
Advanced Algorithmic Techniques
(COMP523)

Graph Algorithms #3

Recap and plan
• Last lecture:

• Testing bipartiteness

• DFS and BFS on directed graphs

• Testing connectivity

• This lecture:

• Directed Acyclic Graphs (DAG)

• Topological Ordering

• Finding strongly connected components

Directed Acyclic Graphs

• A directed acyclic graph (DAG) G is a graph that does not
have any cycles.

1

2

0

3

4

1

2

0

3

4

not a DAG a DAG

Properties on DAGs

Properties on DAGs

• They appear quite often in many applications.

Properties on DAGs

• They appear quite often in many applications.

• Example - prerequisite modules: To take module A you
need to have taken module B and module C.

Properties on DAGs

• They appear quite often in many applications.

• Example - prerequisite modules: To take module A you
need to have taken module B and module C.

• If the module prerequisite relation has a cycle, then it is
impossible to get a degree!

Topological Ordering
• Given a directed graph G, a topological ordering of G is

an ordering of the nodes u1, u2, … , un, such that for every
edge e=(ui, uj), it holds that i < j.

• Intuitively, a topological ordering orders the nodes in a
way such that all edges point “forward”.

1

2

0

3

4

1 0 2 3 4

Topological Ordering
implies DAG

Topological Ordering
implies DAG

• If graph G has a topological ordering, then G is a DAG.

Topological Ordering
implies DAG

• If graph G has a topological ordering, then G is a DAG.

• Suppose by contradiction that G has a topological ordering (u1, u2, … ,
un) but it also has a cycle C.

Topological Ordering
implies DAG

• If graph G has a topological ordering, then G is a DAG.

• Suppose by contradiction that G has a topological ordering (u1, u2, … ,
un) but it also has a cycle C.

• Let uj be the smallest element of C according to the topological ordering.

Topological Ordering
implies DAG

• If graph G has a topological ordering, then G is a DAG.

• Suppose by contradiction that G has a topological ordering (u1, u2, … ,
un) but it also has a cycle C.

• Let uj be the smallest element of C according to the topological ordering.

• Let ui be its predecessor in the cycle (i.e., there is an edge e=(ui, uj)).

Topological Ordering
implies DAG

• If graph G has a topological ordering, then G is a DAG.

• Suppose by contradiction that G has a topological ordering (u1, u2, … ,
un) but it also has a cycle C.

• Let uj be the smallest element of C according to the topological ordering.

• Let ui be its predecessor in the cycle (i.e., there is an edge e=(ui, uj)).

• ui must appear before ui in the topological order, by the presence of this
edge.

Topological Ordering
implies DAG

• If graph G has a topological ordering, then G is a DAG.

• Suppose by contradiction that G has a topological ordering (u1, u2, … ,
un) but it also has a cycle C.

• Let uj be the smallest element of C according to the topological ordering.

• Let ui be its predecessor in the cycle (i.e., there is an edge e=(ui, uj)).

• ui must appear before ui in the topological order, by the presence of this
edge.

• This contradicts the fact that uj was the smallest element of C according
to the topological ordering.

Does DAG imply topological
ordering?

Does DAG imply topological
ordering?

• TO => DAG was proved via proof-by-contradiction.

Does DAG imply topological
ordering?

• TO => DAG was proved via proof-by-contradiction.

• DAG => TO will be proved via “proof-by-algorithm”.

Does DAG imply topological
ordering?

• TO => DAG was proved via proof-by-contradiction.

• DAG => TO will be proved via “proof-by-algorithm”.

• We will design an efficient algorithm that, given a DAG G,
finds a topological ordering of G.

How do we start?
1

2

0

3

4

1 0 2 3 4

How do we start?
1

2

0

3

4

1 0 2 3 4

• Could we have started with anything other than node 1?

How do we start?
1

2

0

3

4

1 0 2 3 4

• Could we have started with anything other than node 1?

• The starting node must have no incoming edges!

