Advanced Algorithmic Techniques
(COMP523)

Graph Algorithms #2

Recap and plan

Recap and plan

e Last lecture:
e Graph definitions
e Graph representations

e Depth-First Search, Breadth-First Search

Recap and plan

e Last lecture:

e Graph definitions

e Graph representations

e Depth-First Search, Breadth-First Search
* This lecture:

e Testing bipartiteness

e DFS and BFS on directed graphs

e Testing connectivity

Bipartite graphs

A graph G=(V,E) is bipartite if any only if it can be
partitioned into sets A and B such that each edge has one
endpoint in A and one endpoint in B.

e Often, we write G=(A U B,E).

Alternative definitions

A graph G=(V,E) is bipartite if any only if its nodes can be
coloured with 2 colours (say red and green), such that

every vertex has one red endpoint and one green
endpoint.

A graph G=(V,E) is bipartite if any only if it does not
contain any cycles of odd length.

No odd cycles

No odd cycles

* A graph G=(V,E) is bipartite if any only if it does not contain any cycles of
odd length.

No odd cycles

* A graph G=(V,E) is bipartite if any only if it does not contain any cycles of
odd length.

* => Assume that G is bipartite

No odd cycles

* A graph G=(V,E) is bipartite if any only if it does not contain any cycles of
odd length.

* => Assume that G is bipartite

e Suppose that G does contain an odd cycle (proof by contradiction), C
= U1 U2 U3 ... Un U for some u in A (wlog), or alternatively, for some u
that is red.

No odd cycles

* A graph G=(V,E) is bipartite if any only if it does not contain any cycles of
odd length.

* => Assume that G is bipartite

e Suppose that G does contain an odd cycle (proof by contradiction), C
= U1 U2 U3 ... Un U for some u in A (wlog), or alternatively, for some u
that is red.

 Because G is bipartite, u> must be green, and then uz must be red,
and so on.

No odd cycles

* A graph G=(V,E) is bipartite if any only if it does not contain any cycles of
odd length.

* => Assume that G is bipartite

e Suppose that G does contain an odd cycle (proof by contradiction), C
= U1 U2 U3 ... Un U for some u in A (wlog), or alternatively, for some u
that is red.

 Because G is bipartite, u> must be green, and then uz must be red,
and so on.

e Generally, we observe that for all k in {1,2, ... ,n}, uxis red if k is odd
and green if k is even.

No odd cycles

* A graph G=(V,E) is bipartite if any only if it does not contain any cycles of
odd length.

* => Assume that G is bipartite

e Suppose that G does contain an odd cycle (proof by contradiction), C
= U1 U2 U3 ... Un U for some u in A (wlog), or alternatively, for some u
that is red.

 Because G is bipartite, u> must be green, and then uz must be red,
and so on.

e Generally, we observe that for all k in {1,2, ... ,n}, uxis red if k is odd
and green if k is even.

By assumption, n is odd, so it must be red. But then u cannot be red,
because G is bipartite.

Alternative definitions

A graph G=(V,E) is bipartite if any only if its nodes can be
coloured with 2 colours (say red and green), such that
every vertex has one red endpoint and one green
endpoint.

A graph G=(V,E) is bipartite if any only if it does not
contain any cycles of odd length.

e Sometimes, these alternatives definitions are also called
“characterisations”.

Testing bipartiteness

Testing bipartiteness

e Given a graph G=(V,E), decide if it is bipartite or not.

Testing bipartiteness

e Given a graph G=(V,E), decide if it is bipartite or not.

e Given a a graph G=(V,E) decide if it is 2-colourable or not.

Testing bipartiteness

e Given a graph G=(V,E), decide if it is bipartite or not.
e Given a a graph G=(V,E) decide if it is 2-colourable or not.

e Given a a graph G=(V,E) decide if it is contains cycles of
odd length or not.

