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Abstract

We derive conditions under which a detail-free minimal peer
prediction mechanism can be used to elicit truthful data from
non-trusted rational agents when an aggregate statistic of
the collected data affects the amount of their incentives to
lie. Furthermore, we discuss the relative saving that can be
achieved by the mechanism, compared to the rational out-
come, if no such mechanism was implemented. Our work is
motivated by distributed platforms, where decentralized data
oracles collect information about real-world events, based on
the aggregate information provided by often self-interested
participants. We compare our theoretical observations with
numerical simulations on two publicly available real datasets.

1 Introduction
With the increasing popularity of the blockchain technol-
ogy in recent years, the implementation of commercial and
governmental systems has witnessed a large shift towards
distributed and decentralized approaches. In particular, the
emergence of the Ethereum platform has given rise to the
development of several applications (often referred to as de-
centralized apps or DAPs) which aim to apply this latter
principle to many areas of interest such as finance, educa-
tion, intellectual property or government.1 At the heart of
these approaches lies the concept of the smart contract, i.e.,
lines of code that contain the terms of the agreement be-
tween the involved parties, which are automatically executed
once triggered by events happening in the real world. For
example, consider the case of a web service, which is typ-
ically dictated by a service level agreement (SLA) between
the service provider and the clients. The SLA can be coded
into a smart contract between the involved parties which will
trigger an automatic payment upon detection of a violation.
For instance, if the service guarantees a responseTime
of at most 1 second with a high probability, frequent slower
responses would result in the clients being compensated by
the smart contract.

An important issue here is, how do we determine whether
the real-world event has actually happened? In the words of
Ari Juels, co-director of the Initiative for Cryptocurrencies
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and Contracts (IC3)2, as quoted in (Peck 2017): “Anything
they (blockchains) learn about the outside world has to be
injected into them”. The services responsible for acquiring
and validating such data about real-world events are called
oracles and often appear in the form of separate entities; in
the web service example, these could be third-party compa-
nies that monitor and report traffic. This approach however
is prone to several problems, such as the trustworthiness or
the accuracy of the oracles, or the cost of maintaining such
external services, and in a sense is in conflict with the de-
centralized nature of the blockchain technology.

An alternative solution would be to appeal to the “wis-
dom of the crowds” and gather the information about the
real world from the participants of the platform themselves.
This is the fundamental idea behind the prediction-market
applications that run on the Ethereum blockchain, such as
Augur (Peterson et al. 2018) or Gnosis (Gnosis 2017). An-
other concrete example of this principle is the Decibel.Live
application (Kandy and Loomb 2017), for compensations
due to excessive noise levels from nearby construction com-
panies. In Decibel.LIVE, the client signs a smart contract
with the company, specifying the accepted levels of noise in
a neighborhood, and any noise level exceeding those thresh-
olds triggers an automatic compensation payment. The noise
levels are measured by noise monitoring sensors (installed
locally, perhaps in or near the houses of the clients) and are
reported via a smartphone app to the platform; this is largely
beneficial in that it does not require a trusted authority for
the monitoring and the collection of the data.3

A genuine concern that typically accompanies this type of
decentralized approaches is whether people can be trusted to
provide correct information. This concern is even more am-
plified in settings where people have rational incentives to
provide false information. In the example above, it seems
reasonable that clients might attempt to fake the noise lev-
els in order to get compensated (since generating noise is
generally an easy task) or, in the web service example, the
clients would have an incentive to always report high re-
sponse times, in order for the conditions of the smart con-

2http://www.initc3.org/
3The platform does offer the possibility of hiring trusted author-

ities for monitoring as well, but the smartphone app is advocated
as a better and more cost-effective option.



tract to be violated in their favor. We refer to such incentives
as outside incentives and we will be interested in problems
of this specific nature.

It is fairly obvious that, if no additional measures are
taken, the rational outcome would be one in which the par-
ticipants get compensated, regardless of whether there was
truly a violation of the terms of the smart contract or not. To
counteract this phenomenon, the agents need to be properly
incentivized by the platform to provide their feedback truth-
fully. One way to do this is to issue them a side-payment
in addition to the payment that they receive based on the
outcome resolution. The side-payment scheme has to satisfy
the following two desiderata, (a) to ensure that it extracts the
correct information from the participants and (b) to achieve
as much saving as possible, compared to the compensation
of the rational outcome. In a nutshell, we are interested in
the following question:

When the agents are rational, how can the platform deter-
mine the correct outcome by acquiring correct information
while ensuring as much saving in payments as possible?

For a side-payment scheme to achieve the goal set in (a),
clearly the side-payments have to be contingent on the truth-
fulness of the agents’ reports. However, since we do not have
access to a ground truth and therefore, there is no way to
directly establish the truthfulness of the feedback, we will
appeal to the power of peer-prediction mechanisms (Miller,
Resnick, and Zeckhauser 2005) to align the incentives of the
agents.

