Advanced Algorithmic Techniques (COMP523)

Graph Algorithms \#2

Recap and plan

Recap and plan

- Last lecture:
- Graph definitions
- Graph representations
- Depth-First Search, Breadth-First Search

Recap and plan

- Last lecture:
- Graph definitions
- Graph representations
- Depth-First Search, Breadth-First Search
- This lecture:
- Testing bipartiteness
- DFS and BFS on directed graphs
- Testing connectivity

Bipartite graphs

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite if any only if it can be partitioned into sets A and B such that each edge has one endpoint in A and one endpoint in B.
- Often, we write $G=(A \cup B, E)$.

Alternative definitions

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite if any only if its nodes can be coloured with 2 colours (say red and green), such that every vertex has one red endpoint and one green endpoint.
- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite if any only if it does not contain any cycles of odd length.

No odd cycles

No odd cycles

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite if any only if it does not contain any cycles of odd length.

No odd cycles

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite if any only if it does not contain any cycles of odd length.
- => Assume that G is bipartite

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite if any only if it does not contain any cycles of odd length.
- => Assume that G is bipartite
- Suppose that G does contain an odd cycle (proof by contradiction), C $=u_{1} u_{2} u_{3} \ldots u_{n} u$ for some u in A (wlog), or alternatively, for some u that is red.

No odd cycles

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite if any only if it does not contain any cycles of odd length.
- => Assume that G is bipartite
- Suppose that G does contain an odd cycle (proof by contradiction), C $=u_{1} u_{2} u_{3} \ldots u_{n} u$ for some u in $A(w l o g)$, or alternatively, for some u that is red.
- Because G is bipartite, u_{2} must be green, and then u_{3} must be red, and so on.

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite if any only if it does not contain any cycles of odd length.
- => Assume that G is bipartite
- Suppose that G does contain an odd cycle (proof by contradiction), C $=u_{1} u_{2} u_{3} \ldots u_{n} u$ for some u in A (wlog), or alternatively, for some u that is red.
- Because G is bipartite, u_{2} must be green, and then u_{3} must be red, and so on.
- Generally, we observe that for all k in $\{1,2, \ldots, n\}, u_{k}$ is red if k is odd and green if k is even.

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite if any only if it does not contain any cycles of odd length.
- => Assume that G is bipartite
- Suppose that G does contain an odd cycle (proof by contradiction), C $=u_{1} u_{2} u_{3} \ldots u_{n} u$ for some u in A (wlog), or alternatively, for some u that is red.
- Because G is bipartite, u_{2} must be green, and then u_{3} must be red, and so on.
- Generally, we observe that for all k in $\{1,2, \ldots, n\}, u_{k}$ is red if k is odd and green if k is even.
- By assumption, n is odd, so it must be red. But then u cannot be red, because G is bipartite.

Alternative definitions

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite if any only if its nodes can be coloured with 2 colours (say red and green), such that every vertex has one red endpoint and one green endpoint.
- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite if any only if it does not contain any cycles of odd length.
- Sometimes, these alternatives definitions are also called "characterisations".

Testing bipartiteness

Testing bipartiteness

- Given a graph $G=(V, E)$, decide if it is bipartite or not.

Testing bipartiteness

- Given a graph $G=(V, E)$, decide if it is bipartite or not.
- Given a a graph $G=(V, E)$ decide if it is 2-colourable or not.

Testing bipartiteness

- Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, decide if it is bipartite or not.
- Given a a graph $G=(V, E)$ decide if it is 2-colourable or not.
- Given a a graph $G=(V, E)$ decide if it is contains cycles of odd length or not.

Colouring the nodes

Colouring the nodes

- Does this remind you of something?
- It is essentially BFS!
- We label the nodes of level 1 red, the nodes of level 2 green, and so on.
- Implementation:
- Add a check for odd/even and assign a colour accordingly.
- In the end, check all edges to see if they have endpoints of the same colour.

Breadth-First Search Pseudocode

```
Algorithm BFS(G,s)
Initialise empty list Lo
Initialise colour list C
Insert s into Lo
Set C[s] = red
Set i=0
While Li is not empty
    Initialise empty list Li+1
    for each node v in Li
    for all edges e incident to v
            if edge e is unexplored
            let w be the other endpoint of e
            if node w is unexplored
                label e as discovery edge
                insert w into Li+1
                If i+1 is odd, set C[w] = red, else set C[w] = green
            else
                label e as cross edge
i=i+1
For all edges \(e=(u, v)\) in \(G\)
if \(C[u]=C[v]\) return "not bipartite"
Return "bipartite"
```


Running time

Running time

- What did we add?