Colouring the nodes
©_

Colouring the nodes
©_

Colouring the nodes

Colouring the nodes

00690

Colouring the nodes

00690

Colouring the nodes

o0 ©0

Colouring the nodes

Colouring the nodes
©_

Colouring the nodes

Colouring the nodes

Colouring the nodes

Colouring the nodes

Colouring the nodes

Colouring the nodes

Colouring the nodes

Colouring the nodes

Colouring the nodes

* Does this remind you of something?
e |tis essentially BFS!

e \We label the nodes of level 1 red, the nodes of level 2
green, and so on.

* |mplementation:
 Add a check for odd/even and assign a colour accordingly.

* In the end, check all edges to see if they have endpoints of
the same colour.

Breadth-First Search
Pseudocode

Algorithm BFS(G,s)

Initialise empty list Lo
Initialise colour list C
Insert s into Lo

Set C[s] = red

Set i=0
While Liis not empty
Initialise empty list Li.1
for each node v in L;
for all edges e incident to v
if edge e is unexplored
let w be the other endpoint of e
if node w is unexplored
label e as discovery edge
insert w into Li:1

If i+1 is odd, set C[w] = red, else set C[w] = green
else

label e as cross edge
| =i+1

For all edges e=(u,v) in G
if C[u] = C[v] return “not bipartite”
Return “bipartite”

Running time

Running time

e What did we add?

Running time

e What did we add?

e A colour assignment for the starting node.

Running time

 What did we add?
e A colour assignment for the starting node.

* An odd/even check and a colour assignment for each node in the
loop.

Running time

 What did we add?
e A colour assignment for the starting node.

* An odd/even check and a colour assignment for each node in the
loop.

* An extra loop for checking the edges of their graph for the colours of
their endpoints.

Running time

 What did we add?
e A colour assignment for the starting node.

* An odd/even check and a colour assignment for each node in the
loop.

* An extra loop for checking the edges of their graph for the colours of
their endpoints.

e How much more do we “pay” (asymptotically)?

Running time

 What did we add?
e A colour assignment for the starting node.

* An odd/even check and a colour assignment for each node in the
loop.

* An extra loop for checking the edges of their graph for the colours of
their endpoints.

e How much more do we “pay” (asymptotically)?

* Nothing!

Running time

 What did we add?
e A colour assignment for the starting node.

* An odd/even check and a colour assignment for each node in the
loop.

* An extra loop for checking the edges of their graph for the colours of
their endpoints.

e How much more do we “pay” (asymptotically)?
* Nothing!

* Running time O(m+n).

Correctness

e \We started at an arbitrary node s.

e Maybe we were lucky / unlucky?

Properties of BFS

For simplicity, assume that the graph is connected.
The traversal visits all vertices of the graph.
The discovery edges form a spanning tree.

The path of the spanning tree from s to a node v at level /
has / edges, and this is the shortest path.

If e=(u,V) is a cross edge, then the u and v differ by at
most one level.

Properties of BFS

e |f e=(u,v)is a cross edge, then the u and v differ by at
most one level.

e If e=(u,v) is a discovery edge, then the u and v differ by at
most one level.

Correctness

Correctness

e Suppose that G is bipartite. Then, all cycles must be of even
length.

Correctness

e Suppose that G is bipartite. Then, all cycles must be of even
length.

e Suppose to the contrary that the algorithm returns “not bipartite”.

Correctness

e Suppose that G is bipartite. Then, all cycles must be of even
length.

e Suppose to the contrary that the algorithm returns “not bipartite”.

e This means that it has found an edge e=(x,y) with endpoints of
the same colour.

Correctness

e Suppose that G is bipartite. Then, all cycles must be of even
length.

e Suppose to the contrary that the algorithm returns “not bipartite”.

e This means that it has found an edge e=(x,y) with endpoints of
the same colour.

* Since the endpoints of any edge can not differ by more than

one layer and layers have alternating colours, x and y must be
In the same layer.

Correctness

e Consider the lowest common

ancestor z of x and y in the
BFS tree. o° ‘e

|
|

[]

N

N

L J

L
°.

N
[]
|
|
n
|
|

Correctness

e Consider the lowest common
ancestor z of x and y in the
BFS tree.

* Let Li be the level of z and let L;
be the level of x and y

Correctness

e Consider the lowest common
ancestor z of x and y in the
BFS tree.