Truthful feedback elicitation and challenges
Truthful feedback elicitation is a well-studied problem in the
literature. Elegant game-theoretic mechanisms, called peer-
prediction mechanisms (Miller, Resnick, and Zeckhauser
2005; Prelec 2004), exist for eliciting truthful feedback from
rational, self-interested agents. Generally speaking, the idea
in those mechanisms is to match the report of an agent
with that of a randomly chosen peer, and provide a pay-
ment as a function of the relation between the two reports.
Recently, there has been a lot of progress towards making
the peer-prediction mechanisms useful for practical appli-
cations. The modern peer-prediction mechanisms are gen-
erally minimal, i.e., they require the agents to submit only
their feedback report and detail-free, i.e., they do not require
any knowledge of the agents’ beliefs. Several mechanisms
in this class have been designed, e.g., see Dasgupta and
Ghosh (2013), Shnayder et al. (2016), Radanovic and Falt-
ings (2015), Kamble et al. (2015); mostly useful to us will
be the Peer Truth Serum for Crowdsourcing mechanism of
Radanovic, Faltings, and Jurca (2016) (henceforth PTSC).

Peer-prediction mechanisms are known to incentivize
agents to invest the effort (which can be interpreted as a cost)
required to make observations and to subsequently report
their observations truthfully. These mechanisms have been
shown to counter two types of lying incentives: one is the
potential saving in the cost of effort (by not making any ob-
servations, but rather submitting uninformed reports) and the
other is the internal reward, since rewards in a non-truthful

incentive mechanism may also create unintended incentives
to lie.

However, the truth-telling properties of minimal and
detail-free mechanisms has not yet been studied in settings
when agents have outside incentives to lie, like the settings
mentioned in the introduction, where the agents receive an
outside reward as a function of the aggregation of their re-
ports. Since every agent’s feedback has a “share” in deter-
mining the outcome, the agents have variable lying incen-
tives that also depend on the strategies adopted by other
agents, which makes the “overcoming of extra incentives”
more challenging.

Our contributions
In this paper, we consider settings with outside incentives
and binary observations, and we employ the PTSC mech-
anism of (Radanovic, Faltings, and Jurca 2016) as a side-
payment scheme. We prove that, with an appropriate choice
of the scaling constant, the mechanism can be used to en-
sure that truth-telling is a strict equilibrium of the induced
game. Furthermore, we show that if there is any positive
fraction f of honest agents (i.e., agents that always report
truthfully), the strategy profile in which the agents exercise
their outside incentives, or denial strategies (e.g., reporting
“bad” service) is no longer an equilibrium. We note that as-
suming the existence of honest agents is very different from
using trusted authorities since our method does not depend
on knowing who these honest agents are. This is a rather
common scenario, as in a large platform, one would nor-
mally expect at least a few agents to behave honestly but we
would not expect to know their identities. These properties
of the PTSC mechanism were already known in the absence
of the outside lying incentives (Radanovic, Faltings, and Ju-
rca 2016); our paper extends the analysis of PTSC and es-
tablishes its truth-telling incentive properties in the presence
of the outside lying incentives.

Additionally, for the first time, we compute a bound on
the scaling required for ensuring a truth-telling equilibrium
of the side-payment scheme, as a function of the outside in-
centives. We also provide conditions under which the side-
payment scheme gives positive saving compared to the ratio-
nal outcome (i.e., the denial strategy outcome) and we prove
a lower bound on this saving. We show that as the number
of agents grows large, the saving approaches the best pos-
sible saving, attainable when all agents are honest, without
any side-payments. We also provide bounds (on the same
quantities) when the scaling has to not only ensure a truthful
equilibrium, but also to eliminate the denial strategy equi-
librium. Interestingly, in the process of doing this, we find
an upper bound on the fraction of honest agents that should
be present, in order for the side-payment scheme to still be
profitable.

Finally, the scaling constant, as well as the savings of
PTSC depend on a quantity δ∗, which we refer to as the
self-predictor value and is essentially a measure of corre-
lation strength between prior and posterior signals. The as-
sumption that δ∗ > 0 is a standard assumption in the liter-
ature of peer-prediction (e.g. see (Jurca and Faltings 2005;
Witkowski and Parkes 2012a)) and translates to positive cor-



relation between the observations of the agents. We quantify
the required scaling constant as well as the saving in terms of
this quantity. Moreover, we do not need to know this quan-
tity; an estimate is sufficient for the results to either hold ex-
actly or approximately, where the approximation error goes
to 0 as the number of agents grows large.

Related Work
Our work draws on the recent ideas in the peer-prediction lit-
erature (Miller, Resnick, and Zeckhauser 2005; Prelec 2004;
Witkowski and Parkes 2012b; Radanovic and Faltings 2013;
Dasgupta and Ghosh 2013; Waggoner and Chen 2014;
Radanovic and Faltings 2015; Kamble et al. 2015; Shnay-
der et al. 2016; Radanovic, Faltings, and Jurca 2016; Gao,
Wright, and Leyton-Brown 2016; De Alfaro, Shavlovsky,
and Polychronopoulos 2016; Agarwal et al. 2017; Liu and
Chen 2017a; Kong and Schoenebeck 2018; 2018; Goel and
Faltings 2018); here we focus on the results related to set-
tings with outside incentives. A survey of the techniques in
this area can be found in (Faltings and Radanovic 2017).

