COMP523 Tutorial 6

Coordinator: Aris Filos-Ratsikas

Demonstrator: Michail Theofilatos

October 31, 2019

Problem 1

Consider the *Open pit mining* problem: There is a set of blocks to be mined, each with a cost c_i and a payoff p_i and in order to mine two blocks i and i', it is required to first mine the block j directly above them. The goal is to find a set S of blocks to mine in order to maximise the profit $\sum_{i \in S} (p_i - c_i)$.

Formulate the problem as a maximum flow problem and explain how to use a solution to the maximum flow problem in order to obtain a solution to the open pit mining problem.

Problem 2

Recall that a k-colouring of a graph G is a function $f: V \to \{1, 2, ..., k\}$ mapping nodes to *colours*, such that for any nodes u and v such that $(u, v) \in E$, it holds that $f(u) \neq f(v)$.

Consider the 3-colouring problem: Given a graph G as input, decide whether there is a 3-colouring of G. Prove that 3-colouring is NP-complete.