
Advanced Algorithmic Techniques  
(COMP523)

Graph Algorithms #3



Recap and plan
• Last lecture: 

• Testing bipartiteness


• DFS and BFS on directed graphs


• Testing connectivity


• This lecture: 

• Directed Acyclic Graphs (DAG)


• Topological Ordering


• Finding strongly connected components



Directed Acyclic Graphs 

• A directed acyclic graph (DAG) G is a graph that does not 
have any cycles. 
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Properties on DAGs

• They appear quite often in many applications.

• Example - prerequisite modules: To take module A you 
need to have taken module B and module C.

• If the module prerequisite relation has a cycle, then it is 
impossible to get a degree!



Topological Ordering
• Given a directed graph G, a topological ordering of G is 

an ordering of the nodes u1, u2, … , un, such that for every 
edge e=(ui,  uj), it holds that i < j.


• Intuitively, a topological ordering orders the nodes in a 
way such that all edges point “forward”.

1

2

0

3

4

1 0 2 3 4



Topological Ordering 
implies DAG



Topological Ordering 
implies DAG

• If graph G has a topological ordering, then G is a DAG.



Topological Ordering 
implies DAG

• If graph G has a topological ordering, then G is a DAG.

• Suppose by contradiction that G has a topological ordering (u1, u2, … , 
un) but it also has a cycle C.



Topological Ordering 
implies DAG

• If graph G has a topological ordering, then G is a DAG.

• Suppose by contradiction that G has a topological ordering (u1, u2, … , 
un) but it also has a cycle C.

• Let uj be the smallest element of C according to the topological ordering.



Topological Ordering 
implies DAG

• If graph G has a topological ordering, then G is a DAG.

• Suppose by contradiction that G has a topological ordering (u1, u2, … , 
un) but it also has a cycle C.

• Let uj be the smallest element of C according to the topological ordering.

• Let ui be its predecessor in the cycle (i.e., there is an edge e=(ui, uj)).



Topological Ordering 
implies DAG

• If graph G has a topological ordering, then G is a DAG.

• Suppose by contradiction that G has a topological ordering (u1, u2, … , 
un) but it also has a cycle C.

• Let uj be the smallest element of C according to the topological ordering.

• Let ui be its predecessor in the cycle (i.e., there is an edge e=(ui, uj)).

• ui must appear before ui in the topological order, by the presence of this 
edge. 



Topological Ordering 
implies DAG

• If graph G has a topological ordering, then G is a DAG.

• Suppose by contradiction that G has a topological ordering (u1, u2, … , 
un) but it also has a cycle C.

• Let uj be the smallest element of C according to the topological ordering.

• Let ui be its predecessor in the cycle (i.e., there is an edge e=(ui, uj)).

• ui must appear before ui in the topological order, by the presence of this 
edge. 

• This contradicts the fact that uj  was the smallest element of C according 
to the topological ordering.
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Does DAG imply topological 
ordering?

• TO => DAG was proved via proof-by-contradiction.

• DAG => TO will be proved via “proof-by-algorithm”.

• We will design an efficient algorithm that, given a DAG G, 
finds a topological ordering of G. 
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• Could we have started with anything other than node 1?

• The starting node must have no incoming edges!

• Can we always find such a node?
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Source node
• A source node is a node with no incoming edges.

• Lemma: Every DAG has at least one source node.

• Proof by contradiction:

• Assume that every node has at least one incoming edge.

• Start from any node u and follow edges from u backwards.

• Equivalently, we move to a neighbour of u in Grev.

• We can do that for every node, since by assumption there is no source. 

• After at least n+1 steps, we will have visited the same node twice.

• The graph has a cycle, therefore it can’t be a DAG. Contradiction!
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Another simple fact

• If we remove a node u and all its incident edges from a 
DAG G, the resulting graph G’ is still a DAG.

• If G’ had a cycle, the same cycle would be present in 
G.
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DAG implies topological 
ordering

• Proof-by-induction:

• Base Case: If the DAG has one or two nodes, it clearly has a topological ordering.

• Inductive step: Assume that a DAG with up to k nodes has a topological ordering 
(Inductive Hypothesis). We will prove that a DAG with k+1 nodes has a topological 
ordering.

• By our lemma, there is at least one source node in G, and let u be such a node.

• Put u first in the topological ordering (safe, since u is a source).

• Consider the graph G’, obtained by G if we remove u and its incident edges.

• G’ is a DAG (by the simple fact) with k nodes.

