each node v in Li 
             for all edges e incident to v 
           if edge e is unexplored 
             let w be the other endpoint of e 
             if node w is unexplored 
                label e as discovery edge 
                insert w into Li+1 
                        If i+1 is odd, set C[w] = red, else set C[w] = green 
             else 
                label e as cross edge 
i = i+1 
 
For all edges e=(u,v) in G 
     if C[u] = C[v] return “not bipartite” 
Return “bipartite”
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Running time
• What did we add?

• A colour assignment for the starting node.

• An odd/even check and a colour assignment for each node in the 
loop.

• An extra loop for checking the edges of their graph for the colours of 
their endpoints.

• How much more do we “pay” (asymptotically)?

• Nothing!

• Running time O(m+n).



Correctness

• We started at an arbitrary node s. 


• Maybe we were lucky / unlucky?



Properties of BFS
• For simplicity, assume that the graph is connected.


• The traversal visits all vertices of the graph.


• The discovery edges form a spanning tree.


• The path of the spanning tree from s to a node v at level i 
has i edges, and this is the shortest path.


• If e=(u,v) is a cross edge, then the u and v differ by at 
most one level.



Properties of BFS

• If e=(u,v) is a cross edge, then the u and v differ by at 
most one level.


• If e=(u,v) is a discovery edge, then the u and v differ by at 
most one level.
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Correctness
• Suppose that G is bipartite. Then, all cycles must be of even 

length.

• Suppose to the contrary that the algorithm returns “not bipartite”.

• This means that it has found an edge e=(x,y) with endpoints of 
the same colour. 

• Since the endpoints of any edge can not differ by more than 
one layer and layers have alternating colours, x and y must be 
in the same layer.
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Correctness
• Suppose that G is not bipartite. Then, it must contain a cycle of odd length.

• Suppose to the contrary that the algorithm returns “bipartite”.

• This means that it has not found any edge e=(x,y) with endpoints of the same 
colour. 

• This also obviously means that there is no edge with endpoints in the same 
layer.

• By the earlier discussion, all edges must have endpoints that lie in consecutive 
layers.

• Take any cycle (z, … , z). Since for every edge in this cycle there is a change of 
layer (from j to j+1 or from j+1 to j), the cycle must have even length.

• Contradiction!



Directed graphs
• Nodes are arranged as a list, each node points to the 

neighbours.


• For directed graphs, the node points in two directions, 
for in-degree and for out-degree.
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DFS and BFS on directed graphs

• Very similar to their version on undirected graphs.


• When we are at a node and we examine its neighbours, a 
neighbour is now only a node that we can reach with a 
directed edge.


• The running time is still O(n+m).
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Connectivity
• What BFS is computing is the set of nodes t such that there is 

a path from s to t.


• A path from s to t does not mean that there is path from t to s.


• (Weak) connectivity: If we ignored the directions for all edges, 
there would a path from any node to any node.


• Strong connectivity: For every two nodes u and v, there is a 
path from u to v and a path from v to u. 


• Question: Given a graph G=(V,E), is it strongly connected?



Mutual reachability

• Two nodes u and v are mutually reachable, if there is path 
from u to v and a path from v to u in G. 


• Strong connectivity: For every pair of nodes u and v, 
these nodes are mutually reachable.


• Transitivity: If u and v are mutually reachable and v and w 
are mutually reachable, then u and w are mutually 
reachable.
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Testing strong connectivity
• Define the reverse graph Grev, in which the nodes are the same and the 

edges are the same with reversed directions.

• Pick any node s in V and run BFS(G,s) and BFS(Grev,s).

• If one of the two searches does not reach every node, then the graph is 
definitely not strongly connected.

• Assume that both searches reach every node. This means that there is a 
path from s to any node u and a path from any node u to s.

• For any node u, s and u are mutually reachable.

• Pick any other node v. Since s and v are also mutually reachable, by 
transitivity, v and u are mutually reachable and the graph is strongly 
connected.
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Connected component
• A connected component of an undirected graph G is 

subgraph such that any two nodes are connected via 
some path.


• A strongly connected component of a directed graph G 
is subgraph such that any two nodes are mutually 
reachable.



Strongly connected 
components

• How do we find all strongly connected components of a 
graph G?


• We can run the “forward” and “backward” BFS for a node s 
and find the set of nodes that are mutually reachable from s.


• This is the strongly connected component of s.


• But BFS might produce different connected components, 
depending on how we visit the nodes.


• We need a consistent way of visiting them in the “forward” 
and in the “backward” pass.
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• Perform a DFS on Grev, visiting the nodes in the order that 
they are popped from the stack.


• Output the DFS trees of the second DFS as the strongly 
connected components.
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Running time



Running time

• We perform DFS twice.


• The running time is O(m+n).



Correctness

• Next lecture.