How do we start?
1

2

0

3

4

1 0 2 3 4

• Could we have started with anything other than node 1?

• The starting node must have no incoming edges!

• Can we always find such a node?

Source node

Source node
• A source node is a node with no incoming edges.

Source node
• A source node is a node with no incoming edges.

• Lemma: Every DAG has at least one source node.

Source node
• A source node is a node with no incoming edges.

• Lemma: Every DAG has at least one source node.

• Proof by contradiction:

Source node
• A source node is a node with no incoming edges.

• Lemma: Every DAG has at least one source node.

• Proof by contradiction:

• Assume that every node has at least one incoming edge.

Source node
• A source node is a node with no incoming edges.

• Lemma: Every DAG has at least one source node.

• Proof by contradiction:

• Assume that every node has at least one incoming edge.

• Start from any node u and follow edges from u backwards.

Source node
• A source node is a node with no incoming edges.

• Lemma: Every DAG has at least one source node.

• Proof by contradiction:

• Assume that every node has at least one incoming edge.

• Start from any node u and follow edges from u backwards.

• Equivalently, we move to a neighbour of u in Grev.

Source node
• A source node is a node with no incoming edges.

• Lemma: Every DAG has at least one source node.

• Proof by contradiction:

• Assume that every node has at least one incoming edge.

• Start from any node u and follow edges from u backwards.

• Equivalently, we move to a neighbour of u in Grev.

• We can do that for every node, since by assumption there is no source.

Source node
• A source node is a node with no incoming edges.

• Lemma: Every DAG has at least one source node.

• Proof by contradiction:

• Assume that every node has at least one incoming edge.

• Start from any node u and follow edges from u backwards.

• Equivalently, we move to a neighbour of u in Grev.

• We can do that for every node, since by assumption there is no source.

• After at least n+1 steps, we will have visited the same node twice.

Source node
• A source node is a node with no incoming edges.

• Lemma: Every DAG has at least one source node.

• Proof by contradiction:

• Assume that every node has at least one incoming edge.

• Start from any node u and follow edges from u backwards.

• Equivalently, we move to a neighbour of u in Grev.

• We can do that for every node, since by assumption there is no source.

• After at least n+1 steps, we will have visited the same node twice.

• The graph has a cycle, therefore it can’t be a DAG. Contradiction!

Pictorially

Pictorially

Pictorially

Pictorially

Pictorially

…

Pictorially

…

Another simple fact

Another simple fact

• If we remove a node u and all its incident edges from a
DAG G, the resulting graph G’ is still a DAG.

Another simple fact

• If we remove a node u and all its incident edges from a
DAG G, the resulting graph G’ is still a DAG.

• If G’ had a cycle, the same cycle would be present in
G.

DAG implies topological
ordering

DAG implies topological
ordering

• Proof-by-induction:

DAG implies topological
ordering

• Proof-by-induction:

• Base Case: If the DAG has one or two nodes, it clearly has a topological ordering.

DAG implies topological
ordering

• Proof-by-induction:

• Base Case: If the DAG has one or two nodes, it clearly has a topological ordering.

• Inductive step: Assume that a DAG with up to k nodes has a topological ordering
(Inductive Hypothesis). We will prove that a DAG with k+1 nodes has a topological
ordering.

DAG implies topological
ordering

• Proof-by-induction:

• Base Case: If the DAG has one or two nodes, it clearly has a topological ordering.

• Inductive step: Assume that a DAG with up to k nodes has a topological ordering
(Inductive Hypothesis). We will prove that a DAG with k+1 nodes has a topological
ordering.

• By our lemma, there is at least one source node in G, and let u be such a node.

DAG implies topological
ordering

• Proof-by-induction:

• Base Case: If the DAG has one or two nodes, it clearly has a topological ordering.

• Inductive step: Assume that a DAG with up to k nodes has a topological ordering
(Inductive Hypothesis). We will prove that a DAG with k+1 nodes has a topological
ordering.

• By our lemma, there is at least one source node in G, and let u be such a node.

