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Recap and plan

e Last lecture:

e Graph definitions

e Graph representations

e Depth-First Search, Breadth-First Search
* This lecture:

e Testing bipartiteness

e DFS and BFS on directed graphs

e Testing connectivity



Bipartite graphs

A graph G=(V,E) is bipartite if any only if it can be
partitioned into sets A and B such that each edge has one
endpoint in A and one endpoint in B.

e Often, we write G=(A U B,E).




Alternative definitions

A graph G=(V,E) is bipartite if any only if its nodes can be
coloured with 2 colours (say red and green), such that

every vertex has one red endpoint and one green
endpoint.

A graph G=(V,E) is bipartite if any only if it does not
contain any cycles of odd length.
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No odd cycles

* A graph G=(V,E) is bipartite if any only if it does not contain any cycles of
odd length.

* => Assume that G is bipartite

e Suppose that G does contain an odd cycle (proof by contradiction), C
= U1 U2 U3 ... Un U for some u in A (wlog), or alternatively, for some u
that is red.

 Because G is bipartite, u> must be green, and then uz must be red,
and so on.

e Generally, we observe that for all k in {1,2, ... ,n}, uxis red if k is odd
and green if k is even.

By assumption, n is odd, so it must be red. But then u cannot be red,
because G is bipartite.



Alternative definitions

A graph G=(V,E) is bipartite if any only if its nodes can be
coloured with 2 colours (say red and green), such that
every vertex has one red endpoint and one green
endpoint.

A graph G=(V,E) is bipartite if any only if it does not
contain any cycles of odd length.

e Sometimes, these alternatives definitions are also called
“characterisations”.
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Testing bipartiteness

e Given a graph G=(V,E), decide if it is bipartite or not.
e Given a a graph G=(V,E) decide if it is 2-colourable or not.

e Given a a graph G=(V,E) decide if it is contains cycles of
odd length or not.
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Colouring the nodes

* Does this remind you of something?
e |tis essentially BFS!

e \We label the nodes of level 1 red, the nodes of level 2
green, and so on.

* |mplementation:
 Add a check for odd/even and assign a colour accordingly.

* In the end, check all edges to see if they have endpoints of
the same colour.



Breadth-First Search
Pseudocode

Algorithm BFS(G,s)

Initialise empty list Lo
Initialise colour list C
Insert s into Lo

Set C[s] = red

Set i=0
While Liis not empty
Initialise empty list Li.1
for each node v in L;
for all edges e incident to v
if edge e is unexplored
let w be the other endpoint of e
if node w is unexplored
label e as discovery edge
insert w into Li:1

If i+1 is odd, set C[w] = red, else set C[w] = green
else

label e as cross edge
| =i+1

For all edges e=(u,v) in G
if C[u] = C[v] return “not bipartite”
Return “bipartite”
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Running time

 What did we add?
e A colour assignment for the starting node.

* An odd/even check and a colour assignment for each node in the
loop.

* An extra loop for checking the edges of their graph for the colours of
their endpoints.

e How much more do we “pay” (asymptotically)?
* Nothing!

* Running time O(m+n).



Correctness

e \We started at an arbitrary node s.

e Maybe we were lucky / unlucky?



Properties of BFS

For simplicity, assume that the graph is connected.
The traversal visits all vertices of the graph.
The discovery edges form a spanning tree.

The path of the spanning tree from s to a node v at level /
has / edges, and this is the shortest path.

If e=(u,V) is a cross edge, then the u and v differ by at
most one level.



Properties of BFS

e |f e=(u,v)is a cross edge, then the u and v differ by at
most one level.

e If e=(u,v) is a discovery edge, then the u and v differ by at
most one level.



Correctness



Correctness

e Suppose that G is bipartite. Then, all cycles must be of even
length.



Correctness

e Suppose that G is bipartite. Then, all cycles must be of even
length.

e Suppose to the contrary that the algorithm returns “not bipartite”.



Correctness

e Suppose that G is bipartite. Then, all cycles must be of even
length.

e Suppose to the contrary that the algorithm returns “not bipartite”.

e This means that it has found an edge e=(x,y) with endpoints of
the same colour.