• It has a topological ordering by the induction hypothesis.

• Append this ordering to u.
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Where is the “proof-by-
algorithm”?

• We can turn that induction proof into an algorithm.

Algorithm TopologicalSort(G) 
       Find a source vertex u and put it first in the order. 
       Let G’=G-{u} 
       TopologicalSort(G’) 
       Append this order after u
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Running time
• We need to find a source u.

• We could check each node of the graph.

• We check n nodes in the first iteration, n-1 nodes in the 
second, and so on…

• What is the running time of this?

• O(n2)

• Can we do better?



A faster algorithm
• We will be more efficient in the choice of sources.


• We will say that a node is active, if it has not been selected 
(and therefore removed) as a source by the algorithm.


• We maintain two things:


• (a) For each node w, the number of incoming edges from 
active nodes.


• (b) The set S of all active nodes that have no incoming 
edges from other active nodes.



A faster algorithm
• In the beginning, all nodes are active and we can initialise (a) and (b) 

via a pass through the graph (time O(m+n))


• In each iteration:


• We select a node u from the set S.


• We delete u.


• We go through all the neighbours w of u and we reduce their value 
in (a) (i.e., number of incoming edges from active nodes) by 1.


• When the value of (a) for some node w goes to 0, w is added to 
the set S.
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Running time

• We perform DFS twice.


• The running time is O(m+n).



Correctness
• Define a meta-graph of the graph G, called the 

component graph GSCC = (VSCC, ESCC)


• Suppose that G has strongly connected components 
(SCCs) C1, C2 , … ,Ck , for some k. 


• VSCC  = {v1, v2, …, vk} contains a vertex for each SCC of G.


• There is an edge (vi , vj) in ESCC if G contains a directed 
edge (x,y) for some x in Ci and some y in Cj (i.e., an edge 
crossing two different components.
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Simple but key lemma
• Let C and C’ be distinct SCCs in a directed graph G. 

      Let u, v in C 
      Let u’,v’ in C’ 
Suppose that G contains a path from u to u’. (1)  
Then G cannot contain a path from v’ to v.

• Proof (by contradiction): 

• Assume there is a path from v’ to v. (2)

• There is a path from u’ to v’ (same SCC).

• There is path from u to v’ (because of (1)).

• There is a path from v to u (same SCC).

• There is path from v’ to u (because of (2)).

• This means that u and v’ are mutually reachable, hence in the same SCC.
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Component graph

• What does the simple-but-key lemma imply for the 
component graph?

• For two distinct connected components, there can be a 
path from the first to the second, or vice-versa, but not 
both!

• The component graph is a DAG.



Lemma

• Let C and C’ be distinct SCCs in G. Suppose there is a 
directed edge crossing C and C’. Then the DFS on the 
nodes of C finishes later than the DFS on the nodes of C’.
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SCC A SCC B

B C

A

Case 1: We start here

There is a path A-B 
because of same SCC

D

There is a path C-D 
because of same SCC

There is path A-D
DFS will explore this 

path and A will finish last.
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Proof by picture

SCC A SCC B

B C

D

Case 2: We start here

There is a path C-D 
because of same SCC

There is no path from  
SCC B to SCC A, by the

simple-but-key lemma.

DFS will finish with SCC B 
before it moves to SCC A.



Lemma and Corollary
• Lemma: Let C and C’ be distinct SCCs in G. Suppose there is a 

directed edge crossing C and C’. Then the DFS on the nodes of C 
finishes later than the DFS on the nodes of C’.


• Corollary: If the forward DFS finishes on component C later than 
component C’, then


• there is no edge crossing from C’ to C in G.


• there is no edge crossing from C to C’ in Grev.


• This means that in the backward DFS on Grev, if we start with the 
SCC that finishes last in the forward DFS of G, we will not find 
edges to other SCCs.
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Intuition

SCC A SCC B

DFS finished here 
first in the forward 

pass.

This means there are no 
edges from SCC A to SCC B 

in the reverse graph.

DFS will finish here 
before it moves to 

any other SCC.

SCC A will be correctly indentified.



Back to the component 
graph

SCC A SCC B

B C

A D

A B

What is the order in which 
the backward DFS visits  

the nodes?

This finishes first
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Back to the component 
graph

• The backward DFS visits the nodes of GSCC in topological 
order.

• Alternative viewpoint:

• Produce a topological order of GSCC.

• Run a DFS on Grev considering SCCs according to that 
topological order.