The topic of outside incentives in decentralized platforms
has been recently explored in the context of prediction mar-
kets, drawing motivation from applications like Augur and
Gnosis. Chakraborty and Das (2016) perform equilibrium
analysis when the market participants may significantly in-
fluence the actual realization of the outcome, in a game
which is played in two stages; first the agents trade in the
market and then they vote on the outcome. Their model cap-
tures the empirical observations in prior work (Chakraborty
et al. 2013). These works however only analyze the effects
of rational behaviour, rather than aim to counteract it, by im-
plementing appropriate mechanisms. Chen et al.(2011) con-
sider similar two-stage models of prediction markets, where
the agents strategize only in the first stage to manipulate
the market prices used for the predictions. The authors ana-
lyze information aggregation properties of the market and
don’t consider outcome manipulation, and their setting is
thus quite different from ours.

Freeman, Lahaie, and Pennock (2017) study a related set-
ting, where they assume that agents trade honestly in the first
stage and only behave strategically in the second. They use
a peer-prediction mechanism to elicit truthful votes in the
equilibrium of the second stage, and show that under cer-
tain conditions, the fees charged by the market are enough
to cover the side payments. Interestingly, they also use a sim-
ilar measure of signal correlation, which they refer to as the
“update strength”, and they express some of their results us-
ing this quantity.

Our work differs from Freeman, Lahaie, and Pen-
nock(2017) in two key aspects. First, our informational as-
sumptions are weaker. In particular, we only require access
to a measure of signal correlation (the self-predictor value)
and actually, only an estimate of that measure is sufficient.
In contrast, Freeman, Lahaie, and Pennock (2017) use the
prior distribution of the agents’ beliefs, which they obtain
from the closing price of the market, enabled by the assump-
tion that the agents are honest in the trading stage. While
this may be meaningful in a prediction market domain, such
assumptions are far less realistic in the more general set-

tings that we consider. Secondly, Freeman, Lahaie, and Pen-
nock (2017) do not address the issue of non-truthful equi-
libria in their work, which we do through the existence of
honest agents. In settings other than prediction markets, Ju-
rca, Faltings, and Binder(Jurca, Faltings, and Binder 2007;
Jurca and Faltings 2006) consider feedback elicitation set-
tings in the presence of outside incentives but again, they
assume full knowledge of the agents’ beliefs.

2 Model and objectives
We consider settings in which a large number of questions
are to be resolved on a decentralized platform through ac-
quiring feedback from a finite number of agents per ques-
tion. The questions can be, for example, of the following
form : “Is the responseTime of web service W less than
10 seconds?”. An agent i makes a private binary observa-
tionXi ∈ {0, 1} about exactly one question and submits her
feedback report Yi ∈ {0, 1} to the platform. For every ques-
tion, n agents are asked to submit their feedback, and based
on this feedback, the questions are said to be resolved by an-
nouncing their outcomes. The outcome ow for a question w
is defined as the fraction of agents who reported 0 as their
feedback. In the web service example, this corresponds to
the fraction of agents who report that the responseTime
of the service was less than 10 seconds.

Note that we define the outcome ow to be a continuous
variable, whereas the feedback is elicited as a discrete vari-
able. This is because of the noisy (and in some cases sub-
jective) nature of the feedback. In the web-service case,
responseTime is a noisy measurement and no service
can promise a certain response time 100% of the time. Thus,
it is important to define the outcome as a continuous variable
measuring the fraction of time that the service did provide a
good response time. The same definition was used in (Free-
man, Lahaie, and Pennock 2017).

Based on the announced outcome, every agent (who an-
swered that question) is issued a payment proportional to the
value of the outcome. More precisely, the payment given to
an agent isR·ow, whereR is a positive constant. In the web
service example, the reason for such payments is the legal
contracts that are signed between the web service provider
and the agents. Such contracts bind the service providers to
issue a refund to their customers if their service does not
meet the promised standards.

After making her private observation, agent i uses a strat-
egy σi to submit a report Yi based on observation Xi, in
order to maximize her expected payment. The agents are as-
sumed to be rational and therefore they will not typically
report their true observations, if not properly incentivized to
do so. We also follow the common assumption that agents
are risk-neutral.

Definition 1 (Agent Strategy σi). An agent i’s strategy, de-
noted by σi(Yi = y|Xi = x),∀ x, y ∈ {0, 1}, is the prob-
ability of the agent’s report for the question being y given
that her observation is x.

The strategy models a variety of possibilities that are avail-
able to the agent for mapping her observation to her report.
Some examples of such strategies are the following.



