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Problem 1

Kleinberg and Tardos - Algorithm Design, Chapter 11, Solved Exercise 1.

Solution

See solution in the book, Kleinberg and Tardos - Algorithm Design, Chapter 11, Solved Exercise 1.

Problem 2

Prove that the optimal solutions to the LP-relaxation of the Vertex Cover ILP are half-integral, meaning
that they take values in

{
0, 12 , 1

}
.

Solution

First, we remark that for a solution to be optimal, it can not be a convex combination of two other feasible
solutions, where a convex combination is a sum weighted by probabilities, i.e., if x = αx1 + (1− α)x2, then
x is a convex combination of x1 and x2. This follows from the fact that, if that was the case, then we could
take the probability mass from the solution that has a larger value and move it to the solution that has a
smaller value, obtaining a feasible solution with smaller overall value, contradicting the optimality of x.

We will now argue that if a solution to the Vertex Cover ILP is not half-integral, then it can be expressed
as a convex combination of two feasible solutions; from the discussion above, this implies that it can not
be optimal. Consider the set of vertices for which the solution x does not assign a half-integral value, and
partition them into two sets V+ and V− such that:

V+ =

{
v :

1

2
< xv < 1

}
and V− =

{
v : 0 < xv <

1

2

}
.

For ε > 0, defined the following two solutions:

yv =


xv + ε, xv ∈ V+
xv − ε, xv ∈ V−
xv, otherwise.

zv =


xv − ε, xv ∈ V+
xv + ε, xv ∈ V−
xv, otherwise.

By assumption, we have that V+ ∪ V− 6= ∅ and so x, y and z are all distinct. Additionally, it is not hard to
see that x = 1

2 (y + z) and therefore x is a convex combination of y and z. It remains to show that y and z
are feasible solutions to the Vertex Cover LP-relaxation; we will achieve that via an appropriate choice of ε.

First, it is easy to ensure that yv, zv ≥ 0; since xv > 0, we can choose ε small enough to ensure that
this holds. Next, consider the constraints xu + xv ≥ 1 of the Vertex Cover LP-relaxation. Suppose that
xu +xv > 1. Then again, by choosing ε to be small enough, we can ensure that yu + yv ≥ 1 and zu + zv ≥ 1.
Finally, consider any edge for which xu + xv = 1. There, there are only three possibilities: either (a)
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xu = xv = 1
2 , (b) xu = 0, xv = 1 (the case xu = 1, xv = 0 is completely symmetric) and (c) u ∈ V+, v ∈ V−

(the case u ∈ V−, v ∈ V+ is completely symmetric). In all three cases, for any choice of ε, we have that

xu + xv = yu + yv = zu + zv = 1.

This completes the proof.
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