* Let Li be the level of z and let L;
be the level of x and y

e Consider the cycle (z ... x),
(X.y), (y ... 2).

Correctness

Consider the lowest common
ancestor z of x and y in the
BFS tree.

Let Li be the level of z and let L;
be the level of x and y

Consider the cycle (z ... x),
(X.y), (y ... 2).

Length: (j-i) + 1 + (j-i) (odd)

Correctness

Consider the lowest common
ancestor z of x and y in the
BFS tree.

Let Li be the level of z and let L;
be the level of x and y

Consider the cycle (z ... x),
(X.y), (y ... 2).

Length: (j-i) + 1 + (j-i) (odd)

Contradiction!

Correctness

Correctness

* Suppose that G is not bipartite. Then, it must contain a cycle of odd length.

Correctness

* Suppose that G is not bipartite. Then, it must contain a cycle of odd length.

* Suppose to the contrary that the algorithm returns “bipartite”.

Correctness

* Suppose that G is not bipartite. Then, it must contain a cycle of odd length.
* Suppose to the contrary that the algorithm returns “bipartite”.

* This means that it has not found any edge e=(x,y) with endpoints of the same
colour.

Correctness

* Suppose that G is not bipartite. Then, it must contain a cycle of odd length.

* Suppose to the contrary that the algorithm returns “bipartite”.

* This means that it has not found any edge e=(x,y) with endpoints of the same
colour.

* This also obviously means that there is no edge with endpoints in the same
layer.

Correctness

* Suppose that G is not bipartite. Then, it must contain a cycle of odd length.

* Suppose to the contrary that the algorithm returns “bipartite”.

* This means that it has not found any edge e=(x,y) with endpoints of the same
colour.

* This also obviously means that there is no edge with endpoints in the same
layer.

* By the earlier discussion, all edges must have endpoints that lie in consecutive
layers.

Correctness

* Suppose that G is not bipartite. Then, it must contain a cycle of odd length.
* Suppose to the contrary that the algorithm returns “bipartite”.

* This means that it has not found any edge e=(x,y) with endpoints of the same
colour.

* This also obviously means that there is no edge with endpoints in the same
layer.

* By the earlier discussion, all edges must have endpoints that lie in consecutive
layers.

* Take any cycle (z, ..., z). Since for every edge in this cycle there is a change of
layer (fromj to j+7 or from j+7 to), the cycle must have even length.

Correctness

* Suppose that G is not bipartite. Then, it must contain a cycle of odd length.
* Suppose to the contrary that the algorithm returns “bipartite”.

* This means that it has not found any edge e=(x,y) with endpoints of the same
colour.

* This also obviously means that there is no edge with endpoints in the same
layer.

* By the earlier discussion, all edges must have endpoints that lie in consecutive
layers.

* Take any cycle (z, ..., z). Since for every edge in this cycle there is a change of
layer (fromj to j+7 or from j+7 to), the cycle must have even length.

e Contradiction!

Directed graphs

e Nodes are arranged as a list, each node points to the
neighbours.

e For directed graphs, the node points in two directions,
for in-degree and for out-degree.

DFS and BFS on directed graphs

e Very similar to their version on undirected graphs.

e \WWhen we are at a node and we examine its neighbours, a
neighbour is now only a node that we can reach with a
directed edge.

* The running time is still O(n+m).

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Connectivity

What BFS is computing is the set of nodes t such that there is
a path from s to t.

A path from s to t does not mean that there is path from t to s.

(Weak) connectivity: If we ignored the directions for all edges,
there would a path from any node to any node.

Strong connectivity: For every two nodes u and v, there is a
path from u to v and a path from v to u.

Question: Given a graph G=(V,E), is it strongly connected?

Mutual reachability

e Two nodes u and v are mutually reachable, if there is path
from u to v and a path from v to u in G.

e Strong connectivity: For every pair of nodes u and v,
these nodes are mutually reachable.

e Transitivity: If u and v are mutually reachable and v and w
are mutually reachable, then u and w are mutually
reachable.

Testing strong connectivity

Testing strong connectivity

e Define the reverse graph Grev, in which the nodes are the same and the
edges are the same with reversed directions.