• Put u first in the topological ordering (safe, since u is a source).

DAG implies topological
ordering

• Proof-by-induction:

• Base Case: If the DAG has one or two nodes, it clearly has a topological ordering.

• Inductive step: Assume that a DAG with up to k nodes has a topological ordering
(Inductive Hypothesis). We will prove that a DAG with k+1 nodes has a topological
ordering.

• By our lemma, there is at least one source node in G, and let u be such a node.

• Put u first in the topological ordering (safe, since u is a source).

• Consider the graph G’, obtained by G if we remove u and its incident edges.

DAG implies topological
ordering

• Proof-by-induction:

• Base Case: If the DAG has one or two nodes, it clearly has a topological ordering.

• Inductive step: Assume that a DAG with up to k nodes has a topological ordering
(Inductive Hypothesis). We will prove that a DAG with k+1 nodes has a topological
ordering.

• By our lemma, there is at least one source node in G, and let u be such a node.

• Put u first in the topological ordering (safe, since u is a source).

• Consider the graph G’, obtained by G if we remove u and its incident edges.

• G’ is a DAG (by the simple fact) with k nodes.

DAG implies topological
ordering

• Proof-by-induction:

• Base Case: If the DAG has one or two nodes, it clearly has a topological ordering.

• Inductive step: Assume that a DAG with up to k nodes has a topological ordering
(Inductive Hypothesis). We will prove that a DAG with k+1 nodes has a topological
ordering.

• By our lemma, there is at least one source node in G, and let u be such a node.

• Put u first in the topological ordering (safe, since u is a source).

• Consider the graph G’, obtained by G if we remove u and its incident edges.

• G’ is a DAG (by the simple fact) with k nodes.

• It has a topological ordering by the induction hypothesis.

DAG implies topological
ordering

• Proof-by-induction:

• Base Case: If the DAG has one or two nodes, it clearly has a topological ordering.

• Inductive step: Assume that a DAG with up to k nodes has a topological ordering
(Inductive Hypothesis). We will prove that a DAG with k+1 nodes has a topological
ordering.

• By our lemma, there is at least one source node in G, and let u be such a node.

• Put u first in the topological ordering (safe, since u is a source).

• Consider the graph G’, obtained by G if we remove u and its incident edges.

• G’ is a DAG (by the simple fact) with k nodes.

• It has a topological ordering by the induction hypothesis.

• Append this ordering to u.

Where is the “proof-by-
algorithm”?

Where is the “proof-by-
algorithm”?

• We can turn that induction proof into an algorithm.

Where is the “proof-by-
algorithm”?

• We can turn that induction proof into an algorithm.

Algorithm TopologicalSort(G) 
 Find a source vertex u and put it first in the order. 
 Let G’=G-{u} 
 TopologicalSort(G’) 
 Append this order after u

Example

u2 u3

u5u6 u4

u7 u1

Example

u2 u3

u5u6 u4

u7 u1u1

Example

u2 u3

u5u6 u4

u7 u1

u1

Example

u2 u3

u5u6 u4

u7

u1

Example

u2 u3

u5u6 u4

u7

u1

u2

Example

u2 u3

u5u6 u4

u7

u1 u2

Example

u3

u5u6 u4

u7

u1 u2

Example

u3

u5u6 u4

u7

u1 u2

u3

Example

u3

u5u6 u4

u7

u1 u2 u3

Example

u5u6 u4

u7

u1 u2 u3

Example

u5u6 u4

u7

u1 u2 u3

u4

Example

u5u6 u4

u7

u1 u2 u3 u4

Example

u5u6

u7

u1 u2 u3 u4

Example

u5u6

u7

u1 u2 u3 u4

u5

Example

u5u6

u7

u1 u2 u3 u4 u5

Example

u6

u7

u1 u2 u3 u4 u5

Example

u6

u7

u1 u2 u3 u4 u5

u6

Example

u6

u7

u1 u2 u3 u4 u5 u6

Example

u7

u1 u2 u3 u4 u5 u6

Example

u7

u1 u2 u3 u4 u5 u6

u7

Example

u1 u2 u3 u4 u5 u6 u7

Running time

Running time
• We need to find a source u.