Running time

- What did we add?
- A colour assignment for the starting node.

Running time

- What did we add?
- A colour assignment for the starting node.
- An odd/even check and a colour assignment for each node in the loop.

Running time

- What did we add?
- A colour assignment for the starting node.
- An odd/even check and a colour assignment for each node in the loop.
- An extra loop for checking the edges of their graph for the colours of their endpoints.

Running time

- What did we add?
- A colour assignment for the starting node.
- An odd/even check and a colour assignment for each node in the loop.
- An extra loop for checking the edges of their graph for the colours of their endpoints.
- How much more do we "pay" (asymptotically)?

Running time

- What did we add?
- A colour assignment for the starting node.
- An odd/even check and a colour assignment for each node in the loop.
- An extra loop for checking the edges of their graph for the colours of their endpoints.
- How much more do we "pay" (asymptotically)?
- Nothing!

Running time

- What did we add?
- A colour assignment for the starting node.
- An odd/even check and a colour assignment for each node in the loop.
- An extra loop for checking the edges of their graph for the colours of their endpoints.
- How much more do we "pay" (asymptotically)?
- Nothing!
- Running time $\mathbf{O}(\mathrm{m}+\mathrm{n})$.

Correctness

- We started at an arbitrary node s.
- Maybe we were lucky / unlucky?

Properties of BFS

- For simplicity, assume that the graph is connected.
- The traversal visits all vertices of the graph.
- The discovery edges form a spanning tree.
- The path of the spanning tree from s to a node \mathbf{v} at level i has i edges, and this is the shortest path.
- If $\mathbf{e}=(\mathbf{u}, \mathbf{v})$ is a cross edge, then the \mathbf{u} and \mathbf{v} differ by at most one level.

Properties of BFS

- If $\mathbf{e}=(\mathbf{u}, \mathbf{v})$ is a cross edge, then the \mathbf{u} and \mathbf{v} differ by at most one level.
- If $\mathbf{e}=(\mathbf{u}, \mathbf{v})$ is a discovery edge, then the \mathbf{u} and \mathbf{v} differ by at most one level.

Correctness

Correctness

- Suppose that G is bipartite. Then, all cycles must be of even length.

Correctness

- Suppose that G is bipartite. Then, all cycles must be of even length.
- Suppose to the contrary that the algorithm returns "not bipartite".

Correctness

- Suppose that G is bipartite. Then, all cycles must be of even length.
- Suppose to the contrary that the algorithm returns "not bipartite".
- This means that it has found an edge $e=(x, y)$ with endpoints of the same colour.

Correctness

- Suppose that G is bipartite. Then, all cycles must be of even length.
- Suppose to the contrary that the algorithm returns "not bipartite".
- This means that it has found an edge $e=(x, y)$ with endpoints of the same colour.
- Since the endpoints of any edge can not differ by more than one layer and layers have alternating colours, x and y must be in the same layer.

Correctness

- Consider the lowest common ancestor z of x and y in the BFS tree.

Correctness

- Consider the lowest common ancestor z of x and y in the BFS tree.
- Let L_{i} be the level of z and let L_{j} be the level of x and y

Correctness

- Consider the lowest common ancestor z of x and y in the BFS tree.
- Let L_{i} be the level of z and let L_{j} be the level of x and y
- Consider the cycle ($z \ldots x$), (x,y), (y ... z).

Correctness

- Consider the lowest common ancestor z of x and y in the BFS tree.
- Let L_{i} be the level of z and let L_{j} be the level of x and y
- Consider the cycle ($z \ldots x$), (x,y), (y ... z).
- Length: (j-i) + 1 + (j-i) (odd)

Correctness

- Consider the lowest common ancestor z of x and y in the BFS tree.
- Let L_{i} be the level of z and let L_{j} be the level of x and y
- Consider the cycle ($z \ldots x$), (x, y), (y ... z).

- Length: $(\mathrm{j}-\mathrm{i})+1+(\mathrm{j}-\mathrm{i})(o d d)$
- Contradiction!