Testing strong connectivity

e Define the reverse graph Grev, in which the nodes are the same and the
edges are the same with reversed directions.

 Pick any node s in V and run BFS(G,s) and BFS(Grev,s).

Testing strong connectivity

e Define the reverse graph Grev, in which the nodes are the same and the
edges are the same with reversed directions.

 Pick any node s in V and run BFS(G,s) and BFS(Grev,s).

* If one of the two searches does not reach every node, then the graph is
definitely not strongly connected.

Testing strong connectivity

e Define the reverse graph Grev, in which the nodes are the same and the
edges are the same with reversed directions.

 Pick any node s in V and run BFS(G,s) and BFS(Grev,s).

* If one of the two searches does not reach every node, then the graph is
definitely not strongly connected.

e Assume that both searches reach every node. This means that there is a
path from s to any node u and a path from any node u to s.

Testing strong connectivity

e Define the reverse graph Grev, in which the nodes are the same and the
edges are the same with reversed directions.

 Pick any node s in V and run BFS(G,s) and BFS(Grev,s).

* If one of the two searches does not reach every node, then the graph is
definitely not strongly connected.

e Assume that both searches reach every node. This means that there is a
path from s to any node u and a path from any node u to s.

e For any node u, s and u are mutually reachable.

Testing strong connectivity

e Define the reverse graph Grev, in which the nodes are the same and the
edges are the same with reversed directions.

 Pick any node s in V and run BFS(G,s) and BFS(Grev,s).

* If one of the two searches does not reach every node, then the graph is
definitely not strongly connected.

e Assume that both searches reach every node. This means that there is a
path from s to any node u and a path from any node u to s.

e For any node u, s and u are mutually reachable.

* Pick any other node v. Since s and v are also mutually reachable, by
transitivity, v and u are mutually reachable and the graph is strongly
connected.

Connected component

* A connected component of an undirected graph G is
subgraph such that any two nodes are connected via
some path.

Componant 4

Connected component

* A connected component of an undirected graph G is

subgraph such that any two nodes are connected via
some path.

* A strongly connected component of a directed graph G

Is subgraph such that any two nodes are mutually
reachable.

Strongly connected
components

* How do we find all strongly connected components of a
graph G?

* We can run the “forward” and “backward” BFS for a node s
and find the set of nodes that are mutually reachable from s.

* This is the strongly connected component of s.

 But BFS might produce different connected components,
depending on how we visit the nodes.

* \We need a consistent way of visiting them in the “forward”
and in the “backward” pass.

Kosajaru’s algorithm

Kosajaru’s algorithm

Perform a DFS on G, starting from an arbitrary nodes s.
Add the nodes that the DFS tree reaches to a stack.

e A node is added to the stack when the DFS for that
node is completed.

Perform a DFS on Grev, visiting the nodes in the order that
they are popped from the stack.

Output the DFS trees of the second DFS as the strongly
connected components.

Kosajaru’s algorithm

Perform a DFS on G, starting
from an arbitrary nodes s.

Add the nodes that the DFS I \ /

tree reaches to a stack.

e A node is added to the
stack when the DFS for that
node is completed.

Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

Output the DFS trees of the
second DFS as the strongly
connected components.

Kosajaru’s algorithm

Perform a DFS on G, starting
from an arbitrary nodes s.

Add the nodes that the DFS
tree reaches to a stack.

e A node is added to the
stack when the DFS for that
node is completed.

Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

Output the DFS trees of the
second DFS as the strongly
connected components.

Kosajaru’s algorithm

Perform a DFS on G, starting
from an arbitrary nodes s.

Add the nodes that the DFS
tree reaches to a stack.

e A node is added to the
stack when the DFS for that
node is completed.

Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

Output the DFS trees of the
second DFS as the strongly
connected components.

Kosajaru’s algorithm

Perform a DFS on G, starting
from an arbitrary nodes s.

Add the nodes that the DFS
tree reaches to a stack.

e A node is added to the
stack when the DFS for that
node is completed.

Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

Output the DFS trees of the
second DFS as the strongly
connected components.