Definition 2 (Truth-telling Strategy). An agent’s strategy is
called truth-telling if and only if σi(Yi = y|Xi = x) =
1,∀ x = y and σi(Yi = y|Xi = x) = 0,∀ x 6= y.
In heuristic strategies, the report of the agents are indepen-
dent of their observations. One heuristic strategy of particu-
lar importance is always reporting 0, formally defined below.
Definition 3 (Denial Strategy). An agent’s strategy is called
the denial strategy if and only if σi(Yi = 0|Xi = x) = 1
and σi(Yi = 1|Xi = x) = 0.
The denial strategy is an interesting strategy in our setting
because the payment that agents receive depends on how
many of them report 0 as their feedback. The following ob-
servation is fairly easy to see, but for completeness, we pro-
vide a proof in an online supplement 4

Observation 1. In the settings described above, the denial
strategy is the strictly dominant strategy for all agents and
gives the maximum paymentR.
A strategy σi is called strictly dominant if it gives agent i
her the highest possible payment, given any strategies of the
remaining agents. Observation 1 implies that in the presence
of rational agents, the outcome determined by the decentral-
ized platform is bound to be 1.00, since every such agent will
report 0 irrespective of their true observation. Such an out-
come determination is not useful for practical purposes; on
one hand, it is not informative and hence provides no utility
in terms of the information acquired, and on the other hand,
it can incur a huge loss to the platform in practice.

Peer-prediction: To counteract this phenomenon, the agents
need to be properly incentivized by the platform to provide
their feedback truthfully. We propose to do this, by issuing
them a side-payment in addition to the payment that they
receive based on the outcome resolution. Clearly, any con-
stant amount of such side-payment does not achieve this
objective; the side-payments have to be contingent on the
truthfulness of the agents’ reports. However, since there is
no way to directly establish the truthfulness of the feed-
back, we will appeal to the power of peer-prediction mech-
anisms (Miller, Resnick, and Zeckhauser 2005) to align the
incentives of the agents with their feedback. The most im-
portant constituents of the peer-prediction framework are
the agents’ beliefs about the observations of their peers. We
will let Pi(Xp = x′), for x′ ∈ {0, 1}, denote agent i’s
(prior) belief about a randomly selected peer p’s observation
Xp on a question being x′. We will assume that all ques-
tions are a priori similar so the prior belief of the agent is
same for all questions.5 After the agent makes a private ob-
servation Xi for a question, she updates her belief (poste-
rior) about her peer’s observation on that question only, to
Pi(Xp = x′|Xi = x).
The first objective of this paper is to ensure that the de-
centralized platform can be used as an oracle, in the sense

4Due to the page limit, proofs are provided in an online supple-
ment, which is available at http://bit.ly/2BkXjSx.

5If not all questions are a priori similar but there are known
batches of a priori similar questions, our results can be extended
for each batch separately. For example, in the web-services case,
this can be done by grouping web-services with similar SLAs

that the outcome determined by the platform is correct. The
next question is, how large do the side-payments need to be?
Is it possible to implement the side-payment scheme sug-
gested by the peer-prediction mechanism without incurring
loss to the platform? Our benchmark here is the amount of
money that the platform would have to pay if there were
no side-payments in place, and therefore the outcome would
be determined by the denial strategies of the agents. In
other words, we define the relative saving of a side-payment
scheme to be

relative saving:
nR−P
nR

,

where P is the total payment (side-payment + outcome de-
pendent payment) under the scheme to the agents. The rea-
son for considering relative saving in this paper and not the
actual saving in monetary units is that the absolute saving is
domain and scale dependent and not very informative in a
general sense. Before we proceed, let us see what the best
relative saving that we could hope for is. The proof of the
proposition is deferred to the online supplement.
Proposition 1. If agents were honest (i.e. they reported
truthfully ignoring the outcome dependent payments), the
platform could make an expected relative saving of up to
P (1) in the payments, where P (1) is the actual probability
of a randomly selected report on the platform being 1.
Note that the best possible saving is not 100%, because it
depends on the actual quality of the service. In the web
service example, Proposition 1 states that when the response
times of the services are generally good i.e., P (1) is high,
the platform could make significant savings (up to 100% as
P (1)→ 1) if the agents were honest. Also, note that we are
comparing against the ideal outcome, when agents would
not need to be incentivized to act truthfully; a mechanism
that fairs well against this outcome, will fair well against
any other side-payment scheme, including one in which the
outcome determination is done by a costly third party.

Remark: A slightly different way to quantify the saving is
in terms of whether the revenue generated by the service
subscription fees is enough to cover the payments. To avoid
introducing too many new terms, we postpone the exposition
of these results until Section 7.

The PTSC Mechanism. Since we are interested in relax-
ing the informational assumptions as much as possible, we
will use a detail-free mechanism for determining the side-
payments on the decentralized platform. In particular, we
will use the PTSC mechanism (Radanovic, Faltings, and Ju-
rca 2016), which we describe here for completeness. To de-
cide the reward for an agent, the mechanism selects another
agent p who also submitted feedback for the same question.
Suppose that the agent submits Yi = y and the peer sub-
mits Yp = y′. The side-payment of τ(y, y′) agent i under
the PTSC mechanism is:

τ(y, y
′) =

α ·
(
1y=y′

Ri(y)
− 1
)

if Ri(y) 6= 0

0 if Ri(y) = 0



where α is a strictly positive scaling constant. The mech-
anism uses Ri(y) = numi(y)/

∑
ȳ∈{0,1}

numi(ȳ), where

numi(y) is a function that counts occurrences of y in the
feedback of all agents (except i) across all questions.