Correctness

Correctness

- Suppose that G is not bipartite. Then, it must contain a cycle of odd length.

Correctness

- Suppose that G is not bipartite. Then, it must contain a cycle of odd length.
- Suppose to the contrary that the algorithm returns "bipartite".

Correctness

- Suppose that G is not bipartite. Then, it must contain a cycle of odd length.
- Suppose to the contrary that the algorithm returns "bipartite".
- This means that it has not found any edge $e=(x, y)$ with endpoints of the same colour.

Correctness

- Suppose that G is not bipartite. Then, it must contain a cycle of odd length.
- Suppose to the contrary that the algorithm returns "bipartite".
- This means that it has not found any edge $e=(x, y)$ with endpoints of the same colour.
- This also obviously means that there is no edge with endpoints in the same layer.

Correctness

- Suppose that G is not bipartite. Then, it must contain a cycle of odd length.
- Suppose to the contrary that the algorithm returns "bipartite".
- This means that it has not found any edge $e=(x, y)$ with endpoints of the same colour.
- This also obviously means that there is no edge with endpoints in the same layer.
- By the earlier discussion, all edges must have endpoints that lie in consecutive layers.

Correctness

- Suppose that G is not bipartite. Then, it must contain a cycle of odd length.
- Suppose to the contrary that the algorithm returns "bipartite".
- This means that it has not found any edge $e=(x, y)$ with endpoints of the same colour.
- This also obviously means that there is no edge with endpoints in the same layer.
- By the earlier discussion, all edges must have endpoints that lie in consecutive layers.
- Take any cycle (z, $\ldots, z)$. Since for every edge in this cycle there is a change of layer (from j to $j+1$ or from $j+1$ to j), the cycle must have even length.

Correctness

- Suppose that G is not bipartite. Then, it must contain a cycle of odd length.
- Suppose to the contrary that the algorithm returns "bipartite".
- This means that it has not found any edge $e=(x, y)$ with endpoints of the same colour.
- This also obviously means that there is no edge with endpoints in the same layer.
- By the earlier discussion, all edges must have endpoints that lie in consecutive layers.
- Take any cycle (z, \ldots, z). Since for every edge in this cycle there is a change of layer (from j to $j+1$ or from $j+1$ to j), the cycle must have even length.
- Contradiction!

Directed graphs

- Nodes are arranged as a list, each node points to the neighbours.
- For directed graphs, the node points in two directions, for in-degree and for out-degree.

DFS and BFS on directed graphs

- Very similar to their version on undirected graphs.
- When we are at a node and we examine its neighbours, a neighbour is now only a node that we can reach with a directed edge.
- The running time is still $O(n+m)$.

Breadth-First Search

Connectivity

- What BFS is computing is the set of nodes t such that there is a path from s to t.
- A path from s to t does not mean that there is path from t to s.
- (Weak) connectivity: If we ignored the directions for all edges, there would a path from any node to any node.
- Strong connectivity: For every two nodes u and v, there is a path from u to v and a path from v to u.
- Question: Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, is it strongly connected?

Mutual reachability

- Two nodes u and v are mutually reachable, if there is path from u to v and a path from v to u in G.
- Strong connectivity: For every pair of nodes u and v, these nodes are mutually reachable.
- Transitivity: If u and v are mutually reachable and v and w are mutually reachable, then u and w are mutually reachable.

Testing strong connectivity

Testing strong connectivity

- Define the reverse graph Grev, in which the nodes are the same and the edges are the same with reversed directions.

Testing strong connectivity

- Define the reverse graph Grev, in which the nodes are the same and the edges are the same with reversed directions.
- Pick any node s in V and run $B F S(G, s)$ and $B F S(G r e v, s)$.

Testing strong connectivity

- Define the reverse graph Grev, in which the nodes are the same and the edges are the same with reversed directions.
- Pick any node s in V and run BFS(G,s) and BFS(Grev,s).
- If one of the two searches does not reach every node, then the graph is definitely not strongly connected.

Testing strong connectivity

- Define the reverse graph Grev, in which the nodes are the same and the edges are the same with reversed directions.
- Pick any node s in V and run $B F S(G, s)$ and $B F S(G r e v, s)$.
- If one of the two searches does not reach every node, then the graph is definitely not strongly connected.
- Assume that both searches reach every node. This means that there is a path from s to any node u and a path from any node u to s.