Running time
• We need to find a source u.

• We could check each node of the graph.

Running time
• We need to find a source u.

• We could check each node of the graph.

• We check n nodes in the first iteration, n-1 nodes in the
second, and so on…

Running time
• We need to find a source u.

• We could check each node of the graph.

• We check n nodes in the first iteration, n-1 nodes in the
second, and so on…

• What is the running time of this?

Running time
• We need to find a source u.

• We could check each node of the graph.

• We check n nodes in the first iteration, n-1 nodes in the
second, and so on…

• What is the running time of this?

• O(n2)

Running time
• We need to find a source u.

• We could check each node of the graph.

• We check n nodes in the first iteration, n-1 nodes in the
second, and so on…

• What is the running time of this?

• O(n2)

• Can we do better?

A faster algorithm
• We will be more efficient in the choice of sources.

• We will say that a node is active, if it has not been selected
(and therefore removed) as a source by the algorithm.

• We maintain two things:

• (a) For each node w, the number of incoming edges from
active nodes.

• (b) The set S of all active nodes that have no incoming
edges from other active nodes.

A faster algorithm
• In the beginning, all nodes are active and we can initialise (a) and (b)

via a pass through the graph (time O(m+n))

• In each iteration:

• We select a node u from the set S.

• We delete u.

• We go through all the neighbours w of u and we reduce their value
in (a) (i.e., number of incoming edges from active nodes) by 1.

• When the value of (a) for some node w goes to 0, w is added to
the set S.

Kosaraju’s algorithm

Kosaraju’s algorithm
• Perform a DFS on G, starting from an arbitrary nodes s.

• Add the nodes that the DFS tree reaches to a stack.

• A node is added to the stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting the nodes in the order that
they are popped from the stack.

• Output the DFS trees of the second DFS as the strongly
connected components.

Kosaraju’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

Kosaraju’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

0

Kosaraju’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

0

2

Kosaraju’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

0

2

1

Kosaraju’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

0

2

1

1

Kosaraju’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

0

2

1

1

2

Kosaraju’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

0

2

1

1

2

3

Kosaraju’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

0

2

1

1

2

3

4

Kosaraju’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

0

2

1

1

2

3

4

4

Kosaraju’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

0

2

1

1

2

3

4

4

3

Kosaraju’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

0

2

1

1

2

3

4

4

3

0

Kosaraju’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

1

2

4

3

0

Kosaraju’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

1

2

4

3

0

0

Kosaraju’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

1

2

4

3

0

0

1

Kosaraju’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

1

2

4

3

0

0

1

2

Kosaraju’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

1

2

4

3

0

0

1

2

3

Kosaraju’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

1

2

4

3

0

0

1

2

3

4

Kosaraju’s algorithm
• Perform a DFS on G, starting

from an arbitrary nodes s.

• Add the nodes that the DFS
tree reaches to a stack.

• A node is added to the
stack when the DFS for that
node is completed.

• Perform a DFS on Grev, visiting
the nodes in the order that they
are popped from the stack.

• Output the DFS trees of the
second DFS as the strongly
connected components.

1

2

0

3

4

1

2

4

3

0

0

1

2

3

4

Running time

Running time

• We perform DFS twice.

• The running time is O(m+n).

Correctness
• Define a meta-graph of the graph G, called the

component graph GSCC = (VSCC, ESCC)

• Suppose that G has strongly connected components
(SCCs) C1, C2 , … ,Ck , for some k.

• VSCC = {v1, v2, …, vk} contains a vertex for each SCC of G.

• There is an edge (vi , vj) in ESCC if G contains a directed
edge (x,y) for some x in Ci and some y in Cj (i.e., an edge
crossing two different components.