Subjective equilibrium: When referring to the “correct out-
come” for rational agents, one needs to define an appro-
priate solution concept is which the outcome will be ob-
tained. The standard objective in the peer-prediction liter-
ature is to ensure that the correct outcome is achieved in
the equilibrium, or, in other words, that truth-telling is an
equilibrium. A strategy profile σ = (σ1, σ2, . . . , σn), which
represents a collection of strategies of agents {1, 2, . . . , n},
is a strict equilibrium if for any agent i ∈ {1, 2, . . . , n},
the agent’s expected payment is strictly maximized when
she adopts strategy σi , i.e. σi is her best response to
the strategies of the other agents. A strategy profile σ =
(σ1, σ2, . . . , σn), is an ε-approximate equilibrium if for any
agent i ∈ {1, 2, . . . , n}, the agent’s expected payment when
she adopts strategy σi, is smaller than the expected payment
when she adopts any other strategy σ′i by at most ε.

Since beliefs need not be common among workers, i.e.
they are subjective, the appropriate equilibrium concept that
we adopt is the ex-post subjective equilibrium (Witkowski
and Parkes 2012a), defined over admissible belief types. In
this equilibrium concept, a worker’s best response is in-
dependent of the beliefs of other workers. In the rest of
the paper, we simply use the terms “equilibrium” and “ε-
approximate equilibrium” for brevity.

3 Truthful Equilibrium and savings
We first derive the conditions under which the PTSC mecha-
nism can be used to ensure that the truth-telling strategy pro-
file is an equilibrium, in the presence of outcome-dependent
lying incentives for the agents. This is certainly a critical
requirement for a side-payment scheme which elicits reli-
able information. In the next section, we will provide an
even stronger guarantee, ensuring that truth-telling is also
a “good” equilibrium, under some reasonable assumptions.
In our analysis, we will use the following quantity.
Definition 4 (Self-Predictor Value).

δ∗ = min
i

(Pi(Xp = 1|Xi = 1)

Pi(Xp = 1)
− Pi(Xp = 0|Xi = 1)

Pi(Xp = 0)

)
We note that δ∗ > 0, whenever the observations of agents
are positively correlated; this means that conditional on ob-
serving 1, the posterior belief of the agent about her peer
also observing 1 strictly increases compared to her prior
belief about the same. This positive correlation of signals
is a standard assumption in the literature of peer-prediction
for binary answer spaces, e.g. see (Jurca and Faltings 2005;
Witkowski and Parkes 2012a) and it is under this condition
that PTSC guarantees that truth-telling is an equilibrium.6
We will make the same assumption throughout this paper,

6In the original settings for which it was proposed, in which
outcome-dependent lying incentives were not present (Radanovic,
Faltings, and Jurca 2016).

and we will quantify the required scaling constant of PTSC
as well as the relative savings of the mechanism in terms of
δ∗. Intuitively, δ∗ is a measure of correlation strength, and
captures the relative increase in the posterior compared to
the prior belief, as described above. A very similar quantity
was defined in (Radanovic, Faltings, and Jurca 2016) captur-
ing the very same concept, differing on the fact that it was
a multiplicative parameter rather than an additive one. The
parameter is also closely related to the update strength used
in (Freeman, Lahaie, and Pennock 2017).

We emphasize here that the mechanism does not need to
know the exact value of δ∗, but we assume that an estimate
of this value (δ = δ∗ + β, for some β ∈ R) is known. We
defer the reader to (Radanovic, Faltings, and Jurca 2016) or
(Liu and Chen 2017b), where how a similar estimation could
be done is discussed.

Theorem 1. Given δ and a scaling constant α > R
n·δ , the

truth-telling strategy profile is a strict equilibrium if β ≤ 0,
and is a (β·Rn·δ )-approximate equilibrium if β > 0.

Note that the theorem is stated in terms of ε-approximate
equilibria. This is because if the value of δ∗ is overestimated
(i.e., β > 0), then the agents might have incentive to actually
deviate from their truth-telling strategy, but that incentive
is bounded by a typically small quantity. In fact, when the
overestimation imprecision tends to be negligible (i.e., β →
0) or when the number of agents grows large (i.e., n→∞),
then ε goes to 0 and we obtain exact equilibrium. On the
other hand, if we only underestimate δ∗ (i.e., β < 0), then
we obtain exact equilibrium, regardless of the imprecision
parameter or the number of agents.

Any overestimation of δ∗ does not hurt the saving com-
pared to the case of a precise estimation; in fact, it actually
improves it. In contrast, underestimating δ∗ can diminish the
saving, but the loss again vanishes as the number of agents
grows large. The relative savings of the mechanism are cap-
tured in the following theorem.

Theorem 2. The expected relative saving in payments made
in the truth-telling equilibrium is at least P (1)− 1

n·δ , where
P (1) is the actual probability of a randomly selected report
being 1 in the truth-telling equilibrium.

