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Problem 1

Consider the Open pit mining problem: There is a set of blocks to be mined, each with a cost ci and a payoff
pi and in order to mine two blocks i and i′, it is required to first mine the block j directly above them. The
goal is to find a set S of blocks to mine in order to maximise the profit

∑
i∈S(pi − ci).

Formulate the problem as a maximum flow problem and explain how to use a solution to the maximum flow
problem in order to obtain a solution to the open pit mining problem.

Solution

First, we add a source s and a sink t and a vertex i for every block to be mined. Next, for any vertex i, if
pi− ci > 0, then we add a directed edge (s, i) with capacity pi− ci. Likewise, for any vertex i, if pi− ci ≤ 0,
then we add a directed edge (i, t) with capacity ci − pi. Finally, for every two blocks i, j, such that block i
is required in order to mine block j, we add a directed edge (i, j) to the network with capacity ∞. We will
prove that a minimum (s-t) cut in this network will give us the optimal set of blocks to mine, in order to
maximise the profit; these will be the blocks corresponding to vertices in S−{s}. With that established, we
can run a flow network algorithm on our designed network and find the minimum (s-t) cut.

Let (S, T ) be an (s-t) cut in the network. For (S, T ) to be minimum, there can not be an edge of infinite
capacity crossing the cut (i.e., going from an edge of S to an edge of T or vice-versa), as otherwise the
capacity would be infinity. This means that all the blocks in the set S − {s} that we will mine will statisfy
the preequisite condition, meaning that if we mine a block, we will also mine every block that is required for
that block to be mined.

Now, consider the capacity of the cut (S, T ). We have:

c(S, T ) =
∑

i∈T :(pi−ci)>0

(pi − ci) +
∑

i∈S:(pi−ci)≤0

(ci − pi)

=
∑

i∈T :(pi−ci)>0

(pi − ci)−
∑

i∈S:(pi−ci)≤0

(pi − ci)

=
∑

i∈T :(pi−ci)>0

(pi − ci) +
∑

i∈S:(pi−ci)>0

(pi − ci)−
∑

i∈S:(pi−ci)≤0

(pi − ci)−
∑

i∈S:(pi−ci)>0

(pi − ci)

=
∑

i∈V :(pi−ci)>0

(ci − pi)−
∑
i∈S

(pi − ci)

Looking at the right-hand side of the last equation, we observe that the first sum does not depend on the
cut (S, T ) and is therefore a constant. The capacity of the cut is minimised when the quantity

∑
i∈S(pi− ci)

is maximised, and this is precisely the mining profit. Therefore, the maximum miniming profit is achieved
at the minimum cut.
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Problem 2

Recall that a k-colouring of a graph G is a function f : V → {1, 2, . . . , k} mapping nodes to colours, such
that for any nodes u and v such that (u, v) ∈ E, it holds that f(u) 6= f(v).

Consider the 3-colouring problem: Given a graph G as input, decide whether there is a 3-colouring of G.
Prove that 3-colouring is NP-complete.

Solution

It is easy to see that 3-colouring is in NP : if we are given an assignment of colours to the vertices, we
can check in polynomial time whether there exist neighbouring vertices with the same colour. To how the
NP-hardness of the problem, we will construct a polynomial time reduction from 3SAT. Let φ be a 3SAT
formula. We will have the following gadgets.

Gadget 1: A triangle of three nodes, labelled T , F and O. The colour assigned to T will be interpreted
as “true” for φ and the colour assigned to F will be interpreted as “false”. The colour assigned to O will
simply be the third colour.

Gadget 2: For each variable v in φ, construct two vertices v and v̄. Add an edge (v, v̄) and edges (v,O)
and (v̄, O) (i.e., v, v̄ and O form a triangle).

Gagdet 3: This is the more complicated gadget shown in the figure (corresponding to the clause x∨ y ∨ z̄).

Suppose that φ is satisfiable, and let x be a satisfying assignment. For a variable v, if v is set to true, colour
the corresponding vertex by T (and since v̄ is set to false, colour v̄ by T ). Likewise, if v is set to false, colour
the corresponding vertex v by F and v̄ by T . Node that since v and v̄ are connected only to O and v̄ and
v respectively in the Gadget 2 triangles, that part of the graph is 3-colourable. It remains to assign colours
to Gadget 3, avoiding having any neighbours with the same colour.

Looking at the gadget of the figure, label the non-labelled vertices 1, 2, 3, 4 starting from the left and
then starting from the top in the middle column. Consider vertex 1, which is a neighbour of both x and T .
If x is coloured T , then vertex 1 can be set to either O or F and if x is coloured F , then it must be set to O.
Similarly for vertex 4, which is a neighbour of both T and y. If z̄ is coloured T , we can set vertex 2 to F ,
vertex 1 to O, vertex 2 to T and vertex 4 to O and we have a 3-colouring. If z̄ is set to F , then we consider
the labelling of vertices x and y. Considering a few cases, we can verify that there is always a 3-colouring of
the gadget.

Supppose now that we have a 3-colouring of the graph. Then, for every vertex u is coloured either T or
F , we set the corresponding variable in φ to true or false accordingly. From the fact that the labelling is a
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3-colouring and the way the graph is constructed, we know that two nodes v and v̄ cannot receive the same
colour, and therefore it is not possible for both variable v and its negation to receive the same value in the
truth assignment. Finally, the correctness of the reduction follows from the fact that it is not possible for
any vertex v or v̄ to receive the colour O, because all of these vertices are connected to a vertex coloured O,
and that would violate the fact that the graph is 3-colourable.
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