COMP523 Advanced Algorithmic Techniques University of Liverpool

COMPbH23 Tutorial 4 - Solutions

Coordinator: Aris Filos-Ratsikas Demonstrator: Michail Theofilatos

December 27, 2019

Problem 1

Consider the fractional knapsack problem, in which there is a set of n infinitely divisible items with values
v;, for i = 1,...,n and weights w;, for ¢ = 1,...,n, and there is a total weight constraint W. The goal is to
find fractions (z1,...,2,) of each item, with 0 < z; < 1 such that ) ;" ; x; - v; is maximised, subject to the
total weight constraint Y ., @; - w; < W.

Design an optimal polynomial time greedy algorithm for the fractional knapsack problem and argue about
its correctness.

Solution

This is Dantzig’s greedy algorithm for solving the fractional knapsack problem. The algorithm works as
follows:

e First, sort the items in terms on non-increasing ratio v;/w; (this is sometimes called the “bang-per-
buck”).

e Start putting items in the knapsack in that order, until you encounter an item that can not fit in the
knapsack anymore.

e Put as large a fraction of that item in the knapsack, until you reach the total weight constraint W.

We claim that this algorithm solves the fractional knapsack problem optimally. Suppose without loss of
generality that the items are sorted in terms of non-increasing v;/w; and that no two items have the same
such ratio (therefore the order is actually decreasing). Let o1, 09,...,0, be the fractions of items that are
put in the knapsack in the optimal solution in that order, and let g1, ..., g, be the fractions of items selected
by the greedy algorithm (in both cases, some fractions might be 0). By definition of the optimal solution,
we have that Y 0;-v; > >0 g - v;.

If 0; = g; for every index, then the two solutions are the same and we are done. Let j be the first index
for which the two solutions differ. By definition of the greedy algorithm, it must hold that g; > o;, as item j
has the largest ratio v;/w; over all remaining items (not already in the knapsack), and the greedy algorithm
selects as large a fraction of it as possible. By the definition of the optimal, there must exist another index
¢ > j such that oy > g;. Now, construct a new solution o’ = {0}, 0}, ..., 0} } such that

;L .
o o) =o forall k#j,¢,
/o .
® 0; = 0j +¢,
/o wj
® 04—0[75'7)1.

Note that Y 1, 0; - w; = >, 0, - w; and therefore 0} is a feasible solution. Furthermore, we have that

n n
/ _ W >
0; *v; = 0;-V; +ev;+e-—= v 2 0; * Vs,
Wy —1
i=

i=1 =1

where the last inequality holds since v;/w; > vg/w,. This means that o is a feasible solution with largest
total value than o, contradicting the optimality of o.

Aris Filos-Ratsikas: Aris.Filos-Ratsikas@liverpool.ac.uk 1



COMP523 Advanced Algorithmic Techniques University of Liverpool

Problem 2

Solved Exercise 3 from Kleinberg and Tardos - Algorithm Design, Chapter 4, page 187.

Suppose you are given a connected graph G, wieh edge costs that you may assume are all distinct. G has n
vertices and m edges. A particular edge e of G is specified. Give an algorithm with running time O(m + n)
to decide whether e is contained in a minimum spanning tree of G.

Solution

See Kleinberg and Tardos - Algorithms Design, Chapter 4, page 187.

Problem 3

A contiguous subsequence of length k a sequence S is a subsequence which consists of k consecutive elements
of S. For instance, if S is 1,2,3,—11,10,6,—10,11, —5, then 3,—11,10 is a contiguous subsequence of S
of length 3. Give an algorithm based on dynamic programming that, given a sequence S of n numbers as
input, runs in linear time and outputs the contiguous subsequence of S of maximum sum. Assume that a
subsequence of length 0 has sum 0. For the example above, the answer of the algorithm would be 10,6.—10, 11
with a sum of 17.

Solution

Let aqas ... a, be the sequence S. We will use dynamic programming to design an algorithm that solves
the contiguous subsequence problem. Let M(j) be the optimal solution (the length of the subsequence of
maximum sum) ending at position j. By definition, we have that M (0) = 0. We have the following relation:

M[J + 1} = maX{M[]] + aj+170}7

with M[1] = max{as,0}. To find the contiguous subsequence S* of maximum sum, we operate as follows.
First, we find the element i+ for which M[:*] is maximised. This can be done in polynomial time, by
computing the partial sums and storing them in an array (similarly to the approach in the weighted interval
scheduling problem). S* will end at ¢*. The beginning of S* will be the largest j < ¢* for which M[j—1] =0,
as extending the subsequence to start before j will only decrease the sum. If there is no such j, then S*
starts at the beginning of S.

Aris Filos-Ratsikas: Aris.Filos-Ratsikas@liverpool.ac.uk 2