The proof of the theorem is included in Section 2 of the sup-
plement. Note that as long as the condition n > 1

P (1)·δ is
satisfied, the lower bound on saving is actually a positive
number. Finally, notice that as n → ∞, the relative saving
reaches the maximum achievable value P (1) as discussed in
Proposition 1. In a more favorable setting, when the beliefs
of the workers are not arbitrary but are aligned with the real
observation probabilities and the mechanism has access to
δ∗, it can be shown that for any n ≥ 2, the platform makes
strictly positive relative savings given by P (1)

(
1 − 1

n

)
. We

refer the reader to Theorem 2A of the appendix for the de-
tails.

We conclude the section with the following observation.
While the employment of the PTSC mechanism with an ap-
propriate scaling constant can guarantee that truth-telling is
an equilibrium strategy, it is not hard to see that the de-
nial strategy is still an equilibrium strategy in addition to



the truth-telling strategy. Moreover, this undesired equilib-
rium is actually more profitable for the agents than the truth-
telling equilibrium and any attempts of making the truth-
telling equilibrium more profitable are impaired by the fol-
lowing result.

Proposition 2. The denial strategy is an equilibrium of
PTSC and is more profitable for the agents than the truth-
telling equilibrium. More generally, if the denial strategy
equilibrium exists in a mechanism, it is not possible to make
the truth-telling equilibrium more profitable without causing
loss to the platform.

This type of uninformed equilibria are present throughout
the related literature (e.g., see (Freeman, Lahaie, and Pen-
nock 2017)) and in the next section, we will discuss how
they can be eliminated under reasonable assumptions.

4 Honest Agents
In many real-life platforms with many participants, it is nat-
ural to assume that at least a few of them will behave hon-
estly, regardless of the monetary incentives that the platform
provides. This can be attributed to several reasons; for ex-
ample, to rational choices that are not explicitly captured by
the payments, e.g., an interest in the well-being of society or
some intrinsic utility from “doing the right thing”, or even
to some form of bounded-rationality (Rubinstein 1998) or
risk-aversion. We show that the the undesirable equilibrium
highlighted in the previous section can be eliminated in our
setting if it is known that there exists an arbitrary small non-
zero fraction f of honest agents on the platform. In fact, it
is only necessary that the agents believe that there is such a
fraction of honest agents, which is a reasonable assumption
in most real-world platforms. As it will be evident later, nei-
ther the rational agents nor the platform know the identity
of the honest agents. Only assuming the existence of honest
agents (without known identities) is fundamentally different
from using identified trusted authorities for obtaining obser-
vations, since the latter violates the decentralization of the
platform, while the former does not.

For the analysis, we will use an alternative definition of
the self-predictor value that we defined in Section 3. This
definition adapts the self-predictor value to the situation
when agents believe that only a f -fraction of other agents
are honest and the remaining (1− f)-fraction always report
0 irrespective of their observations, i.e. they follow the de-
nial strategy.

Definition 5 (Self-Predictor Value With Colluding Agents).
LetQi(Xp = 0|Xi = 1) = (1−f)+f ·Pi(Xp = 0|Xi = 1)
and Qi(Xp = 0) = (1 − f) + f · Pi(Xp = 0). The self-
predictor value with colluding agents is defined as

δ∗c = min
i

(
Pi(Xp = 1|Xi = 1)

Pi(Xp = 1)
− Qi(Xp = 0|Xi = 1)

Qi(Xp = 0)

)

Note that when f = 1, we obtain exactly the same quantity
as in Definition 4.

Lemma 1. If δ∗ > 0, then δ∗c > 0, for any 0 < f < 1.

We will exploit this property of δ∗c to show that it is possible
to eliminate the denial strategy equilibrium for any non-zero
value of f . Similar to the previous section, we assume that
the mechanism knows only an estimate δc = δ∗c + βc.
Theorem 3. Given that for f > 0, (a) an f -fraction of
agents are honest, (b) the remaining (1− f)-fraction adopt
the denial strategy and (c) it holds that α > R

n·δc , the truth-
telling strategy is a strict best response if βc ≤ 0 and is an
(βc·R
n·δc )-approximate best response if βc > 0.

The theorem implies that the collusion of the (1−f)-fraction
who adopt the denial strategy becomes unstable and the ra-
tional choice for them will be to break the collusion and de-
viate to the truth-telling strategy. In other words, the denial
strategy equilibrium is eliminated and the truthful equilib-
rium prevails.

Given that δ∗c ≤ δ∗ by definition (and strictly smaller
when f > 0), the scaling constant α of PTSC in this case
is actually larger than before. The reason is that we are now
not only requiring that truth-telling is an equilibrium, but
also that the denial strategy equilibrium is eliminated. Note
that δ∗c is strictly decreasing in f and achieves its maximum,
which is δ∗, at f = 1.

For the saving, we first remark that the baseline for com-
puting relative saving now naturally becomes the rational
outcome in which the honest agents report the truth and the
remaining agents play according to their denial strategies.
Thus, the saving of a side-payment scheme, under which a
total payment of P is made to all the agents (including the
honest ones), now becomes:

relative saving:
nR′ − P
nR′

,

where R′ = R ·
[
(1 − f) + f · (1 − P (1))

]
. Note that[

(1 − f) + f · (1 − P (1))
]

is the expected value of the
outcome when (1− f)-fraction of the agents play the denial
strategy (always report 0) and the honest f -fraction report 0
only when they actually observe 0.