Testing strong connectivity

- Define the reverse graph Grev, in which the nodes are the same and the edges are the same with reversed directions.
- Pick any node s in V and run $B F S(G, s)$ and $B F S(G r e v, s)$.
- If one of the two searches does not reach every node, then the graph is definitely not strongly connected.
- Assume that both searches reach every node. This means that there is a path from s to any node u and a path from any node u to s.
- For any node u, s and u are mutually reachable.

Testing strong connectivity

- Define the reverse graph Grev, in which the nodes are the same and the edges are the same with reversed directions.
- Pick any node s in V and run $B F S(G, s)$ and $B F S(G r e v, s)$.
- If one of the two searches does not reach every node, then the graph is definitely not strongly connected.
- Assume that both searches reach every node. This means that there is a path from s to any node u and a path from any node u to s.
- For any node u, s and u are mutually reachable.
- Pick any other node v . Since s and v are also mutually reachable, by transitivity, v and u are mutually reachable and the graph is strongly connected.

Connected component

- A connected component of an undirected graph G is subgraph such that any two nodes are connected via some path.

Connected component

- A connected component of an undirected graph G is subgraph such that any two nodes are connected via some path.
- A strongly connected component of a directed graph G is subgraph such that any two nodes are mutually reachable.

Strongly connected components

- How do we find all strongly connected components of a graph G?
- We can run the "forward" and "backward" BFS for a node s and find the set of nodes that are mutually reachable from s.
- This is the strongly connected component of s .
- But BFS might produce different connected components, depending on how we visit the nodes.
- We need a consistent way of visiting them in the "forward" and in the "backward" pass.

Kosajaru's algorithm

Kosajaru's algorithm

- Perform a DFS on G, starting from an arbitrary nodes s.
- Add the nodes that the DFS tree reaches to a stack.
- A node is added to the stack when the DFS for that node is completed.
- Perform a DFS on Grev, visiting the nodes in the order that they are popped from the stack.
- Output the DFS trees of the second DFS as the strongly connected components.

Kosajaru's algorithm

- Perform a DFS on G, starting from an arbitrary nodes s.
- Add the nodes that the DFS tree reaches to a stack.
- A node is added to the stack when the DFS for that node is completed.
- Perform a DFS on Grev, visiting the nodes in the order that they are popped from the stack.
- Output the DFS trees of the second DFS as the strongly connected components.

Kosajaru's algorithm

- Perform a DFS on G, starting from an arbitrary nodes s.
- Add the nodes that the DFS tree reaches to a stack.
- A node is added to the stack when the DFS for that node is completed.
- Perform a DFS on Grev, visiting the nodes in the order that they are popped from the stack.
- Output the DFS trees of the second DFS as the strongly connected components.

Kosajaru's algorithm

- Perform a DFS on G, starting from an arbitrary nodes s.
- Add the nodes that the DFS tree reaches to a stack.
- A node is added to the stack when the DFS for that node is completed.
- Perform a DFS on Grev, visiting the nodes in the order that they are popped from the stack.
- Output the DFS trees of the second DFS as the strongly connected components.

Kosajaru's algorithm

- Perform a DFS on G, starting from an arbitrary nodes s.
- Add the nodes that the DFS tree reaches to a stack.
- A node is added to the stack when the DFS for that node is completed.
- Perform a DFS on Grev, visiting the nodes in the order that they are popped from the stack.
- Output the DFS trees of the second DFS as the strongly connected components.

Kosajaru's algorithm

- Perform a DFS on G, starting from an arbitrary nodes s.
- Add the nodes that the DFS tree reaches to a stack.
- A node is added to the stack when the DFS for that node is completed.
- Perform a DFS on Grev, visiting the nodes in the order that they are popped from the stack.
- Output the DFS trees of the second DFS as the strongly connected components.

Kosajaru's algorithm

- Perform a DFS on G, starting from an arbitrary nodes s.
- Add the nodes that the DFS tree reaches to a stack.
- A node is added to the stack when the DFS for that node is completed.
- Perform a DFS on Grev, visiting the nodes in the order that they are popped from the stack.
- Output the DFS trees of the second DFS as the strongly connected components.

