COMP523 Tutorial 8 - Solutions

Coordinator: Aris Filos-Ratsikas Demonstrator: Michail Theofilatos

December 27, 2019

Problem 1

Kleinberg and Tardos - Algorithm Design, Chapter 11, Solved Exercise 1.

Solution

See solution in the book, Kleinberg and Tardos - Algorithm Design, Chapter 11, Solved Exercise 1.

Problem 2

Prove that the optimal solutions to the LP-relaxation of the Vertex Cover ILP are half-integral, meaning that they take values in $\left\{0, \frac{1}{2}, 1\right\}$.

Solution

First, we remark that for a solution to be optimal, it can not be a convex combination of two other feasible solutions, where a convex combination is a sum weighted by probabilities, i.e., if $x=\alpha x_{1}+(1-\alpha) x_{2}$, then x is a convex combination of x_{1} and x_{2}. This follows from the fact that, if that was the case, then we could take the probability mass from the solution that has a larger value and move it to the solution that has a smaller value, obtaining a feasible solution with smaller overall value, contradicting the optimality of x.

We will now argue that if a solution to the Vertex Cover ILP is not half-integral, then it can be expressed as a convex combination of two feasible solutions; from the discussion above, this implies that it can not be optimal. Consider the set of vertices for which the solution x does not assign a half-integral value, and partition them into two sets V_{+}and V_{-}such that:

$$
V_{+}=\left\{v: \frac{1}{2}<x_{v}<1\right\} \quad \text { and } \quad V_{-}=\left\{v: 0<x_{v}<\frac{1}{2}\right\}
$$

For $\varepsilon>0$, defined the following two solutions:

$$
y_{v}=\left\{\begin{array}{l}
x_{v}+\varepsilon, \quad x_{v} \in V_{+} \\
x_{v}-\varepsilon, x_{v} \in V_{-} \\
x_{v}, \text { otherwise }
\end{array} \quad z_{v}=\left\{\begin{array}{l}
x_{v}-\varepsilon, \quad x_{v} \in V_{+} \\
x_{v}+\varepsilon, \quad x_{v} \in V_{-} \\
x_{v}, \text { otherwise }
\end{array}\right.\right.
$$

By assumption, we have that $V_{+} \cup V_{-} \neq \emptyset$ and so x, y and z are all distinct. Additionally, it is not hard to see that $x=\frac{1}{2}(y+z)$ and therefore x is a convex combination of y and z. It remains to show that y and z are feasible solutions to the Vertex Cover LP-relaxation; we will achieve that via an appropriate choice of ε.

First, it is easy to ensure that $y_{v}, z_{v} \geq 0$; since $x_{v}>0$, we can choose ϵ small enough to ensure that this holds. Next, consider the constraints $x_{u}+x_{v} \geq 1$ of the Vertex Cover LP-relaxation. Suppose that $x_{u}+x_{v}>1$. Then again, by choosing ε to be small enough, we can ensure that $y_{u}+y_{v} \geq 1$ and $z_{u}+z_{v} \geq 1$. Finally, consider any edge for which $x_{u}+x_{v}=1$. There, there are only three possibilities: either (a)
$x_{u}=x_{v}=\frac{1}{2}$, (b) $x_{u}=0, x_{v}=1$ (the case $x_{u}=1, x_{v}=0$ is completely symmetric) and (c) $u \in V_{+}, v \in V_{-}$ (the case $u \in V_{-}, v \in V_{+}$is completely symmetric). In all three cases, for any choice of ε, we have that

$$
x_{u}+x_{v}=y_{u}+y_{v}=z_{u}+z_{v}=1 .
$$

This completes the proof.