Example

1

2

0

3

4

A B

C

A B

C

Graph GComponent Graph GSCC

Simple but key lemma

Simple but key lemma
• Let C and C’ be distinct SCCs in a directed graph G. 

 Let u, v in C 
 Let u’,v’ in C’ 
Suppose that G contains a path from u to u’. (1)  
Then G cannot contain a path from v’ to v.

Simple but key lemma
• Let C and C’ be distinct SCCs in a directed graph G. 

 Let u, v in C 
 Let u’,v’ in C’ 
Suppose that G contains a path from u to u’. (1)  
Then G cannot contain a path from v’ to v.

• Proof (by contradiction):

Simple but key lemma
• Let C and C’ be distinct SCCs in a directed graph G. 

 Let u, v in C 
 Let u’,v’ in C’ 
Suppose that G contains a path from u to u’. (1)  
Then G cannot contain a path from v’ to v.

• Proof (by contradiction):

• Assume there is a path from v’ to v. (2)

Simple but key lemma
• Let C and C’ be distinct SCCs in a directed graph G. 

 Let u, v in C 
 Let u’,v’ in C’ 
Suppose that G contains a path from u to u’. (1)  
Then G cannot contain a path from v’ to v.

• Proof (by contradiction):

• Assume there is a path from v’ to v. (2)

• There is a path from u’ to v’ (same SCC).

Simple but key lemma
• Let C and C’ be distinct SCCs in a directed graph G. 

 Let u, v in C 
 Let u’,v’ in C’ 
Suppose that G contains a path from u to u’. (1)  
Then G cannot contain a path from v’ to v.

• Proof (by contradiction):

• Assume there is a path from v’ to v. (2)

• There is a path from u’ to v’ (same SCC).

• There is path from u to v’ (because of (1)).

Simple but key lemma
• Let C and C’ be distinct SCCs in a directed graph G. 

 Let u, v in C 
 Let u’,v’ in C’ 
Suppose that G contains a path from u to u’. (1)  
Then G cannot contain a path from v’ to v.

• Proof (by contradiction):

• Assume there is a path from v’ to v. (2)

• There is a path from u’ to v’ (same SCC).

• There is path from u to v’ (because of (1)).

• There is a path from v to u (same SCC).

Simple but key lemma
• Let C and C’ be distinct SCCs in a directed graph G. 

 Let u, v in C 
 Let u’,v’ in C’ 
Suppose that G contains a path from u to u’. (1)  
Then G cannot contain a path from v’ to v.

• Proof (by contradiction):

• Assume there is a path from v’ to v. (2)

• There is a path from u’ to v’ (same SCC).

• There is path from u to v’ (because of (1)).

• There is a path from v to u (same SCC).

• There is path from v’ to u (because of (2)).

Simple but key lemma
• Let C and C’ be distinct SCCs in a directed graph G. 

 Let u, v in C 
 Let u’,v’ in C’ 
Suppose that G contains a path from u to u’. (1)  
Then G cannot contain a path from v’ to v.

• Proof (by contradiction):

• Assume there is a path from v’ to v. (2)

• There is a path from u’ to v’ (same SCC).

• There is path from u to v’ (because of (1)).

• There is a path from v to u (same SCC).

• There is path from v’ to u (because of (2)).

• This means that u and v’ are mutually reachable, hence in the same SCC.

Component graph

Component graph

• What does the simple-but-key lemma imply for the
component graph?

Component graph

• What does the simple-but-key lemma imply for the
component graph?

• For two distinct connected components, there can be a
path from the first to the second, or vice-versa, but not
both!

Component graph

• What does the simple-but-key lemma imply for the
component graph?

• For two distinct connected components, there can be a
path from the first to the second, or vice-versa, but not
both!

• The component graph is a DAG.

Lemma

• Let C and C’ be distinct SCCs in G. Suppose there is a
directed edge crossing C and C’. Then the DFS on the
nodes of C finishes later than the DFS on the nodes of C’.