Kosajaru’s algorithm

Perform a DFS on G, starting
from an arbitrary nodes s.

Add the nodes that the DFS
tree reaches to a stack.

e A node is added to the
stack when the DFS for that
node is completed.

Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

Output the DFS trees of the
second DFS as the strongly
connected components.

Kosajaru’s algorithm

Perform a DFS on G, starting
from an arbitrary nodes s.

Add the nodes that the DFS
tree reaches to a stack.

e A node is added to the
stack when the DFS for that
node is completed.

Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

Output the DFS trees of the
second DFS as the strongly
connected components.

Kosajaru’s algorithm

Perform a DFS on G, starting
from an arbitrary nodes s.

Add the nodes that the DFS
tree reaches to a stack.

e A node is added to the
stack when the DFS for that
node is completed.

Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

Output the DFS trees of the
second DFS as the strongly
connected components.

Kosajaru’s algorithm

Perform a DFS on G, starting
from an arbitrary nodes s.

Add the nodes that the DFS
tree reaches to a stack.

e A node is added to the
stack when the DFS for that
node is completed.

Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

Output the DFS trees of the
second DFS as the strongly
connected components.

Kosajaru’s algorithm

Perform a DFS on G, starting
from an arbitrary nodes s.

Add the nodes that the DFS
tree reaches to a stack.

e A node is added to the
stack when the DFS for that
node is completed.

Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

Output the DFS trees of the
second DFS as the strongly
connected components.

Kosajaru’s algorithm

Perform a DFS on G, starting
from an arbitrary nodes s.

Add the nodes that the DFS
tree reaches to a stack.

e A node is added to the
stack when the DFS for that
node is completed.

Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

Output the DFS trees of the
second DFS as the strongly
connected components.

Kosajaru’s algorithm

Perform a DFS on G, starting
from an arbitrary nodes s.

Add the nodes that the DFS
tree reaches to a stack.

e A node is added to the
stack when the DFS for that
node is completed.

Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

Output the DFS trees of the
second DFS as the strongly
connected components.

Kosajaru’s algorithm

Perform a DFS on G, starting
from an arbitrary nodes s.

Add the nodes that the DFS
tree reaches to a stack.

e A node is added to the
stack when the DFS for that
node is completed.

Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

Output the DFS trees of the
second DFS as the strongly
connected components.

Kosajaru’s algorithm

Perform a DFS on G, starting
from an arbitrary nodes s.

Add the nodes that the DFS
tree reaches to a stack.

e A node is added to the
stack when the DFS for that
node is completed.

Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

Output the DFS trees of the
second DFS as the strongly
connected components.

Kosajaru’s algorithm

Perform a DFS on G, starting
from an arbitrary nodes s.

Add the nodes that the DFS
tree reaches to a stack.

e A node is added to the
stack when the DFS for that
node is completed.

Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

Output the DFS trees of the
second DFS as the strongly
connected components.

Kosajaru’s algorithm

Perform a DFS on G, starting
from an arbitrary nodes s.

Add the nodes that the DFS
tree reaches to a stack.

e A node is added to the
stack when the DFS for that
node is completed.

Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

Output the DFS trees of the
second DFS as the strongly
connected components.

Kosajaru’s algorithm

Perform a DFS on G, starting
from an arbitrary nodes s.

Add the nodes that the DFS
tree reaches to a stack.

e A node is added to the
stack when the DFS for that
node is completed.

Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

Output the DFS trees of the
second DFS as the strongly
connected components.

Kosajaru’s algorithm

Perform a DFS on G, starting
from an arbitrary nodes s.

Add the nodes that the DFS
tree reaches to a stack.

e A node is added to the
stack when the DFS for that
node is completed.

Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

Output the DFS trees of the
second DFS as the strongly
connected components.

Kosajaru’s algorithm

Perform a DFS on G, starting
from an arbitrary nodes s.

Add the nodes that the DFS
tree reaches to a stack.

e A node is added to the
stack when the DFS for that
node is completed.

Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

Output the DFS trees of the
second DFS as the strongly
connected components.

Running time

Running time

e \We perform DFS twice.

* The running time is O(m+n).

Correctness

e Next lecture.

