
Advanced Algorithmic Techniques  
(COMP523)

Greedy Algorithms



Recap and plan
• Last lecture: 

• Directed Acyclic Graphs (DAGs)


• Topological Ordering


• Finding strongly connected components


• This lecture: 

• The Greedy approach


• Interval Scheduling



The Greedy approach

• The goal is to come up with a global solution.


• The solution will be built up in small consecutive steps.


• For each step, the solution will be the best possible 
myopically, according to some criterion.
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Interval Scheduling
• A set of requests {1, 2, … , n}.

• Each request has a starting time s(i) and a finishing 
time f(i).

• Alternative view: Every request is an interval [s(i), f(i)].

• Two requests i and j are compatible if their respective 
intervals do not overlap.

• Goal: Output a schedule which maximises the number of 
compatible intervals.
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The Greedy Approach
• We start by selecting an interval [s(i), f(i)] for some request i. 

• We include this interval in the schedule.

• This necessarily means that we can not include any other 
interval that is not compatible with [s(i), f(i)].

• We will continue with some compatible interval [s(j), f(j)] and 
repeat the same process.

• We terminate when there are no more compatible intervals 
to consider. 



Example



Example



Example



Example



Example



Example



Example



The Greedy Approach



The Greedy Approach
• We start by selecting an interval [s(i), f(i)] for some request i. 



The Greedy Approach
• We start by selecting an interval [s(i), f(i)] for some request i. 

• Let’s try to make this more concrete.



The Greedy Approach
• We start by selecting an interval [s(i), f(i)] for some request i. 

• Let’s try to make this more concrete.

• Option 1: Choose the available interval that starts earliest.
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Example
Is this the best we can do?
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The Greedy Approach
• We start by selecting an interval [s(i), f(i)] for some request i. 


• Let’s try to make this more concrete.


• Option 1: Choose the available interval that starts earliest.


• Option 2: Choose the smallest available interval.



Choosing the smallest 
interval
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The Greedy Approach
• We start by selecting an interval [s(i), f(i)] for some request i. 


• Let’s try to make this more concrete.


• Option 1: Choose the available interval that starts earliest.


• Option 2: Choose the smallest available interval.


• Option 3: Something more clever.


• Find the interval that minimises the number of “conflicts”.



Minimum number of 
conflicts
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Is this always optimal?



Something even more clever



Something even more clever

• Select the interval [s(i), f(i)]  that finishes first (smallest f(i)).


• Intuition: The resource becomes free as soon as possible, 
but we still satisfy one request.



Greedy Algorithm for 
interval scheduling

IntervalScheduling([s(i), f(i)]i=1 to n) 
 
          Let R be the set of requests, let A be empty 
          While R is not empty 
               Choose a request i with the smallest f(i). 
               Add i to A 
               Delete all requests from R that are not compatible  
               with request i. 
 
          Return the set A of accepted requests
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Correctness

• Does the Greedy algorithm produce an optimal schedule?

• Does the Greedy algorithm produce a feasible (or 
acceptable) schedule?

• Yes, since it removes in each step the intervals which 
are not compatible with what has been chosen.
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Arguing for optimality
• Some notation:

• O is the optimal schedule. Recall, that A is the schedule of the 
Greedy algorithm.

• Let i1, i2, … , ik be the order in which the intervals were added to 
A by the algorithm.

• Note that |A| = k.

• Let j1, j2, … , jm be the set of requests in O.

• Note that |O| = m.

• We will prove that m=k. (Why is that enough?)
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Arguing for optimality
• Claim: f(i1) ≤ f(j1)

• Because i1 is chosen to be the interval with the smallest 
f(ih).

• Lemma: For all indices r ≤ k, it holds that f(ir) ≤ f(jr)

• Proof by induction:

• Base Case (r=1), by Claim.

• Induction Step. Assume it is true for r-1 (IH), we will 
prove it for r.
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Induction step proof
• We know that f(jr-1) ≤ s(jr) (why?)

• Because the intervals of O are compatible.

• We know that f(ir-1) ≤ f(jr-1) (why?)

• By the Induction Hypothesis.

• What does that mean for the interval jr = (s(jr), f(jr)) ?

• When the Greedy algorithm selected ir , jr was in the set R of 
available intervals.

• This means that f(ir) ≤ f(jr), as otherwise the algorithm would have 
selected jr  instead.



With a picture

…

ir-1

jr-1

ir

jr

f(jr-1) ≤ s(jr)
f(ir-1) ≤ f(jr-1)
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Completing the proof

• By contradiction: To the contrary, assume that m > k 


• For r=k, the Lemma gives us that f(ik) ≤ f(jk).


• Since m > k , there is an extra request jk+1 in O.


• s(jk+1) > f(jk)  ≥ f(ik).


• The greedy algorithm would have continued with jk+1.
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Running Time
• Sort intervals in terms of increasing f(i).

• We select the first interval in the ordering.

• For any consecutive interval j in the ordering, we check if f(i) ≤ s(j).

• If yes, we select it and continue with the same checks for this 
new interval.

• If not, we move on to the next interval.

• The running time is O(n log n).