For the expected relative saving, we have the following.
Theorem 4. If 0 < f < 1, the expected relative saving
made by the platform in the truth-telling equilibrium is at
least [

(1− f)P (1)− 1

nδc

]
· 1

(1− fP (1))

Here, the lower bound on n needed for the saving to be pos-
itive is given by n > 1

P (1)·δc·(1−f) . Note that this lower
bound depends inversely on (1 − f). If n is fixed, then one
gets an upper bound on f given by

f < 1− 1

P (1) · δc · n
An upper bound on f , or the direct dependence of n on f
may seem counter-intuitive at first; why would one want to
put a cap on the number of agents that always behave hon-
estly? This is explained by the fact that these are merely the
conditions required for a relative saving to be strictly posi-
tive. When there is a big enough fraction of honest agents,



the effect of the colluding agents on the outcome decreases
and so does the relative saving that can be made by incen-
tivizing these colluding agents to deviate to the truth-telling
strategy. This means that if there are more honest agents than
what the bound suggests (which tends to 1 for large n), then
the platform will not actually save any money by implement-
ing a side-payment mechanism. It should be noted however
that Theorem 3 holds no matter how large f is, meaning that
if the platform desires, at the expense of a negative saving,
it can still implement the side-payment scheme in order to
enforce that all agents are actually truth-telling in the equi-
librium. The reason for wanting to do that could be to obtain
correct information from the rational agents too, who would
otherwise play denial strategy and introduce noise.

5 Experimental Evaluation
In this section, we evaluate the savings of PTSC experimen-
tally on two real-world datasets, described below.

Dataset: We conducted experiments on the dataset7
of (Zheng, Zhang, and Lyu 2010; 2014), which contains
real-world Quality of Service evaluation results from 339
trusted agents on 5,825 web services. The agents observe the
response time (in seconds) and throughput (in kbps) of the
web-services and therefore, the observations can be used as
two different datasets for our purposes. The dataset exhibits
some missing observations but still has an overall density of
94.8% for the response time and 92.74% for the through-
put. The observations are real values which we placed into
two categories, corresponding to “good” and “bad” perfor-
mance, in order to fit them to our binary observation set-
ting. In particular, we treated a response time of at most 1
second as a “good” response time and the rest as “bad” re-
sponse times. This resulted in 83.71% good response time
observations, on average across all services. Similarly, we
treated a throughput above 5 kbps as a good throughput and
anything below that as a bad throughput. This resulted in
78.18% good throughput observations, on average across all
services. Thus, in the context of our model, P (1) ≈ 0.8371
for response time and P (1) ≈ 0.7818 for throughput.

Simulation Parameters: We are interested in simulating
settings in which the observations in the dataset would have
been made by self-interested agents (rather than trusted
ones) who have an incentive to play the denial strategy.
Therefore, the dataset acts as the true private observations
of the agents, which they may or may not reveal truthfully
to the platform depending on their incentives. We fix a con-
stant refund amountR in our simulations; since we will only
discuss the relative saving, the actual choice ofR is not im-
portant here. We vary the number of agents that are asked to
report their observations for a service, by randomly selecting
a subset of the agents from the dataset for every web-service.

We approximate the self-predictor value δ∗ using the fol-
lowing process. We randomly sample, for each web service,
two true observations. We use this sample to get an empir-
ical estimate of the joint distribution of the observations of
the agents and the prior distribution, and these two empirical

7Dataset is available at http://wsdream.github.io.

estimates are used in the expression for δ∗. The result of this
process can be thought of as a way to produce δ = δ∗ + β,
i.e., the value δ that appears in the statements of our theo-
rems. As we mentioned in Section 3, since the value of δ∗
is calculated as a minimum over all the agents, overestimat-
ing this value might cause some agents to have incentives
to deviate, and in particular switch to their denial strategies.
To examine the robustness of our scheme against this phe-
nomenon, we quantify the savings of the mechanism when a
fraction of agents, even with PTSC implemented, decide to
play according to the denial strategy. We explain the results
of these experiments in the next subsection.

Experimental Results

In Figures 1a and 1b, we compare the saving achieved by
PTSC against the optimal saving, which is obtained when
all the agents are honest. Specifically, the optimal saving
is given by (Pd − Pα)/Pd, whereas the saving of PTSC
is given by (Pd − Peq)/Pd, where Pd is the refund pay-
ment of the denial strategy equilibrium, Pα is the refund
payment when all agents are honest and Peq is the total pay-
ment of PTSC, including the refund and side-payments. In
line with our theoretical observation in Theorem 2, the sav-
ing achieved by PTSC converges the optimal saving, which
is approximately P (1), as the number of agents increases. In
fact, the saving approaches the optimal levels quite quickly,
for reasonable numbers of agents (i.e., approximately 40
agents). To quantify the robustness of PTSC with respect
to the estimation of δ∗, the figure also depicts the relative
saving made when only a 90%, 67% and 50% fraction of
the agents receive the PTSC side-payments and report truth-
fully, and the rest receive the PTSC side-payment but still
use the denial strategy. While the saving naturally declines,
we observe that even with 90% of the agents being truthful,
a significant relative saving is achieved.