Proof by picture

SCC A SCC B

B C

Proof by picture

SCC A SCC B

B C

Case 1: We start here

Proof by picture

SCC A SCC B

B C

A

Case 1: We start here

Proof by picture

SCC A SCC B

B C

A

Case 1: We start here

Proof by picture

SCC A SCC B

B C

A

Case 1: We start here

There is a path A-B 
because of same SCC

Proof by picture

SCC A SCC B

B C

A

Case 1: We start here

There is a path A-B 
because of same SCC

D

Proof by picture

SCC A SCC B

B C

A

Case 1: We start here

There is a path A-B 
because of same SCC

D

Proof by picture

SCC A SCC B

B C

A

Case 1: We start here

There is a path A-B 
because of same SCC

D

There is a path C-D 
because of same SCC

Proof by picture

SCC A SCC B

B C

A

Case 1: We start here

There is a path A-B 
because of same SCC

D

There is a path C-D 
because of same SCC

There is path A-D

Proof by picture

SCC A SCC B

B C

A

Case 1: We start here

There is a path A-B 
because of same SCC

D

There is a path C-D 
because of same SCC

There is path A-D
DFS will explore this 

path and A will finish last.

Proof by picture

SCC A SCC B

B C

Proof by picture

SCC A SCC B

B C

Case 2: We start here

Proof by picture

SCC A SCC B

B C

D

Case 2: We start here

Proof by picture

SCC A SCC B

B C

D

Case 2: We start here

Proof by picture

SCC A SCC B

B C

D

Case 2: We start here

There is a path C-D 
because of same SCC

Proof by picture

SCC A SCC B

B C

D

Case 2: We start here

There is a path C-D 
because of same SCC

There is no path from  
SCC B to SCC A, by the

simple-but-key lemma.

Proof by picture

SCC A SCC B

B C

D

Case 2: We start here

There is a path C-D 
because of same SCC

There is no path from  
SCC B to SCC A, by the

simple-but-key lemma.

DFS will finish with SCC B 
before it moves to SCC A.

Lemma and Corollary
• Lemma: Let C and C’ be distinct SCCs in G. Suppose there is a

directed edge crossing C and C’. Then the DFS on the nodes of C
finishes later than the DFS on the nodes of C’.

• Corollary: If the forward DFS finishes on component C later than
component C’, then

• there is no edge crossing from C’ to C in G.

• there is no edge crossing from C to C’ in Grev.

• This means that in the backward DFS on Grev, if we start with the
SCC that finishes last in the forward DFS of G, we will not find
edges to other SCCs.

Intuition

SCC A SCC B

Intuition

SCC A SCC B

DFS finished here 
first in the forward 

pass.

Intuition

SCC A SCC B

DFS finished here 
first in the forward 

pass.

This means there are no 
edges from SCC A to SCC B 

in the reverse graph.

Intuition

SCC A SCC B

DFS finished here 
first in the forward 

pass.

This means there are no 
edges from SCC A to SCC B 

in the reverse graph.

DFS will finish here 
before it moves to 

any other SCC.

Intuition

SCC A SCC B

DFS finished here 
first in the forward 

pass.

This means there are no 
edges from SCC A to SCC B 

in the reverse graph.

DFS will finish here 
before it moves to 

any other SCC.

SCC A will be correctly indentified.

Back to the component
graph

SCC A SCC B

B C

A D

A B

What is the order in which 
the backward DFS visits  

the nodes?

This finishes first

Back to the component
graph

Back to the component
graph

• The backward DFS visits the nodes of GSCC in topological
order.

Back to the component
graph

• The backward DFS visits the nodes of GSCC in topological
order.

• Alternative viewpoint:

Back to the component
graph

• The backward DFS visits the nodes of GSCC in topological
order.

• Alternative viewpoint:

• Produce a topological order of GSCC.

Back to the component
graph

• The backward DFS visits the nodes of GSCC in topological
order.

• Alternative viewpoint:

• Produce a topological order of GSCC.

• Run a DFS on Grev considering SCCs according to that
topological order.