Correctness

e Suppose that G is bipartite. Then, all cycles must be of even
length.

e Suppose to the contrary that the algorithm returns “not bipartite”.

e This means that it has found an edge e=(x,y) with endpoints of
the same colour.

* Since the endpoints of any edge can not differ by more than

one layer and layers have alternating colours, x and y must be
In the same layer.



Correctness
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Correctness

Consider the lowest common
ancestor z of x and y in the
BFS tree.

Let Li be the level of z and let L;
be the level of x and y

Consider the cycle (z ... x),
(X.y), (y ... 2).

Length: (j-i) + 1 + (j-i) (odd)

Contradiction!
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Correctness

* Suppose that G is not bipartite. Then, it must contain a cycle of odd length.
* Suppose to the contrary that the algorithm returns “bipartite”.

* This means that it has not found any edge e=(x,y) with endpoints of the same
colour.

* This also obviously means that there is no edge with endpoints in the same
layer.

* By the earlier discussion, all edges must have endpoints that lie in consecutive
layers.

* Take any cycle (z, ..., z). Since for every edge in this cycle there is a change of
layer (fromj to j+7 or from j+7 to ), the cycle must have even length.

e Contradiction!



Directed graphs

e Nodes are arranged as a list, each node points to the
neighbours.

e For directed graphs, the node points in two directions,
for in-degree and for out-degree.




DFS and BFS on directed graphs

e Very similar to their version on undirected graphs.

e \WWhen we are at a node and we examine its neighbours, a
neighbour is now only a node that we can reach with a
directed edge.

* The running time is still O(n+m).
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Connectivity

What BFS is computing is the set of nodes t such that there is
a path from s to t.

A path from s to t does not mean that there is path from t to s.

(Weak) connectivity: If we ignored the directions for all edges,
there would a path from any node to any node.

Strong connectivity: For every two nodes u and v, there is a
path from u to v and a path from v to u.

Question: Given a graph G=(V,E), is it strongly connected?



Mutual reachability

e Two nodes u and v are mutually reachable, if there is path
from u to v and a path from v to u in G.

e Strong connectivity: For every pair of nodes u and v,
these nodes are mutually reachable.

e Transitivity: If u and v are mutually reachable and v and w
are mutually reachable, then u and w are mutually
reachable.



Testing strong connectivity
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Testing strong connectivity

e Define the reverse graph Grev, in which the nodes are the same and the
edges are the same with reversed directions.

 Pick any node s in V and run BFS(G,s) and BFS(Grev,s).

* If one of the two searches does not reach every node, then the graph is
definitely not strongly connected.

e Assume that both searches reach every node. This means that there is a
path from s to any node u and a path from any node u to s.

e For any node u, s and u are mutually reachable.

* Pick any other node v. Since s and v are also mutually reachable, by
transitivity, v and u are mutually reachable and the graph is strongly
connected.



Connected component

* A connected component of an undirected graph G is
subgraph such that any two nodes are connected via
some path.
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Connected component

* A connected component of an undirected graph G is

subgraph such that any two nodes are connected via
some path.

* A strongly connected component of a directed graph G

Is subgraph such that any two nodes are mutually
reachable.



Strongly connected
components

* How do we find all strongly connected components of a
graph G?

* We can run the “forward” and “backward” BFS for a node s
and find the set of nodes that are mutually reachable from s.

* This is the strongly connected component of s.

 But BFS might produce different connected components,
depending on how we visit the nodes.

* \We need a consistent way of visiting them in the “forward”
and in the “backward” pass.
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Perform a DFS on G, starting from an arbitrary nodes s.
Add the nodes that the DFS tree reaches to a stack.
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Perform a DFS on Grev, visiting the nodes in the order that
they are popped from the stack.

Output the DFS trees of the second DFS as the strongly
connected components.
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Perform a DFS on G, starting
from an arbitrary nodes s.

Add the nodes that the DFS
tree reaches to a stack.

e A node is added to the
stack when the DFS for that
node is completed.

Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

Output the DFS trees of the
second DFS as the strongly
connected components.
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Running time

e \We perform DFS twice.

* The running time is O(m+n).



Correctness

e Next lecture.