Kosajaru's algorithm

- Perform a DFS on G, starting from an arbitrary nodes s.
- Add the nodes that the DFS tree reaches to a stack.
- A node is added to the stack when the DFS for that node is completed.
- Perform a DFS on Grev, visiting the nodes in the order that they are popped from the stack.
- Output the DFS trees of the second DFS as the strongly connected components.

Kosajaru's algorithm

- Perform a DFS on G, starting from an arbitrary nodes s.
- Add the nodes that the DFS tree reaches to a stack.
- A node is added to the stack when the DFS for that node is completed.
- Perform a DFS on Grev, visiting the nodes in the order that they are popped from the stack.
- Output the DFS trees of the second DFS as the strongly connected components.

Kosajaru's algorithm

- Perform a DFS on G, starting from an arbitrary nodes s.
- Add the nodes that the DFS tree reaches to a stack.
- A node is added to the stack when the DFS for that node is completed.
- Perform a DFS on Grev, visiting the nodes in the order that they are popped from the stack.
- Output the DFS trees of the second DFS as the strongly connected components.

Kosajaru's algorithm

- Perform a DFS on G, starting from an arbitrary nodes s.
- Add the nodes that the DFS tree reaches to a stack.
- A node is added to the stack when the DFS for that node is completed.
- Perform a DFS on Grev, visiting the nodes in the order that they are popped from the stack.
- Output the DFS trees of the second DFS as the strongly connected components.

Kosajaru's algorithm

- Perform a DFS on G, starting from an arbitrary nodes s.
- Add the nodes that the DFS tree reaches to a stack.
- A node is added to the stack when the DFS for that node is completed.
- Perform a DFS on Grev, visiting the nodes in the order that they are popped from the stack.
- Output the DFS trees of the second DFS as the strongly connected components.

Kosajaru's algorithm

- Perform a DFS on G, starting from an arbitrary nodes s.
- Add the nodes that the DFS tree reaches to a stack.
- A node is added to the stack when the DFS for that node is completed.
- Perform a DFS on Grev, visiting the nodes in the order that they are popped from the stack.
- Output the DFS trees of the second DFS as the strongly connected components.

Kosajaru's algorithm

- Perform a DFS on G, starting from an arbitrary nodes s.
- Add the nodes that the DFS tree reaches to a stack.
- A node is added to the stack when the DFS for that node is completed.
- Perform a DFS on Grev, visiting the nodes in the order that they are popped from the stack.
- Output the DFS trees of the second DFS as the strongly connected components.

Kosajaru's algorithm

- Perform a DFS on G, starting from an arbitrary nodes s.
- Add the nodes that the DFS tree reaches to a stack.
- A node is added to the stack when the DFS for that node is completed.
- Perform a DFS on Grev, visiting the nodes in the order that they are popped from the stack.
- Output the DFS trees of the second DFS as the strongly connected components.

Kosajaru's algorithm

- Perform a DFS on G, starting from an arbitrary nodes s.
- Add the nodes that the DFS tree reaches to a stack.
- A node is added to the stack when the DFS for that node is completed.
- Perform a DFS on Grev, visiting the nodes in the order that they are popped from the stack.
- Output the DFS trees of the second DFS as the strongly connected components.

Kosajaru's algorithm

- Perform a DFS on G, starting from an arbitrary nodes s.
- Add the nodes that the DFS tree reaches to a stack.
- A node is added to the stack when the DFS for that node is completed.
- Perform a DFS on Grev, visiting the nodes in the order that they are popped from the stack.
- Output the DFS trees of the second DFS as the strongly connected components.

Kosajaru's algorithm

- Perform a DFS on G, starting from an arbitrary nodes s.
- Add the nodes that the DFS tree reaches to a stack.
- A node is added to the stack when the DFS for that node is completed.
- Perform a DFS on Grev, visiting the nodes in the order that they are popped from the stack.
- Output the DFS trees of the second DFS as the strongly connected components.

Kosajaru's algorithm

- Perform a DFS on G, starting from an arbitrary nodes s.
- Add the nodes that the DFS tree reaches to a stack.
- A node is added to the stack when the DFS for that node is completed.
- Perform a DFS on Grev, visiting the nodes in the order that they are popped from the stack.
- Output the DFS trees of the second DFS as the strongly connected components.

Running time

Running time

- We perform DFS twice.
- The running time is $\mathrm{O}(\mathrm{m}+\mathrm{n})$.

Correctness

- Next lecture.

