COMP523 Tutorial 9 - Solutions

Coordinator: Aris Filos-Ratsikas Demonstrator: Michail Theofilatos

December 27, 2019

Problem 1

Kleinberg and Tardos, Algorithm Design, Chapter 13, Exercise 1.

Solution

Assume that we have the three colours \{red, white, blue\}. Consider the following simple algorithm: For each vertex, colour it red with probability $1 / 3$, white with probability $1 / 3$ and blue with probability $1 / 3$. We will prove that the approximation ratio of this algorithm is $3 / 2$.

For an edge e, let Y_{e} be a random variable which is 1 if the edge is satisfied and 0 otherwise. Let X be random variable, denoting the number of satisfied edges; by definition, it holds that

$$
X=\sum_{i=1}^{|E|} Y_{e}
$$

We are interested in the expected value of X. We have:

$$
\mathbb{E}[X]=E\left[\sum_{i=1}^{|E|} Y_{e}\right]=\sum_{i=1}^{|E|} E\left[Y_{e}\right]=\sum_{i=1}^{|E|} \operatorname{Pr}[e \text { is satisfied },]
$$

where the second equation follows from the linearity of expectation. The probability that an edge e is satisfied is equal to the probability that its two endpoints receive different colours, which can be easily seen to be $2 / 3$. Therefore, we have that

$$
\mathbb{E}[X]=\frac{2|E|}{3}
$$

By using a trivial bound of $|E|$ on the number of satisfied edges in the optimal solution, we obtain the desired $3 / 2$ approximation.

Problem 2

Kleinberg and Tardos, Algorithm Design, Chapter 13, Exercise 7.

Solution

The solution can be found at Williamson and Shmoys, The Design of Approximation Algorithms, Chapter 5.3.
Link: https://www-cambridge-org.liverpool.idm.oclc.org/core/services/aop-cambridge-core/content/ view/337E633A6859743A53EE05AC8DD1162D/9780511921735c5_p99-136_CBO.pdf/random_sampling_and_ randomized_rounding_of_linear_programs.pdf