We also consider the relative saving of PTSC when the
side-payments are large enough to not only make truth-
telling an equilibrium, but to also eliminate the denial strat-
egy equilibrium, as discussed in Section 4, via the assump-
tion that there exists an f -fraction of honest agents who al-
ways report truthfully. We set the value of f to either 0.1 or
0.2, and observe how quickly the relative savings made by
PTSC can reach the maximum achievable relative saving as
the number of agents increase; this is shown in Figures 1c
and 1d. Note that unlike Figures 1a and 1b, here the rela-
tive saving starts at a lower value; this is because the scaling
constant and hence the payment made by PTSC are required
to be larger as discussed after Theorem 3. Also, note that we
have a different maximum possible saving bound for each
f . This is in agreement with our discussion at the end of
Section 4 (following Theorem 4) i.e., a larger value of f de-
creases the maximum achievable relative saving.

While the relative saving only measures the monetary util-
ity, the impact of PTSC on the correct outcome determina-
tion is also worth noting. Table 1 shows that as more agents
are encouraged by the side payments to adopt the truth-
telling strategy, the average outcome across all services ap-
proaches its true value, i.e., 1− P (1).
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Figure 1: Relative saving made by PTSC.

Truthful agents % Response Time Throughput
50% truthful 0.5844 0.6093
67% truthful 0.4426 0.4765
90% truthful 0.2515 0.2964
All truthful 0.1684 0.2179

Table 1: Average value of the outcome as a function of the
percentage of agents who are truth-telling, as a result of the
side payments of PTSC. Note that “truthful” here does not
refer to honest agents, but the agents that are incentivized by
the mechanism to report their response times truthfully.

6 Conclusions and Future work
In this paper, we studied settings where the outcome is de-
termined as an aggregate statistic of the reports of rational
agents, who have outside incentives to manipulate the out-
come in their favor.We discussed (i) how a detail-free peer-
prediction mechanism, the PTSC mechanism, can be imple-
mented as a side-payment scheme in order to guarantee that
truth-telling is an equilibrium of the induced game and the
undesired equilibrium, where all agents report a bad service,
can be eliminated; and (ii) lower bounds on the relative sav-
ing in the net payments achieved by the mechanism, which
approach optimality as the number of agents grows large.

As future work, it would be interesting to consider dif-
ferent outcome determination functions; threshold functions
seem like an obvious choice, where the outcome is deemed
“bad”, when the fraction of agents that report that exceeds
a given threshold. Given that PTSC provides guarantees for
more general signal spaces, it would be interesting to study
similar settings beyond the binary signal setting. However,
that seems to require a different model of outcome determi-
nation and compensation schemes.

7 Appendix
Better Savings with Realistic Beliefs
Let us call the beliefs of the agents realistic if for any agent
i, it holds that Pi(Xp = x) = P (x) and Pi(Xp = y|Xi =
x) = P (y|x), where P (x) is the real probability of an agent
observing 0 for any random question and P (y|x) is the real
probability that for any given question, given that one agent
reported x, the other reported y.

Theorem 2A. Given that the beliefs of the agents are realis-
tic and δ = δ∗, then the relative saving in the PTSC truthful
equilibrium is given by:

P (1)
[
1− 1

n

]
Note that the relative saving in this case is strictly positive

for any n > 1 and also approaches the optimal value of P (1)
as n→∞.

Covering the payments with the revenue from
subscription fees
In the main text, we quantified the savings in relation to the
amount that the platform would have to pay, if no side pay-
ment scheme was not in place and the agents would ratio-
nally follow their denial strategies. A slightly different way
to quantify the saving is in terms of whether the revenue gen-
erated by the subscription fees is enough to cover the pay-
ments. In the web services example, the subscription fees is
the amount of money that the agents pay to get the service
(and the SLA) in the first place. Given refund R, the sub-
scription free to the service will be R · t for some t ∈ R.
Obviously, if we do not implement a side payment scheme
and we let agents play their denial strategies, the payments
can be covered with a (1/t)-fraction of the revenue, only if
t ≥ 1, and they can not be covered otherwise. On the other
hand, the best that we can hope for is again given by the case
when all the agents are honest. This is formalized below:
Proposition 3. If agents were honest and t ≥ 1, the refund
payments can be covered in expectation with

(
1−P (1)

t

)
-

fraction of the revenue generated. If t < 1, the refund
payments can still be covered in expectation as long as
t ≥ 1− P (1).
When the agents are rational and we implement the PTSC as
side-payment mechanism, we have the following theorem.
Theorem 5. In the truth-telling equilibrium of PTSC and
assuming n > 1

P (1)·δ , if t ≥ 1 the payments can be covered

in expectation with 1
t

(
1− P (1) + 1

n·δ

)
-fraction of the rev-

enue generated. If t < 1, the payments can still be covered
in expectation, if t ≥ 1− P (1) + 1

n·δ .
As n → ∞, the expressions for the fraction of revenue

and minimum value t converges to the optimal values
(Proposition 3).
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